
On System Design
Jim Waldo

Sun Microsystems, Inc
1 Network Drive

Burlington, MA 01803
1 781 442 0497

Jim.waldo@sun.com

ABSTRACT
In this essay, I consider some of the factors that are making it
more and more difficult to expend the effort necessary to do
system design. Because of changes in the economics of the field
in both industry and research, we have become less able to take
the time needed to do real system design, and to train the next
generation of designers. Because of the intellectual property
landscape, we are less able to discuss system design. The end
result is that we do less good system design than we used to. But
this can be changed without changing the environmental factors
that have contributed to the problem; all that is needed is the
application of courage.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques], D.2.11 [Software
Architecture]

General Terms
Design, management, standardization.

Keywords
System Design, Education, Training.

1. INTRODUCTION
I am beginning to believe that the art and craft of system design is
in danger of being lost. Carefully designed systems, in which the
right abstractions are combined in just the right way to produce a
system that is easy to learn, easy to change, and pleasing to use
and work with, are unlikely to happen using the kind of design
techniques that are popular today. It isn’t just the techniques that
we use to produce systems that impede our ability to design
systems. We are unable to train engineers and scientists
adequately in system design. The economics of the industry push
us in directions that don’t favor design. The realities of funding in
research make it unlikely that much time will be spent on system
design. The end result is that less careful design work is being

done, and we as an industry, a profession, and an intellectual
discipline don’t seem to care or be able to do much about it.

In what follows, I will try to describe and explain some of these
factors, and try to make clear the price that the industry and the
discipline are likely to pay because of these factors. I will begin
by trying to characterize what we mean by system design. On the
characterization I will give, all but the most trivial of software
artifacts have a design, but only some of them were given that
design consciously. I will then turn to how system design is
learned, and given that as a base will look at the changes in both
industry and academia that have made it harder for system design
to be taught or even done in a reasonable way.

2. WHAT IS SYSTEM DESIGN?
One of the most interesting, and most difficult, of the tasks that
we may undertake in our careers as engineers or computer
scientists is the design of an entire system. A system is a set of
interacting parts, generally too large to be built by a single person,
designed for some particular purpose. We work with systems all
the time. The operating systems that control our machines are
systems. The layers of hardware and software that allow the
programs on these machines to interact with each other over a
network are systems. Even most applications that we use are
systems, whether we know it or not.

As engineers, we know that the way to solve a large problem is to
break it into a set of interacting smaller problems. Each of these
smaller problems can then be decomposed into even smaller
problems, until (after enough iterations) we have a problem that
can be solved on its own. System design is a similar task, taking a
large system and breaking it down into a set of smaller systems.
The additional step in system design is to specify the interactions
of the smaller systems so that they fit together to create the larger
system; after breaking the problem into smaller problems the
system designer will say how it is that the solutions to those
smaller problems will fit back together to solve the larger
problem.

All (reasonable1) software is a system that has a design on this
characterization. The software will be organized around methods
(or procedures, or functions, or whatever abstraction for this sort

1 We have all seen BASIC programs that have no such design.

However, after the first week or so of writing code, anyone who
does not avoid that sort of non-structure should be quietly, but
firmly, convinced to spend his or her time doing something,
anything, else.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA 2005, October 22–26, 2006, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

of thing is supported by the language being used) and each of
these methods will represent a decomposition and abstraction of a
problem that must be solved for the software to run. The larger the
piece of software, the more layers there are in the design, and the
more complex the system.

But to say that all software has a design does not entail that all
software is designed. For a program to be designed requires that
there be some (perhaps considerable) thinking about the right way
to decompose functionality, and how to create a small set of
abstractions that can be re-used and re-combined to provide that
functionality. The notion that anything that shows some kind of
design was therefore the result of some conscious activity of
design is a confusion that is the result of an ambiguity in the term
“design.” On one sense of the word, it is a property of some object
(such as a program, a system, or the like) that merely indicates
that there are parts that interact. On another sense of the word, it
indicates an activity of determining what the parts of some larger
whole should be, and how those parts will fit together. While
anything that is the result of the activity of design will itself have
the property of being designed, it does not follow that anything
that can be described as a group of parts interacting to form a
more complex whole (that is, have the property of a design) was
therefore the result of the activity of design.

One of the best indications that a program is the result of the
activity of design is the existence of a document that describes
that design. But all too often software has a design that must be
discovered from the code by inspection. Sometimes the design
that is discovered shows all the hallmarks of a thoughtful design
activity, but there are other times that the discovered design shows
a haphazard combination of various abstractions, duplication of
functionality in slightly different forms, and inconsistencies in the
way in which abstractions were selected, implemented, and used.
Such discovered designs show either the absence of any design
activity prior to the construction of the program, or that what
design activity did occur prior to the writing of the program was,
to speak plainly, not very good.

Collections of programs that are meant to form a system exhibit
the same sort of design, but at a larger scale and in a more public
fashion. A collection of software meant to form a system will
present the user of the system with a set of abstractions that can be
combined in various ways. The abstractions may show symmetry,
simplicity, and an aptness to the task that are characteristics of
what we consider good design; the design may also seem random
in its choice of abstractions, be repetitive, or show little
consistency from one part of the system to another; these are
systems that we consider examples of poor design.

I know of no adequate set of necessary and sufficient conditions
for determining whether a design is good or not, but like so many
things having to do with taste and aesthetics we generally know
good (and bad) design when we see it. The Unix operating
system has a simplicity and symmetry that is indicative of a good
design; the companion C programming language has a
combination of power and simplicity that both reflects and
compliments the PDP-11 architecture for which it was originally
intended.

Nor is there a necessary connection between a system or program
exhibiting good design and that system or program having been
consciously designed by someone who then wrote some sort of
design document. While I personally know of no systems that

were not actively designed that are examples of good design, there
is no logical impossibility of such a system existing. Further, it is
not all that hard to find systems that were consciously designed
that are not examples of what any of us (other than, perhaps, the
original designers) would consider examples of good design; I’m
sure we can all come up with many examples of this sort of thing.
In spite of this, there does seem to be some connection between
the activity of system design and the production of elegant, well
crafted systems, in at least that all of the actual examples of the
later are also examples of the former.

System design can change and evolve over time. The original
Javatm programming language and associated libraries had a
simple and consistent design. Some of the additions to the
libraries associated with the environment since it was first
introduced reflect the original design, but others have introduced
other notions of design. The overall system has evolved into
something that, at a certain scope, has a coherent design but
which, taken as a whole, is far less coherent than it once was. A
more radical example of design change over time is seen in the
sets of protocols and languages that define the World Wide Web;
when first introduced these were simple and had a coherent
design. Designs that have been proposed (or that have become
accepted standards) in the past decade, however, show no such
coherence and simplicity; individual collections of these may be
said to form a designed system, but taken together they do not.

Some of these examples of good design were thought out in fairly
complete detail before the systems were produced. Others evolved
with the implementation of the system itself. But in all of the
cases of good design, there is a fairly simple set of principles that
can be seen to underlie the design. In the case of Unix, the idea of
a file and the ability of any program to take an ASCII stream as
input and produce such a stream as output allowed those learning
the system to know what to expect as they encountered new parts
of the system. There are times that the design of a system, even
when it is an example of good design, will need to be pushed and
prodded in unnatural ways to gain something that the original
design did not take into account. It was a great simplification in
Unix to treat all files as ASCII streams, but the introduction of
magic numbers, various kinds of headers, and conventions having
to do with the filename extension show the desire for a typed file
system being overlaid on such a system. While the original design
of untyped files was simple and sufficient, the complexity that has
grown up around the various ways of indicating the type of a file
can make one wish that the original design had been somewhat
more complex. But one should be careful about ones wishes; the
number of bad designs that have been justified by quoting
Einstein’s maxim “everything should be made as simple as
possible, but no simpler” makes one wish that he had actually said
“everything should be made as simple as possible, and then made
simpler.”

We may not be able to fully define what makes one design better
than another, but there are characteristics that nearly all good
designs have. Good designs are simple, and built around a small
set of abstractions. Good designs make sense, and allow those
learning the system to understand new parts of the system by
analogy with parts that are already known. Good designs are
elegant, so that understanding the design helps one to understand
the problem that the design was meant to solve. While it may be
possible for such designs to arise without the system being

actively designed, I know of no cases where it has. Good design,
at least in computing systems, seems to require good designers.

Given my characterization of system design, I should really
restate my concern on the subject. Since any system will have a
design, saying that system design is dying out would be the same
as saying that software development is dying out. That is
demonstrably not the case. More and more software is being
produced, so there are more and more system designs.

What I am worried about is the demise of systems that are
designed, in the sense that there is some coherent plan for the
system that is arrived at by the people working on the system in a
way that is separate from simply observing how the code falls out.
Maybe a better characterization of my worry is that the act of
designing a system is happening less and less, and as a result the
design of the systems that we are producing is becoming more and
more haphazard and the resulting designs are less and less
coherent, simple, and aesthetically pleasing. Certainly all of our
software has some structure to it and some set of abstractions that
can be identified as underlying the structure of the code, but I find
that it is less and less common that the structure and the
abstractions are thought about (and cared about) as entities in
themselves. Instead, we seem to be producing software where the
overall design can only be determined after the fact, by looking at
the code that is produced

Whether the perceived lack of designing systems is good or bad, it
is something that we as an industry and as an intellectual
discipline should understand. The change in the design of systems
is, I think, being caused by a number of factors. Individually, they
might not be a problem; taken together they are changing the way
we build systems. Part of it has to do with education; part if it has
to do with economics; part of it has to do with the current fads or
fashions in the way we write software. In what follows, I will look
at each of these factors in turn.

Let’s start with some thoughts on education.

3. TRAINING IN SYSTEM DESIGN
Like most other industrial research laboratories, Sun Labs brings
in groups of interns over the summer to work on various projects.
This is about as classic a win-win situation as can be found in
business. The interns (most of whom are graduate students, but
also undergraduates and the occasional high-school student) find a
summer job in their field of interest, and the lab gets an injection
of enthusiasm that is hard to replicate. The students think they are
being overpaid, while we get what we consider cheap labor. The
students don’t know what things can’t be done, and therefore
often do the seemingly impossible. Best of all, they get to see
what the “real world” is like (although the thought of an industrial
research lab being a part of the “real world” is more an indication
of how artificial the world of academia is than how real our world
is).
This past summer, while walking back from lunch about a week
into his tenure, the intern working in my group turned to me and
asked, “So, how do you go about learning to design a system?”
Like most great questions, it showed a level of naivety that was
breathtaking. The only short answer I could give was, essentially,
that you learned how to design a system by designing systems and
finding out what works and what doesn’t work. I’ve been thinking
about the long answer ever since; I’m not sure that the long

answer differs from the short answer in much more than length,
but nonetheless here is what I’ve come up with.

3.1 The Origin of Good Design
Before knowing how to train someone in system design, it is
useful to have some idea concerning the origin of good design. If
we can know what leads to good design, we can try to teach
people to do those sorts of things in the hope (although not the
guarantee) that good design will result.

There is no shortage of books, seminars, and other training guides
that claim to help in this quest. There are techniques (such as Six
Sigma) that profess to aid in the development of good design.
There are languages (such as UML) that claim to help in the
development of good design. And there are no end to the
methodologies and processes that claim to enable any team to
create a good design that will meet the needs of the customer by
the mere repeated application of the rules that make up the
methodology.

I have no doubt that the success stories that each of these design
approaches and aids cite are true. In some sense, that is just the
problem; completely incompatible and contradictory approaches
to the design problem have been shown to be wildly successful
(by their proponents) and wildly unsuccessful (by the proponents
of competing approaches). Bottom-up or top-down, waterfall or
extreme; all seem to work for some and not for others.

The only generally applicable rule that doesn’t have obvious
counterexamples is one I first heard enunciated by Fred Brooks
more than a dozen years ago. In a talk given in a Sun-internal
seminar (an expanded version of which became the basis for his
Turing Award lecture in 2000[3]), Brooks talked of the work he
had been doing to try to find the underlying common feature of
good design, not just in computer hardware and software but also
in such endeavors as architecture, graphics, and the fine arts. The
only thing that he could find that good designs had in common
was that they were produced by good designers.2

There is one reading of this insight on which it is true but
uninteresting, a mere tautological statement that reflects giving in
to the unpredictable and inscrutable mystery of design. On this
reading, the only way to determine what produces a good design
is to wait until you have one, and then attribute it to the designer.
Good design, on this view, happens by chance. You can hope for
it, but you can’t do anything to improve your chances of getting a
good design.

This is not the reading that I believe Brooks intended, nor the one
that I found persuasive when I first heard the talk. My reading of
this principal is that those who have been able to produce a good
design in the past are far more likely (although not guaranteed) to
be able to produce a good design in the future. But there is no
magic process by which such designers produce their designs;
each may go about the design problem in a different way, and a
designer may approach one problem in a particular way and
another in a completely different fashion.

The point, I believe, is that good design is a capability that some
people have, and others simply do not. Whether this is an innate

2 As a somewhat depressing side-note, the first question asked at

the end of the talk (by a senior engineer) was what process those
good designers used to produce the good designs. Sometimes
hearing is not the same as understanding.

skill that people are born with, or one that is cultivated over time
in ways that we don’t understand, is a question far too deep for me
to address here. I neither know nor care. But by the time someone
is designing a computer system, whatever it takes to be a good
designer is either there or it is not. When it is there, it can be
developed and honed (or, unfortunately, degraded and warped).
But when it is not there, there is no technique or process that can
make up the deficit.

There are a number of people who are uncomfortable with this
concept. Many of them are managers; I will discuss their
discomfort later. Others are uncomfortable with this view on more
philosophical grounds; they feel that saying that there are those
who can produce good designs and those who cannot is contrary
to some egalitarian notion (which it is) and somehow elitist or
undemocratic (which I think it is not).

Why should we be surprised to find that there are some people
who are just not capable of doing first-rate system design? Such
designs are difficult, complex, and require a great deal of taste to
get right. Further, they require the ability to deal with a great deal
of ambiguity while forming the design, an ability to deal with
whole sets of questions that can’t be solved but which the system
designer knows (or has the faith to believe) will be solved at the
appropriate time. Given the difficulty of all of these tasks, it is no
more surprising that not everyone can be a great designer than it is
that not everyone can be a great composer, or a great artist, or a
great architect (all fields that also require design). This is not to
say that designers are better people than those who are not great
designers; indeed, designers are good or bad people in roughly the
same proportion as any other group. But it is to say that some
people are better designers than others, and ignoring that is one of
the many things that leads to bad system design.

3.2 Teaching by Doing
Having said all that, the question of how to teach system design is
still open. The fact that good designs come from good designers
does not tell us where the good designers come from. While it
may be true that not everyone can be a good designer, it is also
true that there is some learning that goes on. I am reminded of
posters I saw years ago at the Rhode Island School of Design,
posters with the headline “Talent without technique is a waste.”
The school did not claim to be able to make anyone an artist. But
they did (and do) claim to be able to take someone with the talent
to be an artist and give them the technique that will let them
exploit and channel that talent. The same is true in system design;
it may be that you have to have some talent to do the design task
well, but it is also true that you need to learn the technique that
allows you to channel and amplify that talent.

In my own case, the instruction that I received in system design
came in the form of an apprenticeship with a master designer.
This was not a formal arrangement, and it could well be that the
person I considered myself apprenticed to did not see our
relationship in anything like those terms. But looking back on it, I
clearly see it that way.
The more structured and corporate relationship was that of an
overall software architect for a major component of a system and
an individual contributor for that system. The group I was in was
responsible for the user environment component (basically, the
windowing system and all user-visible tools) for Apollo
Computer, an early workstation company. The architect of the
group had implemented the first version of these components on
his own, but grander plans had been hatched for the second

system (as is always the case) and a small group had been
assembled to do the design and implementation. I had been hired
to design and implement the component library that would deal
with text; there were others who were dealing with the windowing
system, input mechanisms, the shell interpreter, and even a
scripting language.
The overall design process for the group required the owner of
each component to write a series of specifications for his or her
component, starting with a straw man (a quick sketch of the
various pieces and the overall component model) and ending with
an iron man (which would be a detailed specification of all of the
entry points and their functionality). Once a month, the entire
group would go off site (usually to the apartment of the manager
of the group) for a morning and review one of the specifications
for some component.

The overall architect of the group was not one of the more active
participants in these discussions. But when he talked, everyone
else listened. His most damning criticism was a simple “That’s
too hard.” When said of a specification, it indicated that you had
not done the work to sufficiently understand the problem and boil
it down to some simple core. The assumption was that there was
always some simple core, and by making the assumption such a
core was generally found.

These design reviews, and the constant interaction with both the
architect and the other members of the group over a multi-year
period of time, were the places where my system design skills
were honed. It was here I learned about simplicity and symmetry,
about interfaces and designing for change, and a host of other
rules and techniques that I still use. More important, I learned
what worked for me and what did not, and that what worked for
me might not work for others. Rather than learning a process of
design, I learned how I could best design.

I had originally thought that this way of learning design was
unusual, and caused (in my case) because my academic
background was in a field unrelated to computer science. But as I
learned more and began talking to others who I considered to be
good at system design, I found that this experience was more than
just common; it was nearly universal. Everyone I talked to had a
similar story of the master designer who had, either consciously or
by example (and correction) taught him or her what they
considered to be the important lessons in design. There was a
period when I would ask, “who did you do your design
apprenticeship with?” without supplying any other context. I
expected some to be confused by the question, but I found that
everyone to whom I asked the question not only understood it, but
was able to answer without thinking. Even more interesting, the
names that were given were often the same. Whether they knew it
or not, a relatively small number of master craftsmen were
credited with training a much larger number of system designers.

This was hardly a scientific survey, and as scientists we should
take care in drawing strong conclusions from anecdotal data. But I
think it is indicative of something that no one that I have talked to
about how they design and how they learned to design has pointed
to a class that they took which trained them in any important
ways. Design, if my experience is any indication, is best learned
by a long and varied process of trying, failing, and trying again
under the guidance of someone who is an expert at the task.

3.3 Design and Curriculum
That no one seems to learn system design from some course can
be troubling. If designing of systems is really the hard part of
what we as engineers and computer scientists do, aren’t we in
need of some systematized way of teaching what is needed to do
that kind of design?

Looking around the web, there are some courses in system design
that are taught at various universities, and lots of courses offered
by consulting companies. I have more than just a passing interest
in a course in system design for a variety of reasons, not the least
of which is that I have been contemplating teaching such a course.
It is the sort of course that students ask for; it would be valuable if
students coming into industry actually had some skill in system
design; and it would be interesting to design the curriculum and
readings for such a course.

I had great difficulty in getting anything like a set of readings or a
coherent plan for such a class. There are some obvious readings
(such as Lampson[6], and Brooks[2], and lots of things by
Parnas[4]), but deciding on the concepts that needed to be taught
and the sequence in which those concepts are to be presented keep
eluding me. After enough time of trying and failing to come to
some plan, I realized that I was thinking about this problem in the
wrong way.

More than half a century ago, the philosopher Gilbert Ryle made a
distinction between knowing how and knowing that[8]. Knowing
that is a relation between a person and a proposition; it is a piece
of factual knowledge that can be discovered, can be justified, and
can be taught by the usual mechanisms of pedagogy. Knowing
how is a different kind of thing; it is the kind of knowledge we
have when we know how to walk, or run, or sing. It is not a
factual sort of knowledge, but an ability that we exhibit in our
actions. We can know how to do something reasonably well or
expertly (while we can’t know that the world is round reasonably
well or expertly). Most important, while we can be taught to know
how to do something, the kind of teaching that takes place is very
different from the kind of teaching required to know that.
Academic disciplines require a combination of knowing how and
knowing that. To be fully educated in any of these disciplines, one
certainly needs to understand the factual backgrounds of that
discipline. But to be truly educated in the field also requires that
one learn how to think in a particular way. Each field has its own
technique (or set of techniques) that must be learned just as well
as the subject matter of the field if you really want to be an expert
in that field.

Different fields have different combinations of subject matter
(knowing that) and technique (knowing how). The vast majority
of my formal (academic) training was in the field of philosophy;
as practiced in the United States and England (the so-called
“Anglo-American” or analytic approach to philosophy) the field is
almost entirely technique. Certainly there is plenty of content (the
history of philosophy and the great philosophical questions) but
what really matters is the way in which one thinks (conceptual
analysis, the building of logical models, approaches to
argumentation). While very little of the subject matter of
philosophy was useful to me when I became a software engineer, I
found that the techniques I learned were just as relevant in
computer science as they were in the field in which I learned
them.

I’m told by those who have attended that law school is very much
the same, in that gaining a technique (learning to think like a
lawyer) is far more important than the actual subject matter of the
law (which, after all, varies widely from locale to locale). After
one has learned the technique, one can take the bar exam for a
particular state (which tests knowledge of the subject matter of the
law for that state) before one can practice law. But knowing the
law without knowing the technique does not make one a lawyer.

There are other subjects (the sciences come to mind) where there
is far more subject matter to master along with the technique.
When studying geology you still need to learn to think like a
geologist, but there is also a lot of subject matter that must be
mastered. In these subjects, learning the technique is often a
byproduct of learning the subject matter, or at least a byproduct of
the pedagogy used in teaching the subject.

Courses are organized around parts of the subject matter rather
than around technique. A well-designed program will use the
technique of the field in all of the courses for that field, and will
use the learning of the subject matter as an excuse to train students
in the technique. Courses that try to teach only technique tend to
be somewhat unsuccessful; at best they can provide a forum for
students to demonstrate their technique rather than acquire it.

The academic discipline of computer science has not, I believe,
done a particularly good job of recognizing the distinction
between the technique and the subject matter of computer science.
While there are some examples in which the technique is
reasonably well described (a recent piece by Jeannette Wing[10]
does a great job of describing what it is to think like a computer
scientist), the seemingly non-terminating discussion of what the
curriculum of a computer science major (see, for example, [1])
appears to confuse the techniques that we need to instill with the
subject matter that we need to teach.

My own conclusion is that system design is really a matter of
technique, a way of thinking rather than a subject that can be
taught in a particular course. It might be possible to build a
program that teaches system design by putting students through a
series of courses that hone their system design skills as they move
through the subject matter of the courses. Such a series of courses
would, in effect, be a formalized version of the apprenticeship that
is now the way people acquire their system design technique.

There may even be departments of computer science that have just
such a series of courses. If so, I am not aware of them. They
would certainly not be found by looking for schools that teach a
course in system design; all of their courses would have as a
subtext system design. I think it far more likely that computer
science departments teach system design in much the same way
that I learned system design—that there are some professors who
act as master craftsmen in the field for a group of students, who
apprentice with such professors by taking courses with them
(often not caring about the subject matter) and learning by doing.
But such training is accidental at best; often students are advised
against taking too many courses from a single faculty member,
which has the effect of lessening the possibility of such technique
training occurring.

What would be best is a situation where an entire department was
cognizant of the need to teach the design technique, and all of the
courses from any of the instructors had as an admitted goal the
training in such technique. Such curricula are possible in other
design fields, but they are difficult to design and even more
difficult to evaluate. Until we as a discipline find a way to do this

kind of curricula design and evaluation, system design will
continue to be learned as a craft, through an apprenticeship, and
outside of the normal academic channels. Perhaps this is all that
we can expect, but in times of optimism I think that we as a field
could do better.

It might be that we should look not at engineering but at the studio
arts for direction on such a curriculum. The approach taken there
is that the students do lots of design projects, of varying levels of
complexity and size, and are constantly undergoing criticism of
their work, both from their peers and their instructors (and seeing
the work of their peers being criticized as well). This is a lot more
work, both for the students and the teachers, but seems to have
some positive impact on the development of technique in an area
where elegance and taste are being taught. I doubt that we could
do worse than we do currently if we as a discipline were to give
such an approach a try.

3.4 The Intellectual Gene Pool
Before moving on to other topics, there is one side trip that I feel
must be taken while on the subject of learning system design. It
has to do with what I think is an unfortunate narrowing of the
intellectual gene pool in our field.

When I first started writing software, the industry was expanding
so rapidly and the academic field was so new that there were far
more jobs for software engineers than there were candidates with
degrees in the field. As a result, lots of different backgrounds
were represented in nearly every software engineering group.

For example, in the group in which I served my apprenticeship,
the academic backgrounds included a Ph.D. in physics, a Ph.D. in
philosophy (me), an engineer who had done graduate work in
psychology, another whose background was in anthropology, and
two musicians (along with two engineers who had degrees in
computer science and one who had no degree at all). As a result of
all of this diversity of background, there were lots of different
viewpoints on any given problem, and lots of ways of looking at
any task. The end result was one of the most interesting and
innovative groups that I’ve ever been a part of.
What I find distressing is that I doubt very much if any of the
members of that group who had studied something other than
computer science could have gotten their first job as a software
engineer today. While academia has always insisted on the proper
credentials in the proper field (not surprising, given that they exist
to issue such credentials), industry now requires that those who
fill the job of software engineer be trained in that field. The result
is that the candidates entering the profession are far more
homogeneous in the way they think and the way that they
approach problems. Many times they have been told what the
proper way to solve a problem is, and so they simply solve it that
way.

If we actually knew how to teach the way to think like a computer
scientist or software engineer, and knew how to teach people to
think that way, this might not be a problem. If we actually knew
the answers to most of the questions that come up when producing
software, getting people who already know those answers would
be a way of making the industry more efficient. But, as I argued in
the previous section, I don’t think that we are very good at
teaching how to think like a computer scientist (or at least like a
system designer). Nor do I think that we have adequate solutions
to many of the problems that have to do with system design in
particular and software engineering in general. We can certainly

get more immediate returns on our investments by hiring only
those students who have a degree in computer science or a related
field. But I fear that we are limiting our genetic stock of ideas
prematurely, and as a result the discipline is the poorer for it.

3.5 Education and System Design
If the above observations are correct, then it is not all that
surprising that system design is uncommon, and good system
design even more so. Good system design requires not only talent
but the training that supplies the needed technique to go along
with that talent. System design is not something that can be
covered in a class, but is learned through a much longer process
that is more like an apprenticeship than anything else. Such
apprenticeships are not the sort of thing that our educational
system is set up to provide (at least at the undergraduate level),
and is not going to be provided by some change in the set of
courses that make up the curriculum.

In fact, most who do system design learned their craft after they
completed their formal classroom education, either on the job or
while doing thesis research. But changes in the economics of both
research funding and the software industry have conspired against
the kinds of training that lead to good system design.

4. WHERE SYSTEM DESIGN HAPPENS
If system design is in fact learned as part of an apprenticeship,
there are two places that we should expect such learning to take
place. The first is in graduate school, where a student can work
with a single faculty member (an advisor) who acts as a master.
The other is on-the-job, learning the arts of system design by
doing such design.
But various forms of pressure have made this kind of training
harder and harder to obtain, because less and less real design goes
on either in academic research or in industry. Instead, academic
research has become much more of an evolutionary task, a change
that has been an unintended consequence of decisions by funding
agencies designed to reduce risk. At the same time, industrial
system design has become more constrained, more expensive, and
less adventurous. The result of both has been not just a reduction
in the ability to teach system design, but an environment in which
many of the wrong things are being taught about how to
accomplish that task.

4.1 Industrial System Design
Perhaps we should not be surprised that there is less opportunity
to learn system design in industry, if for no other reason than that
there are fewer systems that need to be designed than there were
ten or twenty years ago. Industry consolidation and maturity have
changed the need for system design, and therefore the opportunity
for learning such design.

Twenty years ago there were far more companies creating
computer systems than there are today. Further, these companies
competed not merely on price but on the functionality, stability,
and sophistication of the overall system, which was proprietary to
the company. Every computer company had their own chips, their
own hardware, their own operating system and their own
programming language (indeed, IBM had three or four of each).
In addition, customers buying these systems would then need
custom software that went beyond the basic computer system, so
there was a thriving industry in building that custom software. All
of these projects required system design, so there were lots of
chances to try designing a system, and lots of chances to learn

either by getting it right or (often better) getting it wrong. There
was also a thriving interchange of design ideas in conferences like
USENIX, OOPSLA, HotOS and the like.

Current industry trends are very different. Where there used to be
many computer companies, there are now far fewer. The number
of operating systems has been reduced to two, with the choices
being Windows or one of the Unix variants. Customers almost
never purchase custom software systems, built from the ground up
from specifications hammered out in discussions between the
software engineers and the customers themselves. Instead, most
custom software is written to allow the connection of existing
systems, or the continuation of those systems on new hardware or
in new environments. The production of this kind of software
comes not from small companies that specialize in doing system
design but rather from either the consulting services of existing
companies or specialized consultancies, and is generally
constrained to the existing environments in such a way that the
design freedom of the creator of the software is tightly
constrained.

A lot of effort has been put into finding ways of building these
custom systems in ways that are more efficient and responsive to
the customer. Techniques such as extreme programming, in which
small changes are made to a system with constant feedback from
the customer have been developed and are widely used. These
techniques emphasize doing quick prototypes and then enhancing
those step-by-step until what the customer wants is produced.

Such techniques are excellent ways of making sure that the system
produced is the one that the customer actually wants. But they are
not good techniques if one wants to insure some form of up-front
system design. Rather than trying to think out the system ahead of
time by decomposing it into its constituent parts, these sorts of
iterative techniques emphasize adding features by aggregation on
to a first-approximation core. System design may be enhanced by
refactoring as the project progresses, and there may be times when
it is possible to review the entire system and change the design.
But neither of these activities helps to get the project done, and
often the result of such work is not visible to the customer. It is far
more usual that problems in the design are coded around rather
than fixed. The end result is a system in which the design emerges
rather than one in which the design is thought-out.

Even worse than not being visible to the customer, work done on
designing the system is not visible to the management of the
company that is developing the system. Even though managers
will pay lip service to the teaching of The Mythical Man
Month[2], there is still the worry that engineers who aren’t
producing code are not doing anything useful. While there are few
companies that explicitly measure productivity in lines-of-code
per week, there is still pressure to produce something that can be
seen. The notion that design can take weeks or months and that
during that time little or no code will be written (or that which
does get written will be thrown away, which often appears to be
regression rather than progress) is hard to sell to managers.

The fact is that good system design takes time; it is the sort of
thing that requires hard solo thinking along with long discussions
with other engineers. There are days when no real progress seems
to be made, and other days when the only progress is to realize
that what you thought was progress over the previous few days (or
weeks) was in fact a wrong turn that won’t really work. Such a
realization is progress (in fact, perhaps the most important

progress, as it can save huge problems later in the project), but to
a manager it may not seem to be moving forward.

Grady Booch once told me that he believed that the greatest
contribution the tools he and others had produced to support the
design process was that they made it appear to managers that the
designer was doing something. He may have been exaggerating,
but not by much. Anything that gives the designer time to think
about the system before committing those thoughts to code helps
the goal of well-designed systems.
What is really needed is an act of faith by management. The
difference between someone who is making progress in coming to
grips with a system and someone who is taking an in-office
vacation may not be visible from the outside. Most managers are
not able to do the design task themselves (those that can are rarer
than those who can make the needed leap of faith), and so have to
trust the system designer. Having an engineer as the designer who
has been successful in the past may help a manager to be patient.
But if you find a manager who is actually willing to give you time
to do the design task, stick with him or her. He or she is a treasure
much rarer than gold.

4.2 Design and Intellectual Property
A subtler change that has had an impact on system design is the
change in the way corporations (and, to some extent, universities)
view intellectual property. One of the reasons that there were
conferences and mailing lists that documented and discussed
system design was that the companies in which those systems
were developed did not want the ideas underlying the systems to
be kept secret. Indeed, the developers of the system were
generally encouraged to publish their designs. Such publications
were seen as ways to market the products shipped by the
company, and were seen by the designers as ways of getting
feedback and new ideas about the design. It also meant that there
were forums where system designers could look at the work of
other designers, discuss that work with them, and find solutions
that could be incorporated into their own designs.

But over the past decade, the companies that funded the design
work decided that they wanted to be paid when others used the
results of the design. On the face of it, this is not a bad thing. If
companies invested and obtained a result, it is reasonable that they
be rewarded for the investment. If these companies can see that
there is a reward, they are more likely to continue the investment.
This is the premise behind the patent system in particular and
intellectual property rights in general, so perhaps we should be
surprised that there was a period when this kind of thinking was
not applied to system design.

There has been much debate about whether or not software in
general and system designs in particular are proper artifacts for
the patent process. I’m not sure where I stand on such issues;
discussions on the reification of ideas in software and the
comparison of that to the reification of other inventions in a form
that can be touched and manipulated, and discussions of whether
software system designs are more properly covered by patent laws
or copyright, are interesting as ways to fuel conversations over
drinks. But like many discussions that are essentially
philosophical, I’m not at all sure that they will terminate with a
real conclusion.

Less debatable is the fact that the current system is not serving
either the companies that fund design or the field in which the
design takes place. Whether this is an inherent aspect of the

system or an accident of the way in which the system has evolved
is an issue that is beyond my skills to decide. But the effects are
harmful in ways that I see every day.

The first problem has to do with the way that the negotiation over
the value of patents occurs between the companies that hold those
patents. Such negotiations, I am told by those who have been
party to them, are generally done by count rather than by value.
That is, company A will count up the number of patents it holds in
some broad area (such as computer hardware and software).
Company B will do the same. Whichever company holds the
larger number of patents is the one that will be paid by the other,
and the size of the payment is determined by the size of the
difference. The end result is that each company cross-licenses all
of their relevant patents to the other, and some amount of money
changes hands.

The problem with such a scheme is that it does not take into
account the quality of the ideas that have been patented. A
fundamental patent is a major part of the field is no more valuable
in such a negotiation than some minor tweak that is no longer
relevant because the industry has passed it by. The assumption is
that, on average, any patented idea is just as valuable as any other.
This is an assumption that makes such negotiations possible (since
any negotiation based on the value of an idea would take forever),
but it also encourages the companies involved to attempt to patent
any idea, no matter how large or small, since the value of any
patent is considered equal to the value of any other.

This in itself would not be a problem if the quality of patents were
itself more uniform. However, the software world is still
somewhat mysterious to the patent office, and was even more so
when software patents first started to be issued. We can all think
of patents that have been obtained for techniques that have been in
common use for years, or patents for techniques that appear to
most members of the profession as obvious extensions to known
techniques.

I have toured the patent office, and know a number of the people
who work there. They are trying hard to do the best they can, but
are working with a number of handicaps. While the fees that are
charged for patents are supposed to be returned to the office to
fund the work that they do, in fact a considerable portion is taken
and used elsewhere; the patent office is one of the few places in
the U.S. government that could be considered a revenue generator.
The pay that can be offered to examiners is far less than what they
can make in the private law firms that deal with intellectual
property law. One director in the patent office admitted to me that
when examiners could only make 50% more in private industry it
was still possible (because of government pensions and benefits)
to attract good people, but when the differential became 100% or
more it got much harder. The number of patents that are being
filed has grown far faster than the number of examiners; I was
told that the current wait between a filing and the time that an
examiner is even assigned to a case is close to three years. Until
then, applications are stored in a room filled with shelves that
looks like something out of the last scene of Raiders of the Lost
Ark.

The end result is that patents are examined in a somewhat cursory
fashion by examiners whose expertise varies widely. The patent
office, to its credit, has taken steps to try to make things better, but
there is a 10-year history of software patents of questionable
quality. Once again, this would not be a problem in itself, for the
issuing of a patent does not mean that the patent is good. That, as

any patent attorney will tell you, can only be decided in court
when the patent is contested. But here we get to the third problem
with the patent system.

Patent litigation, for those who have been through it, is the closest
thing I’ve found to living in the world envisioned by Kafka. The
theory is that a jury of ones peers can be presented with the facts
of the case, and can decide if the patent in question is an
embodiment of a true innovation and if the technology in question
in fact infringes on the patented invention. But a jury of one’s
peers does not mean a jury of one’s technical peers. Instead, it
means a jury made up of people registered to vote in the district in
which the trial is held. Indeed, having a technical background may
well disqualify a person from serving on the jury in a patent case,
since such a juror may be coming into the trial with a pre-
conceived notion of what is novel and what is not in the field.

The result is that twelve non-technical citizens are asked to decide
if something really is a novel invention, and if some other piece of
technology infringes on that invention. To make this decision, the
holder of the patent will introduce an expert witness, who will
present his or her credentials and then testify that the invention is
both novel and infringed. The defending lawyers will present their
own expert witness, who will present his or her credentials and
then point out how the invention in question was well known prior
to the filing of the patent, embodied in a number of pre-existing
technologies, and not part of the technology that is claimed to be
infringed. The jury then has to decide which witness to believe.
The presumption is that the patent is indeed valid (otherwise, why
would the patent examiners have awarded a patent?). The end
result is probably not as random as flipping a coin, but if you have
gone through the proceedings it is hard to convince yourself that
the results of the process actually turn on the originality of the
patent and the similarity of the technology claimed to infringe on
that patent.

Worse still for the subject of this work, if you have been found to
infringe, there is then the question of whether or not you have
infringed knowingly. If it is found that you have (rather than just
infringing by accident, by re-inventing the technology contained
in the patent) the damages awarded to the holder of the patent are
tripled.
The impact on all of this on the discipline of system design is that
companies now encourage their designers to patent any part of
their design that seems novel, rather than publishing that design in
a journal or talking about it at a conference. The more of this work
that can be patented, the larger the patent portfolio for the
company, and the less likely it is that there will be a need to pay
large amounts of money to other firms when cross-licensing
agreements are made. Part of patenting is that you can’t talk about
the item being patented until the patent is filed3, which can be a
long and involved process.

At the same time, companies are actively discouraging designers
from looking at the work of their colleagues in other companies.
Looking at such work can lead to future claims of knowingly

3 More precisely, you can’t talk about the invention before it is

filed if you want to get a European patent. In the U.S., the patent
must be filed within a year of the invention first being disclosed.
In practice, it is hard to get approval from the legal department
of a company to talk about anything patentable prior to the
filing, and even after it might be difficult.

infringing on a patent, which triples any damages that might be
awarded. This combination of the desire to patent and the fear of
knowing infringement can lead to situations that verge on the
absurd. I have been asked, as part of patent filings for work that I
have done, to provide exhaustive lists of any pre-existing work
that might have influenced the design (known in the I.P. biz as
prior art) while at the same time being warned not to actually
search the literature for anything that I might not have known
about previously.

While the general situation around software and systems patents is
troubling, the impact that situation has had on the discipline of
system design is not often acknowledged but is nonetheless large.
The co-demands of keeping our own innovations secret (at least
until the patent is filed) and not studying the work of others (to
keep from being charged with knowing infringement) is
responsible, at least in part, for stifling the discussion about
systems design in the communities of software engineering and
computer science. We now talk about the process of system
design, or the tools that we can use to support system design, but
we rarely talk about actual system designs. It is as though artists
were told they could no longer talk about art, but could only talk
about brushes, pigments, and the way in which they prepare a
canvass. It is very hard to learn about good system design unless
you can see and study other system designs, both good and bad.
The intellectual property atmosphere in industry has limited the
number of designs that are actually talked about, and has
convinced many system designers that they should not even look
at the designs that are available. Whatever you think of the patent
system, this effect has been bad for the overall quality of systems.

Before moving on to other topics, it should be noted that open
source is often touted as one answer to the problems of the
intellectual property system. Open source, it is argued, has as a
major advantage that anyone can look at and study the code for a
system, and hence can learn the design of that system. Good
designs can be seen, as well as bad designs, and the discussion
(generally on mailing lists) can take the place of the conferences
that we used to have on system design.
There is a sense in which this is true, and for that I am a great
proponent of open source. However, open source generally allows
the discovery of system design from the artifact of the code, rather
than supplying some kind of documentation that explains why the
system is designed the way it is. Further, many of the well-known
open source projects (such as Linux and the Apache Web Server)
are implementations of existing designs. Open source projects
often show us the implementation of a system design, and reading
the code can teach one a lot about such implementations. But they
are less useful as ways of learning about the system design itself.

4.3 Systems and Standards
The one circumstance in which most managers will allocate time
for the design of a system is when that design takes place in the
context of a standards body. This is also the one time that most
companies will allow the designers to talk with other designers
about that design. So it would seem that standards bodies would
be the best place for the activity of system design. Unfortunately,
for a number of reasons, standards bodies are among the worst
places to do real system design.

The interaction between system design and standards bodies is
complex and takes a number of different forms. At its best,
standards bodies simply codify an existing technology that is so
widely used that it is already a de facto standard. The intention is

not to solve a technical problem with the standard, but to clarify
and specify existing practice. This is the sort of role that the
groups that standardized the C programming language or the IP
protocol had. There were some technical contributions made by
each of these standardization efforts, but those contributions were
to clarify edge cases where the existing implementations of the de
facto standard differed.

This is a very different role than that taken on by standards bodies
that attempt to create a standard technology out of whole cloth or
from an as yet unproven idea. Classic examples of such attempts
are the groups that defined the Ada programming language or the
OSI networking standard. The OSI networking standard gave us
the seven layer model that we all know and love, but also
attempted to define a standard for interconnect based on that
model. Only the seven-layer model remains today. The Ada
language specification defined a language that is still in use, but
most of the users are required to use the language contractually,
not out of free choice. In both cases, the standard was an attempt
to invent and guide technology rather than codify existing
technology, and in both cases the results were somewhere
between partial and total failure.

One of the differentiators of standards that succeed and those that
fail is where the system design takes place. If the system is
designed outside of the standards process (generally by a small
group or an individual) and has been implemented and used, the
chances of the standard being widely accepted and useful (like the
C or TCP/IP standard) are high. If the system design is done by
the standards group itself, the chance of producing a coherent and
useful design is much lower.

This should be no surprise. Good system design requires at least a
unified vision of the overall system, and the ability to push that
vision to all parts of the system. This can best be accomplished
when the design is the responsibility of a single person, and can
sometimes be maintained when a small group undertakes the
design. However, a standards group is rarely small and unified in
its vision. Indeed, the standards process is an inherently political
one, where the addition of one feature is often bargained for by
accepting the addition of a different feature.

This political aspect of standards groups is exaggerated by the
commercial importance of standards. There was a time when
technology companies differentiated themselves by the features
that they were able to design and build into their systems.
However, over the last decade adherence to standards has become
more and more important. This is not surprising, as it allows
customers of these technologies to simplify their acquisition of
products. They begin with a checklist of standards, and find the
vendor who can supply all of those standards at the best price.
More important, by adhering to standards, a customer is not tied
to a particular vendor, since essentially the same system can be
bought from the competitors of that vendor.
Because of this change in the buying strategies of their customers,
influence over standards groups has become very important for
technology vendors. If a standard can be written in such a way as
to advantage a particular vendor, the competitors of that vendor
will be forced into playing catch-up for some period of time. Thus
participation in and control over standards groups has become a
way for technology vendors to differentiate their offerings.

The recent history of attempts to standardize various parts of the
Extensible Markup Language (XML) takes this trend to
something close to absurdity. In the early years of this decade, it

seemed that a new standards body was being formed every month
to promulgate an as-yet-undesigned XML standard. Each of these
standards bodies was made up of some subset of the overall set of
computer vendors, and determining which company was
controlling the standards group and which was being frozen out
took skills that used to be reserved for determining the meaning of
which commissar was standing by which politburo member
during the May Day parade.

All of this may make for good business. It may give customers
more choice and more control. My only point is that it does not
produce good system design. It is hard enough to do good system
design when it is done by a single person or a small group whose
only design considerations are technical. When that same task is
attempted by large groups of people each of who has a different
agenda and whose technical judgment is at least influenced by, if
not subordinate to, commercial or political considerations, we
should not be surprised if the resulting designs are not those that
we hope others will learn to produce.

4.4 Academic System Design
If system design is best learned by apprenticeship, we could
expect that system design could be learned in graduate school,
where the student/advisor relationship closely models the
apprentice/master craftsman relationship. This may be true for
some graduate programs, but just as the changing economics of
industry have made it harder and harder to teach (or do) system
design in companies, changes in the economics of academic
research have made it more and more difficult to do real system
design there.

There is an idealized view of academic research in which that
research takes greater risks than industry, plans for the longer
term, and is less concerned with the commercial success of a
research effort than in the intellectual content of the research. On
this view, academic research can take a longer view than
industrial research and development, and can take on higher-risk
questions since even negative results can add to the base of
knowledge that is the goal of academia. When a research program
does pan out, the results can be transferred to industry for further
development, and the academic researcher can turn to the next big
question. Along the way, graduate students are trained in methods
of research and techniques of system design, and when they are
done they can either join the industrial world or return to
academia to continue long-term research and the training of the
next generation of graduate students.
Those who believe this will also clap for Tinkerbell.
The reality of academic research is much different than this.
Professors spend much of their time writing grant proposals in an
attempt to get funds for the support of graduate students. Once
they get such grants, they need to target their research to produce
the papers that will be accepted to the appropriate conferences and
journals in their field, and be able to show the granting agencies
enough progress that they will be able to get another round of
grants. The cycle is actually quite short, with most grants
requiring either yearly or semi-yearly reviews (and some requiring
much more frequent updates). The received wisdom is that a grant
needs to have enough detail to prove that the work the grant will
support will in fact be successful; to do this it is in turn often
necessary to have done the work already. Thus there is a tradition
in some departments of using the results of the work done on one
grant to get the money for the next grant. As in most systems, the
hard part is bootstrapping (in this case, getting the first grant), but

there is an increasingly common practice at universities to offer
junior faculty seed grants for this bootstrapping mechanism.

This may not have always been the case, but the realities of
funding agencies have dictated this form of risk-averse funding.
The funding agencies, many of which are governmental, have
been pressured to show more relevance in the research they fund,
and have sometimes been embarrassed by research that has not
given positive results (some of us are old enough to remember
Senator William Proxmire’s Golden Fleece awards, given to
government-funded research projects that appeared to be
meaningless or otherwise ill-advised). As the funding agencies
faced more and more pressure to show that the work they were
funding lead to actual results, those agencies in turn placed more
emphasis on insuring that the research they funded would be
successful.

One way of doing this is to require occasional “bake offs”
between research projects competing for money. This funding
technique uses a simple recipe. Give a number of projects seed
funding for a first phase of a project. At the end of the first (fairly
short) phase, have the different projects demonstrate their results.
As a result of this demonstration, either re-allocate the funding
favoring the most promising of the alternatives, or simply cut the
funding to all but the most promising project. Repeat.

A number of government and private agencies that have been
known for funding long-term research now use this model. While
the model seems to make sense and certainly cuts the risk of
making a major research investment in something that takes years
and produces nothing but negative results, it also means that many
academic research groups are in a constant short-term effort to
produce the next bake-off demo.
As a result, academic research is of a shorter duration and is more
risk-averse than industrial research and development. Industry is
often able to invest in high-risk development based on the
possibility of large returns (although this is often tied to making
the results of the development into a standard, which was
discussed in the last section). Academics are increasing unable to
convince granting agencies to fund for the same long duration.

Nor are academic institutions much more open to sharing the
results of their research than is industry. The lesson of intellectual
property has not been lost on many of these institutions that now
seem to hope that the developments of their research can be used
to add to the endowment of the university. I do considerable
collaborative research with various academic institutions, and
have noticed over the past five or so years an increase in the
difficulty of negotiating agreements on the intellectual property
generated by such collaborations. Indeed, one collaboration that I
tried to fund a couple of years ago became impossible when the
academic institution’s lawyers insisted on terms that gave the
institution all rights to anything that was done by anyone in the
collaboration (including any work done entirely by my group
inside of Sun). Even when the conditions are not so irrational, the
desire by these institutions to patent the result of the work of their
faculty and graduate students has had the same squelching of open
discussion as has been caused by the protection of intellectual
property in industry.

Whether such policies will lead to more money for universities is
yet to be seen, but these changes in funding and sharing do mean
that it is less likely that full system design will occur at these
academic institutions. Academia is subject to the same pressures
as industry (although the pressures may come from slightly

different sources), with the same results with respect to system
design.

5. WHAT DOES IT ALL MEAN?
The previous sections paint a rather grim picture concerning the
future of system design. A combination of impatience, economic
pressures, and a lack of trust by those who don’t understand what
is required for system design seem to be creating a perfect storm
for system design, where we don’t have the time or support to do
real design in either academia or industry, and where we can’t
train the next generation of system designers in the craft.

Perhaps this is just a sign of the age of the author, and all of the
trends that I have identified are simply changes that have made
the world different and to which I should simply adapt. I could be
convinced of this if I didn’t see a real desire in the next generation
of engineers and computer scientists to learn something about
system design. It isn’t that they have gotten beyond the need to
design systems; when they see a good system design they are
appreciative, excited, and want to know how to create designs that
have the same quality. They may not be able to verbalize what
they are missing, but they know it when they see it, and they
would like to learn.

Another possibility is that the lack of system design at this time is
just part of a natural cycle of development in the field of computer
science. On this view, we are in the analogue of what Thomas
Kuhn[5] called a period of normal science, in which the existing
theory (or system designs) were being confirmed, tested, and
slightly altered. Perhaps the systems that we have are good
enough for what we need to do, so there is little or no need to do
major design work on new systems. That will change in the future
when we find tasks for which the current systems are inadequate,
but until we do we should expect little support for system design.
Indeed, systems like those being developed by Google are just the
kind of radical departures that we would expect in a time of
revolution, and they are indicators that we are about to enter into a
new system design cycle.

I have some sympathy for this view, in that it gives me hope that
things will change. But I also realize that this view is based on the
false assumption that there are fewer systems being produced now
than there were in the past. In fact, I observe all kinds of systems
being produced, from the service-oriented architectures of web
services to the ontologies of the semantic web. What I find
missing in these systems is a notion of design other than those that
are done in standards committees or other large groups, or those
that emerge from the code that is thrown together to implement
the system.

I think the real explanation can be seen if we simply re-read Ivan
Sutherland’s Technology and Courage[9]. System design, like any
other form of research, is hard work that entails taking great risks
and therefore requires the constant application of what can only be
called courage. It takes courage for an engineer to design a system
without constantly asking the customer if it is what the customer
wants. It takes courage for a manager to trust an engineer to take
the time to design a system. It takes courage for a funding agency
to underwrite an academic research project that might well fail. It
takes courage for a company to back a design that has not been
blessed by a standards body. What we are lacking today in our
industry is the courage that is needed to take the kinds of risks that
are inherent in doing system design. Whether this lack is caused
by the scarcity of funding, or the bursting of the technology stock
bubble, or the consolidation of the industry is hard to tell. But the

reason that we are no longer designing interesting systems is, I
believe, simply a lack of the courage needed to do so.

If this is true, then one possible approach would be to solve this
problem ourselves, at both the individually and collective level,
by simply insisting that we be given the time and resources to do
good system design. Finding courage is difficult, and instilling it
in others more difficult still. But either is less difficult than
changing the economy, or the legal system, or the attitude of the
funding agencies, or the ways in which our field is taught. Indeed,
we could make the change starting with ourselves, by taking the
time and making the effort to do good system design, and to
demand of our colleagues (and managers) that they both give us
the opportunity to do such design and do such designs themselves.

But given the realities of our industry and the wider economy, I
hold little hope that simply making such demands will solve the
problem. But this doesn’t mean that the situation is hopeless.
Instead, it means that those who wish to continue in the craft of
system design need to find other, less direct, ways of allowing
such design to be practiced and taught.
I am actually encouraged by some signs that this is already
happening, although perhaps not in the way (or in the places) that
any of us might have expected. These signs are not coming from
industry, where the relative power of the engineer and the
manager has changed to the advantage of the latter, and where
managers are under increasing pressure to cut costs and therefore
have become more and more cautious. Nor do I see much change
in academia, where short funding cycles and publications by the
pound are still driving out good system design. Where I see
encouraging signs are in two areas that are generally not thought
of as central to system design, the areas of agile methods and open
source software.
Agile methods mean lots of different things to lots of different
people, so I should begin by saying what I take them to be. This is
not because I think that my characterization is any better than any
of the others, but simply because it will help in the discussion that
follows to know what I take agile methods to be. Like patterns or
open source (a discussion that will follow) here is considerable
theology in the characterizations of agile methods, and I don’t
wish to get caught up in such theological debates. I’m happy to
admit that my characterization is not really what is meant by agile
methods; what I am describing is a trend I have seen in
development that is at least sometimes given that label.
What I am using the term “agile methods” to label is an approach
to writing code (and, ultimately, systems) that is based on small
groups of programmers working closely together; in the most
extreme form of this the small group is a pair of programmers
working together with a single keyboard and screen. On this
approach, the system is built by iteratively constructing small
pieces, and then enhancing that working system in small,
manageable chunks to build the ultimate large and complex
system. In addition, I include the practice of “test driven
development” in which the tests for some piece of functionality
are written before the code that provides that functionality. There
are, of course, many other techniques that get included under the
term “agile methods,” but for the purposes of this discussion these
are the features that are most important.

Earlier I noted that such an approach to the production of a system
seems to be an invitation to plunge into the code before thinking
things through and then to make incremental changes to the
undersigned system until things are good enough. Such an

approach seems to actively discourage thoughtful system design.
And, indeed, I have sometimes seen these methods produce
systems that were badly designed, overly complex, and not well
thought out. What has surprised me is the number of well-
thought-out systems whose designs show taste and elegance that
have been produced using these techniques.
The reason, I believe, has to do with two of the aspects of such
agile methods. The first is the combination of breaking the overall
system down into small pieces and the requirements of test-driven
development. Each of these techniques requires that some thought
be given to the abstractions that form the system. Breaking the
system down into smaller pieces requires some thought into what
those pieces are going to be and how they fit together, which is
exactly the art of system design. In order to write the tests before
the code that is to be tested, an abstract notion of what the code is
supposed to do must be thought through. In deciding what to test,
a programmer needs to think about the general functionality of the
system, and how that functionality is going to be accessed. Both
activities require thinking about the interfaces for the various
components of the system in a fashion that is one removed from
the implementation of those interfaces. By deciding what small
thing can be done and by writing the tests first, agile methods
impose a requirement of thinking about the abstract system that is
a way of expressing the overall design of the system.

The second, and more important aspect that favors system design
when using agile methods is that those methods require that the
work be done in small groups, each member of which needs to
understand the entire artifact. This in turn encourages discussion
of the overall system, not just as the level of the code that is being
produced but at the level of the system itself. Each member of
such a team has to explain to the others how the system fits
together, and just that act of explanation requires thinking about
the design. Even better, the others can then help to make the
overall design better; the give-and-take of a small-group
programming session is much the same as that found in a good
design session because it is, in fact, a design session.
What is important here is the required communication between
the participants. Having to express a design will often uncover
problems with the design, and can certainly show areas where the
design (and, therefore, the communication of the design) is
unclear or inconsistent. While it is true that writing down the
design of a system is a form of documentation that can help
people who want to learn or understand the system, the greatest
benefit of such a written design is to the designer who must do the
writing. The very act of writing the design document helps to
clarify the design itself. In the same way, having to communicate
the design during group programming helps to clarify and
simplify the design.
The process of small group development also provides a
opportunity for the members of the group to serve their design
apprenticeship. While the group may not consist of an
acknowledged master and a set of apprentices (although it could),
the constant discussion of the design even with a peer group can
help in the development of taste and craftsmanship. While there is
always the possibility that bad taste will be reinforced and bad
habits encouraged, the process of peer-mentoring is better than no
form of design feedback at all.

Whether it be to a group of peers or a master, the real point is that
the design needs to be expressed to someone else. It is very
difficult to mask the weaknesses of a design when you are

communicating that design to someone else who is intimately
involved in the implementation of the design. Simple designs can
be communicated easily; complex designs are hard to explain. Just
as writing down a design will often show flaws or weaknesses in
the design, explaining a design to a peer will often improve the
design.
Working on an open-source project also provides engineers both a
forum for the discussion of design and a mechanism for learning
through an apprenticeship. The first of these is supplied by the
mailing lists that are central to many open source projects. On
these lists there is constant discussion of the design alternatives,
philosophies, and trade-offs that are faced by the overall project.
Newer or less experienced engineers can ask questions that will be
answered (and discussed) by the overall community. Like the
discussion that goes on between the members of a pair-
programming team, such electronic discussions allow the
engineers to try out ideas, have those ideas criticized or amplified,
and generally participate in the design process of a large project.
The discussions tend to be at a different time-scale than those held
face-to-face with a pair-programming partner, and often involve a
much larger group of participants. But they are still forums that
require discussion of the design. Better still, they are forums that
require that the participants communicate the design in a clear and
persuasive way. Just as the act of communication between two
programmers can help to clarify and simplify the design of a
system, the act of communicating a design to the other members
of an open source project will help to clarify and simplify the
design of the open source system.

These discussions often replicate, at least electronically, the
master/apprentice relationship that is so central to becoming an
accomplished designer. Such relationships are established in spite
of the mythology that has grown up around the way open source
projects are run. The establishment of this sort of mentoring
happens because of the reality of the way that open source
projects work, a reality that is very different from the folk wisdom
that has grown up around such projects.
The folk wisdom of open source, best exemplified by the writings
of Eric Raymond [7], holds that open source projects are chaotic,
highly democratic undertakings in which the marketplace of ideas
sorts out the good ideas from the bad, the code is written by
anyone, and there is no hierarchy. In actual fact, most of the
successful open source projects are run as semi-benign
dictatorships in which a very small group of people controls all of
the code that is put into the project. These people are the
committers of the project, and no code is allowed into the source
repository until it meets their standards.

It is true that anyone can offer code to the committers to see if it
can be included into the project. But most of the code will go
through a very detailed reading by the committers, and only be
accepted when it is found to be good by the standards set by this
group. Not surprisingly, most of these committers are just the
kinds of master craftsmen of code that you would want
supervising the apprenticeship of those learning system design.
The apprenticeship is not as direct, with little or no face-to-face
discussion, but the overall process is the same. The apprentice will
try to solve problems, offer his or her solution, and be told to try
again (generally with some discussion as to the reasons for
needing to try again) until the code and the design is right. The
communication may be electronic rather than face-to-face, but the
process is the same as it was 20 years ago; one of trial-and-error,

of frustration and trying again, and of failure and (hopefully)
enlightenment (or at least increased mastery).

This is a process that benefits both the apprentice and the master.
The apprentice benefits in obvious ways, learning how to be a
better craftsman and gaining a better understanding of how to
build and design a system. The master benefits by using the
apprentice as an idea magnifier. By having others doing some of
the work, the master is freed to concentrate on those parts of the
design or the code that only he or she can do. The end result is
that the kinds of systems that can be built are more significant,
and the ways of approaching design are conveyed.

This ability to learn, to teach, and to tackle hard technical
problems without the oversight or interference of management is
also, I believe, one of the prime reasons for the popularity of open
source projects among engineers. Such projects are places where
technical decisions can be made on technical grounds, and where
the decision making powers are given to those who have shown
technical ability in the past. The fact that the end result of such
developments is innovative software that is often superior to that
produced by the projects that are the day jobs of the very people
who write the open source software may be ironic, but it should
not be surprising.

In an important sense, both agile methods and open source can be
seen as reactions to the difficulty of doing system design in either
the academic or the industrial world. One solution to this could
have been confronting the managers, professors, and funding
agencies that have made it increasingly more difficult to do
system design in the traditional environments. But this other
solution is both more indirect and, in many ways, more in keeping
with the ethos of software design. Rather than trying to change the
set of constraints that frame the problem, designers and those who
wish to learn design have simply designed around the problem.
By adopting agile methods, we have found a mechanism that
allows us to discuss and learn design without having to tell our
management that this is what we are doing. By working in open
source, we have created an environment in which we can continue
to do technical work framed in purely technical way. The fact that
open source needs to be done on our own time is a minor
inconvenience; most good software designers would prefer doing
technical work to most other forms of recreation. In a meta-sense,
the new venues for learning and teaching system design are
themselves excellent examples of system design, in which a

problem is solved in a fashion that is elegant, subtle, and pleases
both the practitioner of the art and the consumer of the code. The
end result is that the craft survives, thrives, and continues to
evolve.

6. ACKNOWLEDGMENTS
I would like to thank Bob Sproull, Ivan Sutherland, Margo Seltzer
and Ann Wollrath, all of whom have been generous with their
time and ideas during discussions of much that is contained in this
paper.

7. REFERENCES
[1] ACM Curricula Recommendations,

http://www.acm.org/education/curricula.html, 2005.

[2] Brooks, F.P., The Mythical Man Month: Essays in
Software Engineering, 20th Anniversary Edition, Addison-
Wesley, Boston, MA, 1995

[3] Brooks, F.P., The Design of Design, Turing Award Lecture,
http://terra.cs.nps.navy.mil/DistanceEducation/online.siggrap
h.org/2001/SpecialSessions/2000TuringLecture-
DesignOfDesign/session.html, 2000

[4] Hoffman, Daniel M. and David M. Weiss (ed), Software
Fundamentals: Collected Papers by David L. Parnas,
Addison-Wesley, Boston, MA, 2001.

[5] Kuhn, Thomas, The Structure of Scientific Revolutions,
University of Chicago Press, Chicago, IL, 1962.

[6] Lampson, Butler, Hints for Computer System Design. ACM
Operating Systems Rev. 15, 5 (Oct. 1983), pp 33-48

[7] Raymond, Eric, The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental
Revolutionary, O’Reilly Media (2001).

[8] Ryle, Glibert The Concept of Mind, University of Chicago
Press, Chicago, IL, 1949.

[9] Sutherland, Ivan, Technology and Courage, Sun
Microsystems Laboratories Essay Series, Mt. View, CA,
1996

[10] Wing, Jeannette M., Computational Thinking,
Communications of the ACM, Vol. 49, Issue 2, March, 2006.

