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ABSTRACT 
In this essay, I consider some of the factors that are making it 
more and more difficult to expend the effort necessary to do 
system design. Because of changes in the economics of the field 
in both industry and research, we have become less able to take 
the time needed to do real system design, and to train the next 
generation of designers. Because of the intellectual property 
landscape, we are less able to discuss system design. The end 
result is that we do less good system design than we used to. But 
this can be changed without changing the environmental factors 
that have contributed to the problem; all that is needed is the 
application of courage. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques], D.2.11 [Software 
Architecture] 

General Terms 
Design, management, standardization. 

Keywords 
System Design, Education, Training. 

1. INTRODUCTION 
I am beginning to believe that the art and craft of system design is 
in danger of being lost. Carefully designed systems, in which the 
right abstractions are combined in just the right way to produce a 
system that is easy to learn, easy to change, and pleasing to use 
and work with, are unlikely to happen using the kind of design 
techniques that are popular today. It isn’t just the techniques that 
we use to produce systems that impede our ability to design 
systems. We are unable to train engineers and scientists 
adequately in system design. The economics of the industry push 
us in directions that don’t favor design. The realities of funding in 
research make it unlikely that much time will be spent on system 
design. The end result is that less careful design work is being 

done, and we as an industry, a profession, and an intellectual 
discipline don’t seem to care or be able to do much about it. 

In what follows, I will try to describe and explain some of these 
factors, and try to make clear the price that the industry and the 
discipline are likely to pay because of these factors. I will begin 
by trying to characterize what we mean by system design. On the 
characterization I will give, all but the most trivial of software 
artifacts have a design, but only some of them were given that 
design consciously. I will then turn to how system design is 
learned, and given that as a base will look at the changes in both 
industry and academia that have made it harder for system design 
to be taught or even done in a reasonable way.  

2. WHAT IS SYSTEM DESIGN? 
One of the most interesting, and most difficult, of the tasks that 
we may undertake in our careers as engineers or computer 
scientists is the design of an entire system. A system is a set of 
interacting parts, generally too large to be built by a single person, 
designed for some particular purpose. We work with systems all 
the time. The operating systems that control our machines are 
systems. The layers of hardware and software that allow the 
programs on these machines to interact with each other over a 
network are systems. Even most applications that we use are 
systems, whether we know it or not.  

As engineers, we know that the way to solve a large problem is to 
break it into a set of interacting smaller problems. Each of these 
smaller problems can then be decomposed into even smaller 
problems, until (after enough iterations) we have a problem that 
can be solved on its own. System design is a similar task, taking a 
large system and breaking it down into a set of smaller systems. 
The additional step in system design is to specify the interactions 
of the smaller systems so that they fit together to create the larger 
system; after breaking the problem into smaller problems the 
system designer will say how it is that the solutions to those 
smaller problems will fit back together to solve the larger 
problem.  

All (reasonable1) software is a system that has a design on this 
characterization. The software will be organized around methods 
(or procedures, or functions, or whatever abstraction for this sort 

                                                                    
1 We have all seen BASIC programs that have no such design. 

However, after the first week or so of writing code, anyone who 
does not avoid that sort of non-structure should be quietly, but 
firmly, convinced to spend his or her time doing something, 
anything, else. 
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of thing is supported by the language being used) and each of 
these methods will represent a decomposition and abstraction of a 
problem that must be solved for the software to run. The larger the 
piece of software, the more layers there are in the design, and the 
more complex the system. 

But to say that all software has a design does not entail that all 
software is designed. For a program to be designed requires that 
there be some (perhaps considerable) thinking about the right way 
to decompose functionality, and how to create a small set of 
abstractions that can be re-used and re-combined to provide that 
functionality. The notion that anything that shows some kind of 
design was therefore the result of some conscious activity of 
design is a confusion that is the result of an ambiguity in the term 
“design.” On one sense of the word, it is a property of some object 
(such as a program, a system, or the like) that merely indicates 
that there are parts that interact. On another sense of the word, it 
indicates an activity of determining what the parts of some larger 
whole should be, and how those parts will fit together. While 
anything that is the result of the activity of design will itself have 
the property of being designed, it does not follow that anything 
that can be described as a group of parts interacting to form a 
more complex whole (that is, have the property of a design) was 
therefore the result of the activity of design. 

One of the best indications that a program is the result of the 
activity of design is the existence of a document that describes 
that design. But all too often software has a design that must be 
discovered from the code by inspection. Sometimes the design 
that is discovered shows all the hallmarks of a thoughtful design 
activity, but there are other times that the discovered design shows 
a haphazard combination of various abstractions, duplication of 
functionality in slightly different forms, and inconsistencies in the 
way in which abstractions were selected, implemented, and used. 
Such discovered designs show either the absence of any design 
activity prior to the construction of the program, or that what 
design activity did occur prior to the writing of the program was, 
to speak plainly, not very good. 

Collections of programs that are meant to form a system exhibit 
the same sort of design, but at a larger scale and in a more public 
fashion. A collection of software meant to form a system will 
present the user of the system with a set of abstractions that can be 
combined in various ways. The abstractions may show symmetry, 
simplicity, and an aptness to the task that are characteristics of 
what we consider good design; the design may also seem random 
in its choice of abstractions, be repetitive, or show little 
consistency from one part of the system to another; these are 
systems that we consider examples of poor design. 

I know of no adequate set of necessary and sufficient conditions 
for determining whether a design is good or not, but like so many 
things having to do with taste and aesthetics we generally know 
good  (and bad) design when we see it. The Unix operating 
system has a simplicity and symmetry that is indicative of a good 
design; the companion C programming language has a 
combination of power and simplicity that both reflects and 
compliments the PDP-11 architecture for which it was originally 
intended.  

Nor is there a necessary connection between a system or program 
exhibiting good design and that system or program having been 
consciously designed by someone who then wrote some sort of 
design document. While I personally know of no systems that 

were not actively designed that are examples of good design, there 
is no logical impossibility of such a system existing. Further, it is 
not all that hard to find systems that were consciously designed 
that are not examples of what any of us (other than, perhaps, the 
original designers) would consider examples of good design; I’m 
sure we can all come up with many examples of this sort of thing. 
In spite of this, there does seem to be some connection between 
the activity of system design and the production of elegant, well 
crafted systems, in at least that all of the actual examples of the 
later are also examples of the former. 

System design can change and evolve over time. The original 
Javatm programming language and associated libraries had a 
simple and consistent design. Some of the additions to the 
libraries associated with the environment since it was first 
introduced reflect the original design, but others have introduced 
other notions of design. The overall system has evolved into 
something that, at a certain scope, has a coherent design but 
which, taken as a whole, is far less coherent than it once was. A 
more radical example of design change over time is seen in the 
sets of protocols and languages that define the World Wide Web; 
when first introduced these were simple and had a coherent 
design. Designs that have been proposed (or that have become 
accepted standards) in the past decade, however, show no such 
coherence and simplicity; individual collections of these may be 
said to form a designed system, but taken together they do not. 

Some of these examples of good design were thought out in fairly 
complete detail before the systems were produced. Others evolved 
with the implementation of the system itself. But in all of the 
cases of good design, there is a fairly simple set of principles that 
can be seen to underlie the design. In the case of Unix, the idea of 
a file and the ability of any program to take an ASCII stream as 
input and produce such a stream as output allowed those learning 
the system to know what to expect as they encountered new parts 
of the system. There are times that the design of a system, even 
when it is an example of good design, will need to be pushed and 
prodded in unnatural ways to gain something that the original 
design did not take into account. It was a great simplification in 
Unix to treat all files as ASCII streams, but the introduction of 
magic numbers, various kinds of headers, and conventions having 
to do with the filename extension show the desire for a typed file 
system being overlaid on such a system. While the original design 
of untyped files was simple and sufficient, the complexity that has 
grown up around the various ways of indicating the type of a file 
can make one wish that the original design had been somewhat 
more complex. But one should be careful about ones wishes; the 
number of bad designs that have been justified by quoting 
Einstein’s maxim “everything should be made as simple as 
possible, but no simpler” makes one wish that he had actually said 
“everything should be made as simple as possible, and then made 
simpler.” 

We may not be able to fully define what makes one design better 
than another, but there are characteristics that nearly all good 
designs have. Good designs are simple, and built around a small 
set of abstractions. Good designs make sense, and allow those 
learning the system to understand new parts of the system by 
analogy with parts that are already known. Good designs are 
elegant, so that understanding the design helps one to understand 
the problem that the design was meant to solve. While it may be 
possible for such designs to arise without the system being 



actively designed, I know of no cases where it has. Good design, 
at least in computing systems, seems to require good designers. 

Given my characterization of system design, I should really 
restate my concern on the subject. Since any system will have a 
design, saying that system design is dying out would be the same 
as saying that software development is dying out. That is 
demonstrably not the case. More and more software is being 
produced, so there are more and more system designs. 

What I am worried about is the demise of systems that are 
designed, in the sense that there is some coherent plan for the 
system that is arrived at by the people working on the system in a 
way that is separate from simply observing how the code falls out. 
Maybe a better characterization of my worry is that the act of 
designing a system is happening less and less, and as a result the 
design of the systems that we are producing is becoming more and 
more haphazard and the resulting designs are less and less 
coherent, simple, and aesthetically pleasing. Certainly all of our 
software has some structure to it and some set of abstractions that 
can be identified as underlying the structure of the code, but I find 
that it is less and less common that the structure and the 
abstractions are thought about (and cared about) as entities in 
themselves. Instead, we seem to be producing software where the 
overall design can only be determined after the fact, by looking at 
the code that is produced 

Whether the perceived lack of designing systems is good or bad, it 
is something that we as an industry and as an intellectual 
discipline should understand. The change in the design of systems 
is, I think, being caused by a number of factors. Individually, they 
might not be a problem; taken together they are changing the way 
we build systems. Part of it has to do with education; part if it has 
to do with economics; part of it has to do with the current fads or 
fashions in the way we write software. In what follows, I will look 
at each of these factors in turn. 

Let’s start with some thoughts on education. 

3. TRAINING IN SYSTEM DESIGN 
Like most other industrial research laboratories, Sun Labs brings 
in groups of interns over the summer to work on various projects. 
This is about as classic a win-win situation as can be found in 
business. The interns (most of whom are graduate students, but 
also undergraduates and the occasional high-school student) find a 
summer job in their field of interest, and the lab gets an injection 
of enthusiasm that is hard to replicate. The students think they are 
being overpaid, while we get what we consider cheap labor. The 
students don’t know what things can’t be done, and therefore 
often do the seemingly impossible. Best of all, they get to see 
what the “real world” is like (although the thought of an industrial 
research lab being a part of the “real world” is more an indication 
of how artificial the world of academia is than how real our world 
is). 
This past summer, while walking back from lunch about a week 
into his tenure, the intern working in my group turned to me and 
asked, “So, how do you go about learning to design a system?” 
Like most great questions, it showed a level of naivety that was 
breathtaking. The only short answer I could give was, essentially, 
that you learned how to design a system by designing systems and 
finding out what works and what doesn’t work. I’ve been thinking 
about the long answer ever since; I’m not sure that the long 

answer differs from the short answer in much more than length, 
but nonetheless here is what I’ve come up with.  

3.1 The Origin of Good Design 
Before knowing how to train someone in system design, it is 
useful to have some idea concerning the origin of good design. If 
we can know what leads to good design, we can try to teach 
people to do those sorts of things in the hope (although not the 
guarantee) that good design will result. 

There is no shortage of books, seminars, and other training guides 
that claim to help in this quest. There are techniques (such as Six 
Sigma) that profess to aid in the development of good design. 
There are languages (such as UML) that claim to help in the 
development of good design. And there are no end to the 
methodologies and processes that claim to enable any team to 
create a good design that will meet the needs of the customer by 
the mere repeated application of the rules that make up the 
methodology. 

I have no doubt that the success stories that each of these design 
approaches and aids cite are true. In some sense, that is just the 
problem; completely incompatible and contradictory approaches 
to the design problem have been shown to be wildly successful 
(by their proponents) and wildly unsuccessful (by the proponents 
of competing approaches). Bottom-up or top-down, waterfall or 
extreme; all seem to work for some and not for others.  

The only generally applicable rule that doesn’t have obvious 
counterexamples is one I first heard enunciated by Fred Brooks 
more than a dozen years ago. In a talk given in a Sun-internal 
seminar (an expanded version of which became the basis for his 
Turing Award lecture in 2000[3]), Brooks talked of the work he 
had been doing to try to find the underlying common feature of 
good design, not just in computer hardware and software but also 
in such endeavors as architecture, graphics, and the fine arts. The 
only thing that he could find that good designs had in common 
was that they were produced by good designers.2 

There is one reading of this insight on which it is true but 
uninteresting, a mere tautological statement that reflects giving in 
to the unpredictable and inscrutable mystery of design. On this 
reading, the only way to determine what produces a good design 
is to wait until you have one, and then attribute it to the designer. 
Good design, on this view, happens by chance. You can hope for 
it, but you can’t do anything to improve your chances of getting a 
good design. 

This is not the reading that I believe Brooks intended, nor the one 
that I found persuasive when I first heard the talk. My reading of 
this principal is that those who have been able to produce a good 
design in the past are far more likely (although not guaranteed) to 
be able to produce a good design in the future. But there is no 
magic process by which such designers produce their designs; 
each may go about the design problem in a different way, and a 
designer may approach one problem in a particular way and 
another in a completely different fashion.  

The point, I believe, is that good design is a capability that some 
people have, and others simply do not. Whether this is an innate 

                                                                    
2 As a somewhat depressing side-note, the first question asked at 

the end of the talk (by a senior engineer) was what process those 
good designers used to produce the good designs. Sometimes 
hearing is not the same as understanding. 



skill that people are born with, or one that is cultivated over time 
in ways that we don’t understand, is a question far too deep for me 
to address here. I neither know nor care. But by the time someone 
is designing a computer system, whatever it takes to be a good 
designer is either there or it is not. When it is there, it can be 
developed and honed (or, unfortunately, degraded and warped). 
But when it is not there, there is no technique or process that can 
make up the deficit.  

There are a number of people who are uncomfortable with this 
concept. Many of them are managers; I will discuss their 
discomfort later. Others are uncomfortable with this view on more 
philosophical grounds; they feel that saying that there are those 
who can produce good designs and those who cannot is contrary 
to some egalitarian notion (which it is) and somehow elitist or 
undemocratic (which I think it is not). 

Why should we be surprised to find that there are some people 
who are just not capable of doing first-rate system design? Such 
designs are difficult, complex, and require a great deal of taste to 
get right. Further, they require the ability to deal with a great deal 
of ambiguity while forming the design, an ability to deal with 
whole sets of questions that can’t be solved but which the system 
designer knows (or has the faith to believe) will be solved at the 
appropriate time. Given the difficulty of all of these tasks, it is no 
more surprising that not everyone can be a great designer than it is 
that not everyone can be a great composer, or a great artist, or a 
great architect (all fields that also require design). This is not to 
say that designers are better people than those who are not great 
designers; indeed, designers are good or bad people in roughly the 
same proportion as any other group. But it is to say that some 
people are better designers than others, and ignoring that is one of 
the many things that leads to bad system design. 

3.2 Teaching by Doing 
Having said all that, the question of how to teach system design is 
still open. The fact that good designs come from good designers 
does not tell us where the good designers come from. While it 
may be true that not everyone can be a good designer, it is also 
true that there is some learning that goes on. I am reminded of 
posters I saw years ago at the Rhode Island School of Design, 
posters with the headline “Talent without technique is a waste.” 
The school did not claim to be able to make anyone an artist. But 
they did (and do) claim to be able to take someone with the talent 
to be an artist and give them the technique that will let them 
exploit and channel that talent. The same is true in system design; 
it may be that you have to have some talent to do the design task 
well, but it is also true that you need to learn the technique that 
allows you to channel and amplify that talent. 

In my own case, the instruction that I received in system design 
came in the form of an apprenticeship with a master designer. 
This was not a formal arrangement, and it could well be that the 
person I considered myself apprenticed to did not see our 
relationship in anything like those terms. But looking back on it, I 
clearly see it that way.  
The more structured and corporate relationship was that of an 
overall software architect for a major component of a system and 
an individual contributor for that system. The group I was in was 
responsible for the user environment component (basically, the 
windowing system and all user-visible tools) for Apollo 
Computer, an early workstation company. The architect of the 
group had implemented the first version of these components on 
his own, but grander plans had been hatched for the second 

system (as is always the case) and a small group had been 
assembled to do the design and implementation. I had been hired 
to design and implement the component library that would deal 
with text; there were others who were dealing with the windowing 
system, input mechanisms, the shell interpreter, and even a 
scripting language. 
The overall design process for the group required the owner of 
each component to write a series of specifications for his or her 
component, starting with a straw man (a quick sketch of the 
various pieces and the overall component model) and ending with 
an iron man (which would be a detailed specification of all of the 
entry points and their functionality). Once a month, the entire 
group would go off site (usually to the apartment of the manager 
of the group) for a morning and review one of the specifications 
for some component.  

The overall architect of the group was not one of the more active 
participants in these discussions. But when he talked, everyone 
else listened. His most damning criticism was a simple “That’s 
too hard.” When said of a specification, it indicated that you had 
not done the work to sufficiently understand the problem and boil 
it down to some simple core. The assumption was that there was 
always some simple core, and by making the assumption such a 
core was generally found. 

These design reviews, and the constant interaction with both the 
architect and the other members of the group over a multi-year 
period of time, were the places where my system design skills 
were honed. It was here I learned about simplicity and symmetry, 
about interfaces and designing for change, and a host of other 
rules and techniques that I still use. More important, I learned 
what worked for me and what did not, and that what worked for 
me might not work for others. Rather than learning a process of 
design, I learned how I could best design. 

I had originally thought that this way of learning design was 
unusual, and caused (in my case) because my academic 
background was in a field unrelated to computer science. But as I 
learned more and began talking to others who I considered to be 
good at system design, I found that this experience was more than 
just common; it was nearly universal. Everyone I talked to had a 
similar story of the master designer who had, either consciously or 
by example (and correction) taught him or her what they 
considered to be the important lessons in design. There was a 
period when I would ask, “who did you do your design 
apprenticeship with?” without supplying any other context. I 
expected some to be confused by the question, but I found that 
everyone to whom I asked the question not only understood it, but 
was able to answer without thinking. Even more interesting, the 
names that were given were often the same. Whether they knew it 
or not, a relatively small number of master craftsmen were 
credited with training a much larger number of system designers. 

This was hardly a scientific survey, and as scientists we should 
take care in drawing strong conclusions from anecdotal data. But I 
think it is indicative of something that no one that I have talked to 
about how they design and how they learned to design has pointed 
to a class that they took which trained them in any important 
ways. Design, if my experience is any indication, is best learned 
by a long and varied process of trying, failing, and trying again 
under the guidance of someone who is an expert at the task.  



3.3 Design and Curriculum 
That no one seems to learn system design from some course can 
be troubling. If designing of systems is really the hard part of 
what we as engineers and computer scientists do, aren’t we in 
need of some systematized way of teaching what is needed to do 
that kind of design?  

Looking around the web, there are some courses in system design 
that are taught at various universities, and lots of courses offered 
by consulting companies. I have more than just a passing interest 
in a course in system design for a variety of reasons, not the least 
of which is that I have been contemplating teaching such a course. 
It is the sort of course that students ask for; it would be valuable if 
students coming into industry actually had some skill in system 
design; and it would be interesting to design the curriculum and 
readings for such a course. 

I had great difficulty in getting anything like a set of readings or a 
coherent plan for such a class. There are some obvious readings 
(such as Lampson[6], and Brooks[2], and lots of things by 
Parnas[4]), but deciding on the concepts that needed to be taught 
and the sequence in which those concepts are to be presented keep 
eluding me. After enough time of trying and failing to come to 
some plan, I realized that I was thinking about this problem in the 
wrong way.  

More than half a century ago, the philosopher Gilbert Ryle made a 
distinction between knowing how and knowing that[8]. Knowing 
that is a relation between a person and a proposition; it is a piece 
of factual knowledge that can be discovered, can be justified, and 
can be taught by the usual mechanisms of pedagogy. Knowing 
how is a different kind of thing; it is the kind of knowledge we 
have when we know how to walk, or run, or sing. It is not a 
factual sort of knowledge, but an ability that we exhibit in our 
actions. We can know how to do something reasonably well or 
expertly (while we can’t know that the world is round reasonably 
well or expertly). Most important, while we can be taught to know 
how to do something, the kind of teaching that takes place is very 
different from the kind of teaching required to know that. 
Academic disciplines require a combination of knowing how and 
knowing that. To be fully educated in any of these disciplines, one 
certainly needs to understand the factual backgrounds of that 
discipline. But to be truly educated in the field also requires that 
one learn how to think in a particular way. Each field has its own 
technique (or set of techniques) that must be learned just as well 
as the subject matter of the field if you really want to be an expert 
in that field. 

Different fields have different combinations of subject matter 
(knowing that) and technique (knowing how). The vast majority 
of my formal (academic) training was in the field of philosophy; 
as practiced in the United States and England (the so-called 
“Anglo-American” or analytic approach to philosophy) the field is 
almost entirely technique. Certainly there is plenty of content (the 
history of philosophy and the great philosophical questions) but 
what really matters is the way in which one thinks (conceptual 
analysis, the building of logical models, approaches to 
argumentation). While very little of the subject matter of 
philosophy was useful to me when I became a software engineer, I 
found that the techniques I learned were just as relevant in 
computer science as they were in the field in which I learned 
them. 

I’m told by those who have attended that law school is very much 
the same, in that gaining a technique (learning to think like a 
lawyer) is far more important than the actual subject matter of the 
law (which, after all, varies widely from locale to locale). After 
one has learned the technique, one can take the bar exam for a 
particular state (which tests knowledge of the subject matter of the 
law for that state) before one can practice law. But knowing the 
law without knowing the technique does not make one a lawyer. 

There are other subjects (the sciences come to mind) where there 
is far more subject matter to master along with the technique. 
When studying geology you still need to learn to think like a 
geologist, but there is also a lot of subject matter that must be 
mastered. In these subjects, learning the technique is often a 
byproduct of learning the subject matter, or at least a byproduct of 
the pedagogy used in teaching the subject.  

Courses are organized around parts of the subject matter rather 
than around technique. A well-designed program will use the 
technique of the field in all of the courses for that field, and will 
use the learning of the subject matter as an excuse to train students 
in the technique. Courses that try to teach only technique tend to 
be somewhat unsuccessful; at best they can provide a forum for 
students to demonstrate their technique rather than acquire it. 

The academic discipline of computer science has not, I believe, 
done a particularly good job of recognizing the distinction 
between the technique and the subject matter of computer science. 
While there are some examples in which the technique is 
reasonably well described (a recent piece by Jeannette Wing[10] 
does a great job of describing what it is to think like a computer 
scientist), the seemingly non-terminating discussion of what the 
curriculum of a computer science major (see, for example, [1]) 
appears to confuse the techniques that we need to instill with the 
subject matter that we need to teach.  

My own conclusion is that system design is really a matter of 
technique, a way of thinking rather than a subject that can be 
taught in a particular course. It might be possible to build a 
program that teaches system design by putting students through a 
series of courses that hone their system design skills as they move 
through the subject matter of the courses. Such a series of courses 
would, in effect, be a formalized version of the apprenticeship that 
is now the way people acquire their system design technique.  

There may even be departments of computer science that have just 
such a series of courses. If so, I am not aware of them. They 
would certainly not be found by looking for schools that teach a 
course in system design; all of their courses would have as a 
subtext system design. I think it far more likely that computer 
science departments teach system design in much the same way 
that I learned system design—that there are some professors who 
act as master craftsmen in the field for a group of students, who 
apprentice with such professors by taking courses with them 
(often not caring about the subject matter) and learning by doing. 
But such training is accidental at best; often students are advised 
against taking too many courses from a single faculty member, 
which has the effect of lessening the possibility of such technique 
training occurring.  

What would be best is a situation where an entire department was 
cognizant of the need to teach the design technique, and all of the 
courses from any of the instructors had as an admitted goal the 
training in such technique. Such curricula are possible in other 
design fields, but they are difficult to design and even more 
difficult to evaluate. Until we as a discipline find a way to do this 



kind of curricula design and evaluation, system design will 
continue to be learned as a craft, through an apprenticeship, and 
outside of the normal academic channels. Perhaps this is all that 
we can expect, but in times of optimism I think that we as a field 
could do better. 

It might be that we should look not at engineering but at the studio 
arts for direction on such a curriculum. The approach taken there 
is that the students do lots of design projects, of varying levels of 
complexity and size, and are constantly undergoing criticism of 
their work, both from their peers and their instructors (and seeing 
the work of their peers being criticized as well). This is a lot more 
work, both for the students and the teachers, but seems to have 
some positive impact on the development of technique in an area 
where elegance and taste are being taught. I doubt that we could 
do worse than we do currently if we as a discipline were to give 
such an approach a try. 

3.4 The Intellectual Gene Pool 
Before moving on to other topics, there is one side trip that I feel 
must be taken while on the subject of learning system design. It 
has to do with what I think is an unfortunate narrowing of the 
intellectual gene pool in our field. 

When I first started writing software, the industry was expanding 
so rapidly and the academic field was so new that there were far 
more jobs for software engineers than there were candidates with 
degrees in the field. As a result, lots of different backgrounds 
were represented in nearly every software engineering group.  

For example, in the group in which I served my apprenticeship, 
the academic backgrounds included a Ph.D. in physics, a Ph.D. in 
philosophy (me), an engineer who had done graduate work in 
psychology, another whose background was in anthropology, and 
two musicians (along with two engineers who had degrees in 
computer science and one who had no degree at all). As a result of 
all of this diversity of background, there were lots of different 
viewpoints on any given problem, and lots of ways of looking at 
any task. The end result was one of the most interesting and 
innovative groups that I’ve ever been a part of.  
What I find distressing is that I doubt very much if any of the 
members of that group who had studied something other than 
computer science could have gotten their first job as a software 
engineer today. While academia has always insisted on the proper 
credentials in the proper field (not surprising, given that they exist 
to issue such credentials), industry now requires that those who 
fill the job of software engineer be trained in that field. The result 
is that the candidates entering the profession are far more 
homogeneous in the way they think and the way that they 
approach problems. Many times they have been told what the 
proper way to solve a problem is, and so they simply solve it that 
way. 

If we actually knew how to teach the way to think like a computer 
scientist or software engineer, and knew how to teach people to 
think that way, this might not be a problem. If we actually knew 
the answers to most of the questions that come up when producing 
software, getting people who already know those answers would 
be a way of making the industry more efficient. But, as I argued in 
the previous section, I don’t think that we are very good at 
teaching how to think like a computer scientist (or at least like a 
system designer). Nor do I think that we have adequate solutions 
to many of the problems that have to do with system design in 
particular and software engineering in general. We can certainly 

get more immediate returns on our investments by hiring only 
those students who have a degree in computer science or a related 
field. But I fear that we are limiting our genetic stock of ideas 
prematurely, and as a result the discipline is the poorer for it. 

3.5 Education and System Design 
If the above observations are correct, then it is not all that 
surprising that system design is uncommon, and good system 
design even more so. Good system design requires not only talent 
but the training that supplies the needed technique to go along 
with that talent. System design is not something that can be 
covered in a class, but is learned through a much longer process 
that is more like an apprenticeship than anything else. Such 
apprenticeships are not the sort of thing that our educational 
system is set up to provide (at least at the undergraduate level), 
and is not going to be provided by some change in the set of 
courses that make up the curriculum.  

In fact, most who do system design learned their craft after they 
completed their formal classroom education, either on the job or 
while doing thesis research. But changes in the economics of both 
research funding and the software industry have conspired against 
the kinds of training that lead to good system design.  

4. WHERE SYSTEM DESIGN HAPPENS 
If system design is in fact learned as part of an apprenticeship, 
there are two places that we should expect such learning to take 
place. The first is in graduate school, where a student can work 
with a single faculty member (an advisor) who acts as a master. 
The other is on-the-job, learning the arts of system design by 
doing such design.  
But various forms of pressure have made this kind of training 
harder and harder to obtain, because less and less real design goes 
on either in academic research or in industry. Instead, academic 
research has become much more of an evolutionary task, a change 
that has been an unintended consequence of decisions by funding 
agencies designed to reduce risk. At the same time, industrial 
system design has become more constrained, more expensive, and 
less adventurous. The result of both has been not just a reduction 
in the ability to teach system design, but an environment in which 
many of the wrong things are being taught about how to 
accomplish that task. 

4.1 Industrial System Design 
Perhaps we should not be surprised that there is less opportunity 
to learn system design in industry, if for no other reason than that 
there are fewer systems that need to be designed than there were 
ten or twenty years ago. Industry consolidation and maturity have 
changed the need for system design, and therefore the opportunity 
for learning such design. 

Twenty years ago there were far more companies creating 
computer systems than there are today. Further, these companies 
competed not merely on price but on the functionality, stability, 
and sophistication of the overall system, which was proprietary to 
the company. Every computer company had their own chips, their 
own hardware, their own operating system and their own 
programming language (indeed, IBM had three or four of each). 
In addition, customers buying these systems would then need 
custom software that went beyond the basic computer system, so 
there was a thriving industry in building that custom software. All 
of these projects required system design, so there were lots of 
chances to try designing a system, and lots of chances to learn 



either by getting it right or (often better) getting it wrong. There 
was also a thriving interchange of design ideas in conferences like 
USENIX, OOPSLA, HotOS and the like.  

Current industry trends are very different. Where there used to be 
many computer companies, there are now far fewer. The number 
of operating systems has been reduced to two, with the choices 
being Windows or one of the Unix variants. Customers almost 
never purchase custom software systems, built from the ground up 
from specifications hammered out in discussions between the 
software engineers and the customers themselves. Instead, most 
custom software is written to allow the connection of existing 
systems, or the continuation of those systems on new hardware or 
in new environments. The production of this kind of software  
comes not from small companies that specialize in doing system 
design but rather from either the consulting services of existing 
companies or specialized consultancies, and is generally 
constrained to the existing environments in such a way that the 
design freedom of the creator of the software is tightly 
constrained.  

A lot of effort has been put into finding ways of building these 
custom systems in ways that are more efficient and responsive to 
the customer. Techniques such as extreme programming, in which 
small changes are made to a system with constant feedback from 
the customer have been developed and are widely used. These 
techniques emphasize doing quick prototypes and then enhancing 
those step-by-step until what the customer wants is produced. 

Such techniques are excellent ways of making sure that the system 
produced is the one that the customer actually wants. But they are 
not good techniques if one wants to insure some form of up-front 
system design. Rather than trying to think out the system ahead of 
time by decomposing it into its constituent parts, these sorts of 
iterative techniques emphasize adding features by aggregation on 
to a first-approximation core. System design may be enhanced by 
refactoring as the project progresses, and there may be times when 
it is possible to review the entire system and change the design. 
But neither of these activities helps to get the project done, and 
often the result of such work is not visible to the customer. It is far 
more usual that problems in the design are coded around rather 
than fixed. The end result is a system in which the design emerges 
rather than one in which the design is thought-out.  

Even worse than not being visible to the customer, work done on 
designing the system is not visible to the management of the 
company that is developing the system. Even though managers 
will pay lip service to the teaching of The Mythical Man 
Month[2], there is still the worry that engineers who aren’t 
producing code are not doing anything useful. While there are few 
companies that explicitly measure productivity in lines-of-code 
per week, there is still pressure to produce something that can be 
seen. The notion that design can take weeks or months and that 
during that time little or no code will be written (or that which 
does get written will be thrown away, which often appears to be 
regression rather than progress) is hard to sell to managers. 

The fact is that good system design takes time; it is the sort of 
thing that requires hard solo thinking along with long discussions 
with other engineers. There are days when no real progress seems 
to be made, and other days when the only progress is to realize 
that what you thought was progress over the previous few days (or 
weeks) was in fact a wrong turn that won’t really work. Such a 
realization is progress (in fact, perhaps the most important 

progress, as it can save huge problems later in the project), but to 
a manager it may not seem to be moving forward. 

Grady Booch once told me that he believed that the greatest 
contribution the tools he and others had produced to support the 
design process was that they made it appear to managers that the 
designer was doing something. He may have been exaggerating, 
but not by much. Anything that gives the designer time to think 
about the system before committing those thoughts to code helps 
the goal of well-designed systems. 
What is really needed is an act of faith by management. The 
difference between someone who is making progress in coming to 
grips with a system and someone who is taking an in-office 
vacation may not be visible from the outside. Most managers are 
not able to do the design task themselves (those that can are rarer 
than those who can make the needed leap of faith), and so have to 
trust the system designer. Having an engineer as the designer who 
has been successful in the past may help a manager to be patient. 
But if you find a manager who is actually willing to give you time 
to do the design task, stick with him or her. He or she is a treasure 
much rarer than gold. 

4.2 Design and Intellectual Property 
A subtler change that has had an impact on system design is the 
change in the way corporations (and, to some extent, universities) 
view intellectual property. One of the reasons that there were 
conferences and mailing lists that documented and discussed 
system design was that the companies in which those systems 
were developed did not want the ideas underlying the systems to 
be kept secret. Indeed, the developers of the system were 
generally encouraged to publish their designs. Such publications 
were seen as ways to market the products shipped by the 
company, and were seen by the designers as ways of getting 
feedback and new ideas about the design. It also meant that there 
were forums where system designers could look at the work of 
other designers, discuss that work with them, and find solutions 
that could be incorporated into their own designs. 

But over the past decade, the companies that funded the design 
work decided that they wanted to be paid when others used the 
results of the design. On the face of it, this is not a bad thing. If 
companies invested and obtained a result, it is reasonable that they 
be rewarded for the investment. If these companies can see that 
there is a reward, they are more likely to continue the investment. 
This is the premise behind the patent system in particular and 
intellectual property rights in general, so perhaps we should be 
surprised that there was a period when this kind of thinking was 
not applied to system design. 

There has been much debate about whether or not software in 
general and system designs in particular are proper artifacts for 
the patent process. I’m not sure where I stand on such issues; 
discussions on the reification of ideas in software and the 
comparison of that to the reification of other inventions in a form 
that can be touched and manipulated, and discussions of whether 
software system designs are more properly covered by patent laws 
or copyright, are interesting as ways to fuel conversations over 
drinks. But like many discussions that are essentially 
philosophical, I’m not at all sure that they will terminate with a 
real conclusion. 

Less debatable is the fact that the current system is not serving 
either the companies that fund design or the field in which the 
design takes place. Whether this is an inherent aspect of the 



system or an accident of the way in which the system has evolved 
is an issue that is beyond my skills to decide. But the effects are 
harmful in ways that I see every day. 

The first problem has to do with the way that the negotiation over 
the value of patents occurs between the companies that hold those 
patents. Such negotiations, I am told by those who have been 
party to them, are generally done by count rather than by value. 
That is, company A will count up the number of patents it holds in 
some broad area (such as computer hardware and software). 
Company B will do the same. Whichever company holds the 
larger number of patents is the one that will be paid by the other, 
and the size of the payment is determined by the size of the 
difference. The end result is that each company cross-licenses all 
of their relevant patents to the other, and some amount of money 
changes hands. 

The problem with such a scheme is that it does not take into 
account the quality of the ideas that have been patented. A 
fundamental patent is a major part of the field is no more valuable 
in such a negotiation than some minor tweak that is no longer 
relevant because the industry has passed it by. The assumption is 
that, on average, any patented idea is just as valuable as any other. 
This is an assumption that makes such negotiations possible (since 
any negotiation based on the value of an idea would take forever), 
but it also encourages the companies involved to attempt to patent 
any idea, no matter how large or small, since the value of any 
patent is considered equal to the value of any other.  

This in itself would not be a problem if the quality of patents were 
itself more uniform. However, the software world is still 
somewhat mysterious to the patent office, and was even more so 
when software patents first started to be issued. We can all think 
of patents that have been obtained for techniques that have been in 
common use for years, or patents for techniques that appear to 
most members of the profession as obvious extensions to known 
techniques.  

I have toured the patent office, and know a number of the people 
who work there. They are trying hard to do the best they can, but 
are working with a number of handicaps. While the fees that are 
charged for patents are supposed to be returned to the office to 
fund the work that they do, in fact a considerable portion is taken 
and used elsewhere; the patent office is one of the few places in 
the U.S. government that could be considered a revenue generator. 
The pay that can be offered to examiners is far less than what they 
can make in the private law firms that deal with intellectual 
property law. One director in the patent office admitted to me that 
when examiners could only make 50% more in private industry it 
was still possible (because of government pensions and benefits) 
to attract good people, but when the differential became 100% or 
more it got much harder. The number of patents that are being 
filed has grown far faster than the number of examiners; I was 
told that the current wait between a filing and the time that an 
examiner is even assigned to a case is close to three years. Until 
then, applications are stored in a room filled with shelves that 
looks like something out of the last scene of Raiders of the Lost 
Ark.  

The end result is that patents are examined in a somewhat cursory 
fashion by examiners whose expertise varies widely. The patent 
office, to its credit, has taken steps to try to make things better, but 
there is a 10-year history of software patents of questionable 
quality. Once again, this would not be a problem in itself, for the 
issuing of a patent does not mean that the patent is good. That, as 

any patent attorney will tell you, can only be decided in court 
when the patent is contested. But here we get to the third problem 
with the patent system. 

Patent litigation, for those who have been through it, is the closest 
thing I’ve found to living in the world envisioned by Kafka. The 
theory is that a jury of ones peers can be presented with the facts 
of the case, and can decide if the patent in question is an 
embodiment of a true innovation and if the technology in question 
in fact infringes on the patented invention. But a jury of one’s 
peers does not mean a jury of one’s technical peers. Instead, it 
means a jury made up of people registered to vote in the district in 
which the trial is held. Indeed, having a technical background may 
well disqualify a person from serving on the jury in a patent case, 
since such a juror may be coming into the trial with a pre-
conceived notion of what is novel and what is not in the field.  

The result is that twelve non-technical citizens are asked to decide 
if something really is a novel invention, and if some other piece of 
technology infringes on that invention. To make this decision, the 
holder of the patent will introduce an expert witness, who will 
present his or her credentials and then testify that the invention is 
both novel and infringed. The defending lawyers will present their 
own expert witness, who will present his or her credentials and 
then point out how the invention in question was well known prior 
to the filing of the patent, embodied in a number of pre-existing 
technologies, and not part of the technology that is claimed to be 
infringed. The jury then has to decide which witness to believe. 
The presumption is that the patent is indeed valid (otherwise, why 
would the patent examiners have awarded a patent?). The end 
result is probably not as random as flipping a coin, but if you have 
gone through the proceedings it is hard to convince yourself that 
the results of the process actually turn on the originality of the 
patent and the similarity of the technology claimed to infringe on 
that patent. 

Worse still for the subject of this work, if you have been found to 
infringe, there is then the question of whether or not you have 
infringed knowingly. If it is found that you have (rather than just 
infringing by accident, by re-inventing the technology contained 
in the patent) the damages awarded to the holder of the patent are 
tripled. 
The impact on all of this on the discipline of system design is that 
companies now encourage their designers to patent any part of 
their design that seems novel, rather than publishing that design in 
a journal or talking about it at a conference. The more of this work 
that can be patented, the larger the patent portfolio for the 
company, and the less likely it is that there will be a need to pay 
large amounts of money to other firms when cross-licensing 
agreements are made. Part of patenting is that you can’t talk about 
the item being patented until the patent is filed3, which can be a 
long and involved process.  

At the same time, companies are actively discouraging designers 
from looking at the work of their colleagues in other companies. 
Looking at such work can lead to future claims of knowingly 

                                                                    
3 More precisely, you can’t talk about the invention before it is 

filed if you want to get a European patent. In the U.S., the patent 
must be filed within a year of the invention first being disclosed. 
In practice, it is hard to get approval from the legal department 
of a company to talk about anything patentable prior to the 
filing, and even after it might be difficult. 



infringing on a patent, which triples any damages that might be 
awarded. This combination of the desire to patent and the fear of 
knowing infringement can lead to situations that verge on the 
absurd. I have been asked, as part of patent filings for work that I 
have done, to provide exhaustive lists of any pre-existing work 
that might have influenced the design (known in the I.P. biz as 
prior art) while at the same time being warned not to actually 
search the literature for anything that I might not have known 
about previously.  

While the general situation around software and systems patents is 
troubling, the impact that situation has had on the discipline of 
system design is not often acknowledged but is nonetheless large. 
The co-demands of keeping our own innovations secret (at least 
until the patent is filed) and not studying the work of others (to 
keep from being charged with knowing infringement) is 
responsible, at least in part, for stifling the discussion about 
systems design in the communities of software engineering and 
computer science. We now talk about the process of system 
design, or the tools that we can use to support system design, but 
we rarely talk about actual system designs. It is as though artists 
were told they could no longer talk about art, but could only talk 
about brushes, pigments, and the way in which they prepare a 
canvass. It is very hard to learn about good system design unless 
you can see and study other system designs, both good and bad. 
The intellectual property atmosphere in industry has limited the 
number of designs that are actually talked about, and has 
convinced many system designers that they should not even look 
at the designs that are available. Whatever you think of the patent 
system, this effect has been bad for the overall quality of systems. 

Before moving on to other topics, it should be noted that open 
source is often touted as one answer to the problems of the 
intellectual property system. Open source, it is argued, has as a 
major advantage that anyone can look at and study the code for a 
system, and hence can learn the design of that system. Good 
designs can be seen, as well as bad designs, and the discussion 
(generally on mailing lists) can take the place of the conferences 
that we used to have on system design. 
There is a sense in which this is true, and for that I am a great 
proponent of open source. However, open source generally allows 
the discovery of system design from the artifact of the code, rather 
than supplying some kind of documentation that explains why the 
system is designed the way it is. Further, many of the well-known 
open source projects (such as Linux and the Apache Web Server) 
are implementations of existing designs. Open source projects 
often show us the implementation of a system design, and reading 
the code can teach one a lot about such implementations. But they 
are less useful as ways of learning about the system design itself. 

4.3 Systems and Standards 
The one circumstance in which most managers will allocate time 
for the design of a system is when that design takes place in the 
context of a standards body. This is also the one time that most 
companies will allow the designers to talk with other designers 
about that design. So it would seem that standards bodies would 
be the best place for the activity of system design. Unfortunately, 
for a number of reasons, standards bodies are among the worst 
places to do real system design. 

The interaction between system design and standards bodies is 
complex and takes a number of different forms. At its best, 
standards bodies simply codify an existing technology that is so 
widely used that it is already a de facto standard. The intention is 

not to solve a technical problem with the standard, but to clarify 
and specify existing practice. This is the sort of role that the 
groups that standardized the C programming language or the IP 
protocol had. There were some technical contributions made by 
each of these standardization efforts, but those contributions were 
to clarify edge cases where the existing implementations of the de 
facto standard differed. 

This is a very different role than that taken on by standards bodies 
that attempt to create a standard technology out of whole cloth or 
from an as yet unproven idea. Classic examples of such attempts 
are the groups that defined the Ada programming language or the 
OSI networking standard. The OSI networking standard gave us 
the seven layer model that we all know and love, but also 
attempted to define a standard for interconnect based on that 
model. Only the seven-layer model remains today. The Ada 
language specification defined a language that is still in use, but 
most of the users are required to use the language contractually, 
not out of free choice. In both cases, the standard was an attempt 
to invent and guide technology rather than codify existing 
technology, and in both cases the results were somewhere 
between partial and total failure. 

One of the differentiators of standards that succeed and those that 
fail is where the system design takes place. If the system is 
designed outside of the standards process (generally by a small 
group or an individual) and has been implemented and used, the 
chances of the standard being widely accepted and useful (like the 
C or TCP/IP standard) are high. If the system design is done by 
the standards group itself, the chance of producing a coherent and 
useful design is much lower. 

This should be no surprise. Good system design requires at least a 
unified vision of the overall system, and the ability to push that 
vision to all parts of the system. This can best be accomplished 
when the design is the responsibility of a single person, and can 
sometimes be maintained when a small group undertakes the 
design. However, a standards group is rarely small and unified in 
its vision. Indeed, the standards process is an inherently political 
one, where the addition of one feature is often bargained for by 
accepting the addition of a different feature.  

This political aspect of standards groups is exaggerated by the 
commercial importance of standards. There was a time when 
technology companies differentiated themselves by the features 
that they were able to design and build into their systems. 
However, over the last decade adherence to standards has become 
more and more important. This is not surprising, as it allows 
customers of these technologies to simplify their acquisition of 
products. They begin with a checklist of standards, and find the 
vendor who can supply all of those standards at the best price. 
More important, by adhering to standards, a customer is not tied 
to a particular vendor, since essentially the same system can be 
bought from the competitors of that vendor. 
Because of this change in the buying strategies of their customers, 
influence over standards groups has become very important for 
technology vendors. If a standard can be written in such a way as 
to advantage a particular vendor, the competitors of that vendor 
will be forced into playing catch-up for some period of time. Thus 
participation in and control over standards groups has become a 
way for technology vendors to differentiate their offerings.  

The recent history of attempts to standardize various parts of the 
Extensible Markup Language (XML) takes this trend to 
something close to absurdity. In the early years of this decade, it 



seemed that a new standards body was being formed every month 
to promulgate an as-yet-undesigned XML standard. Each of these 
standards bodies was made up of some subset of the overall set of 
computer vendors, and determining which company was 
controlling the standards group and which was being frozen out 
took skills that used to be reserved for determining the meaning of 
which commissar was standing by which politburo member 
during the May Day parade.  

All of this may make for good business. It may give customers 
more choice and more control. My only point is that it does not 
produce good system design. It is hard enough to do good system 
design when it is done by a single person or a small group whose 
only design considerations are technical. When that same task is 
attempted by large groups of people each of who has a different 
agenda and whose technical judgment is at least influenced by, if 
not subordinate to, commercial or political considerations, we 
should not be surprised if the resulting designs are not those that 
we hope others will learn to produce. 

4.4 Academic System Design 
If system design is best learned by apprenticeship, we could 
expect that system design could be learned in graduate school, 
where the student/advisor relationship closely models the 
apprentice/master craftsman relationship. This may be true for 
some graduate programs, but just as the changing economics of 
industry have made it harder and harder to teach (or do) system 
design in companies, changes in the economics of academic 
research have made it more and more difficult to do real system 
design there. 

There is an idealized view of academic research in which that 
research takes greater risks than industry, plans for the longer 
term, and is less concerned with the commercial success of a 
research effort than in the intellectual content of the research. On 
this view, academic research can take a longer view than 
industrial research and development, and can take on higher-risk 
questions since even negative results can add to the base of 
knowledge that is the goal of academia. When a research program 
does pan out, the results can be transferred to industry for further 
development, and the academic researcher can turn to the next big 
question. Along the way, graduate students are trained in methods 
of research and techniques of system design, and when they are 
done they can either join the industrial world or return to 
academia to continue long-term research and the training of the 
next generation of graduate students. 
Those who believe this will also clap for Tinkerbell. 
The reality of academic research is much different than this. 
Professors spend much of their time writing grant proposals in an 
attempt to get funds for the support of graduate students. Once 
they get such grants, they need to target their research to produce 
the papers that will be accepted to the appropriate conferences and 
journals in their field, and be able to show the granting agencies 
enough progress that they will be able to get another round of 
grants. The cycle is actually quite short, with most grants 
requiring either yearly or semi-yearly reviews (and some requiring 
much more frequent updates). The received wisdom is that a grant 
needs to have enough detail to prove that the work the grant will 
support will in fact be successful; to do this it is in turn often 
necessary to have done the work already. Thus there is a tradition 
in some departments of using the results of the work done on one 
grant to get the money for the next grant. As in most systems, the 
hard part is bootstrapping (in this case, getting the first grant), but 

there is an increasingly common practice at universities to offer 
junior faculty seed grants for this bootstrapping mechanism. 

This may not have always been the case, but the realities of 
funding agencies have dictated this form of risk-averse funding. 
The funding agencies, many of which are governmental, have 
been pressured to show more relevance in the research they fund, 
and have sometimes been embarrassed by research that has not 
given positive results (some of us are old enough to remember 
Senator William Proxmire’s Golden Fleece awards, given to 
government-funded research projects that appeared to be 
meaningless or otherwise ill-advised). As the funding agencies 
faced more and more pressure to show that the work they were 
funding lead to actual results, those agencies in turn placed more 
emphasis on insuring that the research they funded would be 
successful.  

One way of doing this is to require occasional “bake offs” 
between research projects competing for money. This funding 
technique uses a simple recipe. Give a number of projects seed 
funding for a first phase of a project. At the end of the first (fairly 
short) phase, have the different projects demonstrate their results. 
As a result of this demonstration, either re-allocate the funding 
favoring the most promising of the alternatives, or simply cut the 
funding to all but the most promising project. Repeat.  

A number of government and private agencies that have been 
known for funding long-term research now use this model. While 
the model seems to make sense and certainly cuts the risk of 
making a major research investment in something that takes years 
and produces nothing but negative results, it also means that many 
academic research groups are in a constant short-term effort to 
produce the next bake-off demo.  
As a result, academic research is of a shorter duration and is more 
risk-averse than industrial research and development. Industry is 
often able to invest in high-risk development based on the 
possibility of large returns (although this is often tied to making 
the results of the development into a standard, which was 
discussed in the last section). Academics are increasing unable to 
convince granting agencies to fund for the same long duration. 

Nor are academic institutions much more open to sharing the 
results of their research than is industry. The lesson of intellectual 
property has not been lost on many of these institutions that now 
seem to hope that the developments of their research can be used 
to add to the endowment of the university. I do considerable 
collaborative research with various academic institutions, and 
have noticed over the past five or so years an increase in the 
difficulty of negotiating agreements on the intellectual property 
generated by such collaborations. Indeed, one collaboration that I 
tried to fund a couple of years ago became impossible when the 
academic institution’s lawyers insisted on terms that gave the 
institution all rights to anything that was done by anyone in the 
collaboration (including any work done entirely by my group 
inside of Sun). Even when the conditions are not so irrational, the 
desire by these institutions to patent the result of the work of their 
faculty and graduate students has had the same squelching of open 
discussion as has been caused by the protection of intellectual 
property in industry. 

Whether such policies will lead to more money for universities is 
yet to be seen, but these changes in funding and sharing do mean 
that it is less likely that full system design will occur at these 
academic institutions. Academia is subject to the same pressures 
as industry (although the pressures may come from slightly 



different sources), with the same results with respect to system 
design. 

5. WHAT DOES IT ALL MEAN? 
The previous sections paint a rather grim picture concerning the 
future of system design. A combination of impatience, economic 
pressures, and a lack of trust by those who don’t understand what 
is required for system design seem to be creating a perfect storm 
for system design, where we don’t have the time or support to do 
real design in either academia or industry, and where we can’t 
train the next generation of system designers in the craft.  

Perhaps this is just a sign of the age of the author, and all of the 
trends that I have identified are simply changes that have made 
the world different and to which I should simply adapt. I could be 
convinced of this if I didn’t see a real desire in the next generation 
of engineers and computer scientists to learn something about 
system design. It isn’t that they have gotten beyond the need to 
design systems; when they see a good system design they are 
appreciative, excited, and want to know how to create designs that 
have the same quality. They may not be able to verbalize what 
they are missing, but they know it when they see it, and they 
would like to learn.  

Another possibility is that the lack of system design at this time is 
just part of a natural cycle of development in the field of computer 
science. On this view, we are in the analogue of what Thomas 
Kuhn[5] called a period of normal science, in which the existing 
theory (or system designs) were being confirmed, tested, and 
slightly altered. Perhaps the systems that we have are good 
enough for what we need to do, so there is little or no need to do 
major design work on new systems. That will change in the future 
when we find tasks for which the current systems are inadequate, 
but until we do we should expect little support for system design. 
Indeed, systems like those being developed by Google are just the 
kind of radical departures that we would expect in a time of 
revolution, and they are indicators that we are about to enter into a 
new system design cycle. 

I have some sympathy for this view, in that it gives me hope that 
things will change. But I also realize that this view is based on the 
false assumption that there are fewer systems being produced now 
than there were in the past. In fact, I observe all kinds of systems 
being produced, from the service-oriented architectures of web 
services to the ontologies of the semantic web. What I find 
missing in these systems is a notion of design other than those that 
are done in standards committees or other large groups, or those 
that emerge from the code that is thrown together to implement 
the system.  

I think the real explanation can be seen if we simply re-read Ivan 
Sutherland’s Technology and Courage[9]. System design, like any 
other form of research, is hard work that entails taking great risks 
and therefore requires the constant application of what can only be 
called courage. It takes courage for an engineer to design a system 
without constantly asking the customer if it is what the customer 
wants. It takes courage for a manager to trust an engineer to take 
the time to design a system. It takes courage for a funding agency 
to underwrite an academic research project that might well fail. It 
takes courage for a company to back a design that has not been 
blessed by a standards body. What we are lacking today in our 
industry is the courage that is needed to take the kinds of risks that 
are inherent in doing system design. Whether this lack is caused 
by the scarcity of funding, or the bursting of the technology stock 
bubble, or the consolidation of the industry is hard to tell. But the 

reason that we are no longer designing interesting systems is, I 
believe, simply a lack of the courage needed to do so. 

If this is true, then one possible approach would be to solve this 
problem ourselves, at both the individually and collective level, 
by simply insisting that we be given the time and resources to do 
good system design. Finding courage is difficult, and instilling it 
in others more difficult still. But either is less difficult than 
changing the economy, or the legal system, or the attitude of the 
funding agencies, or the ways in which our field is taught. Indeed, 
we could make the change starting with ourselves, by taking the 
time and making the effort to do good system design, and to 
demand of our colleagues (and managers) that they both give us 
the opportunity to do such design and do such designs themselves.  

But given the realities of our industry and the wider economy, I 
hold little hope that simply making such demands will solve the 
problem. But this doesn’t mean that the situation is hopeless. 
Instead, it means that those who wish to continue in the craft of 
system design need to find other, less direct, ways of allowing 
such design to be practiced and taught. 
I am actually encouraged by some signs that this is already 
happening, although perhaps not in the way (or in the places) that 
any of us might have expected. These signs are not coming from 
industry, where the relative power of the engineer and the 
manager has changed to the advantage of the latter, and where 
managers are under increasing pressure to cut costs and therefore 
have become more and more cautious. Nor do I see much change 
in academia, where short funding cycles and publications by the 
pound are still driving out good system design. Where I see 
encouraging signs are in two areas that are generally not thought 
of as central to system design, the areas of agile methods and open 
source software. 
Agile methods mean lots of different things to lots of different 
people, so I should begin by saying what I take them to be. This is 
not because I think that my characterization is any better than any 
of the others, but simply because it will help in the discussion that 
follows to know what I take agile methods to be. Like patterns or 
open source (a discussion that will follow) here is considerable 
theology in the characterizations of agile methods, and I don’t 
wish to get caught up in such theological debates. I’m happy to 
admit that my characterization is not really what is meant by agile 
methods; what I am describing is a trend I have seen in 
development that is at least sometimes given that label. 
What I am using the term “agile methods” to label is an approach 
to writing code (and, ultimately, systems) that is based on small 
groups of programmers working closely together; in the most 
extreme form of this the small group is a pair of programmers 
working together with a single keyboard and screen. On this 
approach, the system is built by iteratively constructing small 
pieces, and then enhancing that working system in small, 
manageable chunks to build the ultimate large and complex 
system. In addition, I include the practice of “test driven 
development” in which the tests for some piece of functionality 
are written before the code that provides that functionality. There 
are, of course, many other techniques that get included under the 
term “agile methods,” but for the purposes of this discussion these 
are the features that are most important. 

Earlier I noted that such an approach to the production of a system 
seems to be an invitation to plunge into the code before thinking 
things through and then to make incremental changes to the 
undersigned system until things are good enough. Such an 



approach seems to actively discourage thoughtful system design. 
And, indeed, I have sometimes seen these methods produce 
systems that were badly designed, overly complex, and not well 
thought out. What has surprised me is the number of well-
thought-out systems whose designs show taste and elegance that 
have been produced using these techniques.  
The reason, I believe, has to do with two of the aspects of such 
agile methods. The first is the combination of breaking the overall 
system down into small pieces and the requirements of test-driven 
development. Each of these techniques requires that some thought 
be given to the abstractions that form the system. Breaking the 
system down into smaller pieces requires some thought into what 
those pieces are going to be and how they fit together, which is 
exactly the art of system design. In order to write the tests before 
the code that is to be tested, an abstract notion of what the code is 
supposed to do must be thought through. In deciding what to test, 
a programmer needs to think about the general functionality of the 
system, and how that functionality is going to be accessed. Both 
activities require thinking about the interfaces for the various 
components of the system in a fashion that is one removed from 
the implementation of those interfaces. By deciding what small 
thing can be done and by writing the tests first, agile methods 
impose a requirement of thinking about the abstract system that is 
a way of expressing the overall design of the system. 

The second, and more important aspect that favors system design 
when using agile methods is that those methods require that the 
work be done in small groups, each member of which needs to 
understand the entire artifact. This in turn encourages discussion 
of the overall system, not just as the level of the code that is being 
produced but at the level of the system itself. Each member of 
such a team has to explain to the others how the system fits 
together, and just that act of explanation requires thinking about 
the design. Even better, the others can then help to make the 
overall design better; the give-and-take of a small-group 
programming session is much the same as that found in a good 
design session because it is, in fact, a design session.  
What is important here is the required communication between 
the participants. Having to express a design will often uncover 
problems with the design, and can certainly show areas where the 
design (and, therefore, the communication of the design) is 
unclear or inconsistent. While it is true that writing down the 
design of a system is a form of documentation that can help 
people who want to learn or understand the system, the greatest 
benefit of such a written design is to the designer who must do the 
writing. The very act of writing the design document helps to 
clarify the design itself. In the same way, having to communicate 
the design during group programming helps to clarify and 
simplify the design. 
The process of small group development also provides a 
opportunity for the members of the group to serve their design 
apprenticeship. While the group may not consist of an 
acknowledged master and a set of apprentices (although it could), 
the constant discussion of the design even with a peer group can 
help in the development of taste and craftsmanship. While there is 
always the possibility that bad taste will be reinforced and bad 
habits encouraged, the process of peer-mentoring is better than no 
form of design feedback at all. 

Whether it be to a group of peers or a master, the real point is that 
the design needs to be expressed to someone else. It is very 
difficult to mask the weaknesses of a design when you are 

communicating that design to someone else who is intimately 
involved in the implementation of the design. Simple designs can 
be communicated easily; complex designs are hard to explain. Just 
as writing down a design will often show flaws or weaknesses in 
the design, explaining a design to a peer will often improve the 
design. 
Working on an open-source project also provides engineers both a 
forum for the discussion of design and a mechanism for learning 
through an apprenticeship. The first of these is supplied by the 
mailing lists that are central to many open source projects. On 
these lists there is constant discussion of the design alternatives, 
philosophies, and trade-offs that are faced by the overall project. 
Newer or less experienced engineers can ask questions that will be 
answered (and discussed) by the overall community. Like the 
discussion that goes on between the members of a pair-
programming team, such electronic discussions allow the 
engineers to try out ideas, have those ideas criticized or amplified, 
and generally participate in the design process of a large project. 
The discussions tend to be at a different time-scale than those held 
face-to-face with a pair-programming partner, and often involve a 
much larger group of participants. But they are still forums that 
require discussion of the design. Better still, they are forums that 
require that the participants communicate the design in a clear and 
persuasive way. Just as the act of communication between two 
programmers can help to clarify and simplify the design of a 
system, the act of communicating a design to the other members 
of an open source project will help to clarify and simplify the 
design of the open source system. 

These discussions often replicate, at least electronically, the 
master/apprentice relationship that is so central to becoming an 
accomplished designer. Such relationships are established in spite 
of the mythology that has grown up around the way open source 
projects are run. The establishment of this sort of mentoring 
happens because of the reality of the way that open source 
projects work, a reality that is very different from the folk wisdom 
that has grown up around such projects. 
The folk wisdom of open source, best exemplified by the writings 
of Eric Raymond [7], holds that open source projects are chaotic, 
highly democratic undertakings in which the marketplace of ideas 
sorts out the good ideas from the bad, the code is written by 
anyone, and there is no hierarchy. In actual fact, most of the 
successful open source projects are run as semi-benign 
dictatorships in which a very small group of people controls all of 
the code that is put into the project. These people are the 
committers of the project, and no code is allowed into the source 
repository until it meets their standards.  

It is true that anyone can offer code to the committers to see if it 
can be included into the project. But most of the code will go 
through a very detailed reading by the committers, and only be 
accepted when it is found to be good by the standards set by this 
group. Not surprisingly, most of these committers are just the 
kinds of master craftsmen of code that you would want 
supervising the apprenticeship of those learning system design. 
The apprenticeship is not as direct, with little or no face-to-face 
discussion, but the overall process is the same. The apprentice will 
try to solve problems, offer his or her solution, and be told to try 
again (generally with some discussion as to the reasons for 
needing to try again) until the code and the design is right. The 
communication may be electronic rather than face-to-face, but the 
process is the same as it was 20 years ago; one of trial-and-error, 



of frustration and trying again, and of failure and (hopefully) 
enlightenment (or at least increased mastery).  

This is a process that benefits both the apprentice and the master. 
The apprentice benefits in obvious ways, learning how to be a 
better craftsman and gaining a better understanding of how to 
build and design a system. The master benefits by using the 
apprentice as an idea magnifier. By having others doing some of 
the work, the master is freed to concentrate on those parts of the 
design or the code that only he or she can do. The end result is 
that the kinds of systems that can be built are more significant, 
and the ways of approaching design are conveyed.  

This ability to learn, to teach, and to tackle hard technical 
problems without the oversight or interference of management is 
also, I believe, one of the prime reasons for the popularity of open 
source projects among engineers. Such projects are places where 
technical decisions can be made on technical grounds, and where 
the decision making powers are given to those who have shown 
technical ability in the past. The fact that the end result of such 
developments is innovative software that is often superior to that 
produced by the projects that are the day jobs of the very people 
who write the open source software may be ironic, but it should 
not be surprising. 
 
In an important sense, both agile methods and open source can be 
seen as reactions to the difficulty of doing system design in either 
the academic or the industrial world. One solution to this could 
have been confronting the managers, professors, and funding 
agencies that have made it increasingly more difficult to do 
system design in the traditional environments. But this other 
solution is both more indirect and, in many ways, more in keeping 
with the ethos of software design. Rather than trying to change the 
set of constraints that frame the problem, designers and those who 
wish to learn design have simply designed around the problem. 
By adopting agile methods, we have found a mechanism that 
allows us to discuss and learn design without having to tell our 
management that this is what we are doing. By working in open 
source, we have created an environment in which we can continue 
to do technical work framed in purely technical way. The fact that 
open source needs to be done on our own time is a minor 
inconvenience; most good software designers would prefer doing 
technical work to most other forms of recreation. In a meta-sense, 
the new venues for learning and teaching system design are 
themselves excellent examples of system design, in which a 

problem is solved in a fashion that is elegant, subtle, and pleases 
both the practitioner of the art and the consumer of the code. The 
end result is that the craft survives, thrives, and continues to 
evolve. 
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