
Bundle of excerpts from AMD64 (x86-64)
documentation

COMP 40

Fall 2010

This packet contains key excerpts from the voluminous documentation
for the AMD64 (x86 64) architecture used in every 64-bit Intel and AMD
CPU. The excerpts include

• Names of the integer registers and their legacy internal fields (sub-
registers)

• Summary of conventions of how integer registers, SSE registers (%xmm∗),
and floating-point registers are used within the procedure calling con-
vention.

• Details about how the stack frame is laid out and how parameters are
passed in the calling convention.

• Sizes and alignments of the standard scalar types

• Information about conditional-branch and conditional-move instruc-
tions

• Information about which registers may be modified by instructions
without mentioning those registers in the assembly code (implicit mod-
ification)

1

General-Purpose Programming 27

24592—Rev. 3.14—September 2007 AMD64 Technology

Figure 3-3. General Registers in 64-Bit Mode

Figure 3-4 on page 28 illustrates another way of viewing the 64-bit-mode GPRs, showing how the

legacy GPRs overlap the extended GPRs. Gray-shaded bits are not modified in 64-bit mode.

513-309.eps

63 31 15 7 081632

R8

R9

R10

R11

R12

R13

R14

R15

R8W

R9W

R10W

R11W

R12W

R13W

R14W

R15W

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

AXAH*

BH*

CH*

DH*

16-bit 32-bit 64-bit

8

9

10

11

12

13

14

15

0

3

1

2

6

7

5

4

register
encoding

zero-extended
for 32-bit operands

not modified for 8-bit operands

not modified for 16-bit operands

BX

CX

DX

SI

DI

BP

SP

63 31 032

RFLAGS

RIP

0

low
8-bit

R8B

R9B

R10B

R11B

R12B

R13B

R14B

R15B

AL

BL

CL

DL

SIL**

DIL**

BPL**

SPL**

* Not addressable when
a REX prefix is used.

** Only addressable when
a REX prefix is used.

Figure 3.4: Register Usage

Preserved across

Register Usage function calls

%rax temporary register; with variable arguments

passes information about the number of SSE reg-

isters used; 1st return register

No

%rbx callee-saved register; optionally used as base

pointer

Yes

%rcx used to pass 4th integer argument to functions No

%rdx used to pass 3rd argument to functions; 2nd return

register

No

%rsp stack pointer Yes

%rbp callee-saved register; optionally used as frame

pointer

Yes

%rsi used to pass 2nd argument to functions No

%rdi used to pass 1st argument to functions No

%r8 used to pass 5th argument to functions No

%r9 used to pass 6th argument to functions No

%r10 temporary register, used for passing a function’s

static chain pointer

No

%r11 temporary register No

%r12-r15 callee-saved registers Yes

%xmm0–%xmm1 used to pass and return floating point arguments No

%xmm2–%xmm7 used to pass floating point arguments No

%xmm8–%xmm15 temporary registers No

%mmx0–%mmx7 temporary registers No

%st0,%st1 temporary registers; used to return long

double arguments

No

%st2–%st7 temporary registers No

%fs Reserved for system (as thread specific data reg-

ister)

No

mxcsr SSE2 control and status word partial

x87 SW x87 status word No

x87 CW x87 control word Yes

21

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

Figure 3.2: Bit-Field Ranges

Bit-field Type Width w Range

signed char −2w−1 to 2w−1
− 1

char 1 to 8 0 to 2w
− 1

unsigned char 0 to 2w
− 1

signed short −2w−1 to 2w−1
− 1

short 1 to 16 0 to 2w
− 1

unsigned short 0 to 2w
− 1

signed int −2w−1 to 2w−1
− 1

int 1 to 32 0 to 2w
− 1

unsigned int 0 to 2w
− 1

signed long −2w−1 to 2w−1
− 1

long 1 to 64 0 to 2w
− 1

unsigned long 0 to 2w
− 1

ative values), these bit-fields have the same range as a bit-field of the same size

with the corresponding unsigned type. Bit-fields obey the same size and alignment

rules as other structure and union members.

Also:

• bit-fields are allocated from right to left

• bit-fields must be contained in a storage unit appropriate for its declared

type

• bit-fields may share a storage unit with other struct / union members

Unnamed bit-fields’ types do not affect the alignment of a structure or union.

3.2 Function Calling Sequence

This section describes the standard function calling sequence, including stack

frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.

Local functions that are not reachable from other compilation units may use dif-

14

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

ferent conventions. Nevertheless, it is recommended that all functions use the

standard calling sequence when possible.

3.2.1 Registers and the Stack Frame

The AMD64 architecture provides 16 general purpose 64-bit registers. In addition

the architecture provides 16 SSE registers, each 128 bits wide and 8 x87 floating

point registers, each 80 bits wide. Each of the x87 floating point registers may be

referred to in MMX/3DNow! mode as a 64-bit register. All of these registers are

global to all procedures active for a given thread.

This subsection discusses usage of each register. Registers %rbp, %rbx and

%r12 through %r15 “belong” to the calling function and the called function is

required to preserve their values. In other words, a called function must preserve

these registers’ values for its caller. Remaining registers “belong” to the called

function.5 If a calling function wants to preserve such a register value across a

function call, it must save the value in its local stack frame.

The CPU shall be in x87 mode upon entry to a function. Therefore, every

function that uses the MMX registers is required to issue an emms or femms

instruction after using MMX registers, before returning or calling another function.
6 The direction flag DF in the %rFLAGS register must be clear (set to “forward”

direction) on function entry and return. Other user flags have no specified role in

the standard calling sequence and are not preserved across calls.

The control bits of the MXCSR register are callee-saved (preserved across

calls), while the status bits are caller-saved (not preserved). The x87 status word

register is caller-saved, whereas the x87 control word is callee-saved.

3.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack

grows downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 byte boundary.

In other words, the value (%rsp − 8) is always a multiple of 16 when control is

5Note that in contrast to the Intel386 ABI, %rdi, and %rsi belong to the called function, not

the caller.
6All x87 registers are caller-saved, so callees that make use of the MMX registers may use the

faster femms instruction.

15

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

Figure 3.3: Stack Frame with Base Pointer

Position Contents Frame

8n+16(%rbp) memory argument eightbyte n

. . . Previous

16(%rbp) memory argument eightbyte 0
8(%rbp) return address

0(%rbp) previous %rbp value

-8(%rbp) unspecified Current

. . .

0(%rsp) variable size

-128(%rsp) red zone

transferred to the function entry point. The stack pointer, %rsp, always points to

the end of the latest allocated stack frame. 7

The 128-byte area beyond the location pointed to by %rsp is considered to

be reserved and shall not be modified by signal or interrupt handlers.8 Therefore,

functions may use this area for temporary data that is not needed across function

calls. In particular, leaf functions may use this area for their entire stack frame,

rather than adjusting the stack pointer in the prologue and epilogue. This area is

known as the red zone.

3.2.3 Parameter Passing

After the argument values have been computed, they are placed either in regis-

ters or pushed on the stack. The way how values are passed is described in the

following sections.

Definitions We first define a number of classes to classify arguments. The

classes are corresponding to AMD64 register classes and defined as:

7The conventional use of %rbp as a frame pointer for the stack frame may be avoided by using

%rsp (the stack pointer) to index into the stack frame. This technique saves two instructions in

the prologue and epilogue and makes one additional general-purpose register (%rbp) available.
8Locations within 128 bytes can be addressed using one-byte displacements.

16

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

INTEGER This class consists of integral types that fit into one of the general

purpose registers.

SSE The class consists of types that fits into a SSE register.

SSEUP The class consists of types that fit into a SSE register and can be passed

and returned in the most significant half of it.

X87, X87UP These classes consists of types that will be returned via the x87

FPU.

COMPLEX_X87 This class consists of types that will be returned via the x87

FPU.

NO_CLASS This class is used as initializer in the algorithms. It will be used for

padding and empty structures and unions.

MEMORY This class consists of types that will be passed and returned in mem-

ory via the stack.

Classification The size of each argument gets rounded up to eightbytes.9

The basic types are assigned their natural classes:

• Arguments of types (signed and unsigned) _Bool, char, short, int,

long, long long, and pointers are in the INTEGER class.

• Arguments of types float, double, _Decimal32, _Decimal64 and

__m64 are in class SSE.

• Arguments of types __float128, _Decimal128 and __m128 are split

into two halves. The least significant ones belong to class SSE, the most

significant one to class SSEUP.

• The 64-bit mantissa of arguments of type long double belongs to class

X87, the 16-bit exponent plus 6 bytes of padding belongs to class X87UP.

• Arguments of type __int128 offer the same operations as INTEGERs,

yet they do not fit into one general purpose register but require two registers.

For classification purposes __int128 is treated as if it were implemented

as:

9Therefore the stack will always be eightbyte aligned.

17

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

typedef struct {

long low, high;

} __int128;

with the exception that arguments of type __int128 that are stored in

memory must be aligned on a 16-byte boundary.

• Arguments of complex Twhere T is one of the types float or double

are treated as if they are implemented as:

struct complexT {

T real;

T imag;

};

• A variable of type complex long double is classified as type COM-

PLEX_X87.

The classification of aggregate (structures and arrays) and union types works

as follows:

1. If the size of an object is larger than two eightbytes, or it contains unaligned

fields, it has class MEMORY.

2. If a C++ object has either a non-trivial copy constructor or a non-trivial

destructor 10 it is passed by invisible reference (the object is replaced in the

parameter list by a pointer that has class INTEGER). 11

3. If the size of the aggregate exceeds a single eightbyte, each is classified

separately. Each eightbyte gets initialized to class NO_CLASS.

10A de/constructor is trivial if it is an implicitly-declared default de/constructor and if:

• its class has no virtual functions and no virtual base classes, and

• all the direct base classes of its class have trivial de/constructors, and

• for all the nonstatic data members of its class that are of class type (or array thereof), each

such class has a trivial de/constructor.

11An object with either a non-trivial copy constructor or a non-trivial destructor cannot be

passed by value because such objects must have well defined addresses. Similar issues apply

when returning an object from a function.

18

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

4. Each field of an object is classified recursively so that always two fields are

considered. The resulting class is calculated according to the classes of the

fields in the eightbyte:

(a) If both classes are equal, this is the resulting class.

(b) If one of the classes is NO_CLASS, the resulting class is the other

class.

(c) If one of the classes is MEMORY, the result is the MEMORY class.

(d) If one of the classes is INTEGER, the result is the INTEGER.

(e) If one of the classes is X87, X87UP, COMPLEX_X87 class, MEM-

ORY is used as class.

(f) Otherwise class SSE is used.

5. Then a post merger cleanup is done:

(a) If one of the classes is MEMORY, the whole argument is passed in

memory.

(b) If SSEUP is not preceeded by SSE, it is converted to SSE.

Passing Once arguments are classified, the registers get assigned (in left-to-right

order) for passing as follows:

1. If the class is MEMORY, pass the argument on the stack.

2. If the class is INTEGER, the next available register of the sequence %rdi,

%rsi, %rdx, %rcx, %r8 and %r9 is used12.

3. If the class is SSE, the next available SSE register is used, the registers are

taken in the order from %xmm0 to %xmm7.

4. If the class is SSEUP, the eightbyte is passed in the upper half of the last

used SSE register.

12Note that %r11 is neither required to be preserved, nor is it used to pass arguments. Making

this register available as scratch register means that code in the PLT need not spill any registers

when computing the address to which control needs to be transferred. %rax is used to indicate the

number of SSE arguments passed to a function requiring a variable number of arguments. %r10

is used for passing a function’s static chain pointer.

19

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

5. If the class is X87, X87UP or COMPLEX_X87, it is passed in memory.

When a value of type _Bool is passed in a register or on the stack, the upper

63 bits of the eightbyte shall be zero.

If there are no registers available for any eightbyte of an argument, the whole

argument is passed on the stack. If registers have already been assigned for some

eightbytes of such an argument, the assignments get reverted.

Once registers are assigned, the arguments passed in memory are pushed on

the stack in reversed (right-to-left13) order.

For calls that may call functions that use varargs or stdargs (prototype-less

calls or calls to functions containing ellipsis (. . .) in the declaration) %al 14 is used

as hidden argument to specify the number of SSE registers used. The contents of

%al do not need to match exactly the number of registers, but must be an upper

bound on the number of SSE registers used and is in the range 0–8 inclusive.

Returning of Values The returning of values is done according to the following

algorithm:

1. Classify the return type with the classification algorithm.

2. If the type has class MEMORY, then the caller provides space for the return

value and passes the address of this storage in %rdi as if it were the first

argument to the function. In effect, this address becomes a “hidden” first

argument.

On return %rax will contain the address that has been passed in by the

caller in %rdi.

3. If the class is INTEGER, the next available register of the sequence %rax,

%rdx is used.

4. If the class is SSE, the next available SSE register of the sequence %xmm0,

%xmm1 is used.

5. If the class is SSEUP, the eightbyte is passed in the upper half of the last

used SSE register.

13Right-to-left order on the stack makes the handling of functions that take a variable number

of arguments simpler. The location of the first argument can always be computed statically, based

on the type of that argument. It would be difficult to compute the address of the first argument if

the arguments were pushed in left-to-right order.
14Note that the rest of %rax is undefined, only the contents of %al is defined.

20

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

Figure 3.4: Register Usage

Preserved across

Register Usage function calls

%rax temporary register; with variable arguments

passes information about the number of SSE reg-

isters used; 1st return register

No

%rbx callee-saved register; optionally used as base

pointer

Yes

%rcx used to pass 4th integer argument to functions No

%rdx used to pass 3rd argument to functions; 2nd return

register

No

%rsp stack pointer Yes

%rbp callee-saved register; optionally used as frame

pointer

Yes

%rsi used to pass 2nd argument to functions No

%rdi used to pass 1st argument to functions No

%r8 used to pass 5th argument to functions No

%r9 used to pass 6th argument to functions No

%r10 temporary register, used for passing a function’s

static chain pointer

No

%r11 temporary register No

%r12-r15 callee-saved registers Yes

%xmm0–%xmm1 used to pass and return floating point arguments No

%xmm2–%xmm7 used to pass floating point arguments No

%xmm8–%xmm15 temporary registers No

%mmx0–%mmx7 temporary registers No

%st0,%st1 temporary registers; used to return long

double arguments

No

%st2–%st7 temporary registers No

%fs Reserved for system (as thread specific data reg-

ister)

No

mxcsr SSE2 control and status word partial

x87 SW x87 status word No

x87 CW x87 control word Yes

21

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

6. If the class is X87, the value is returned on the X87 stack in %st0 as 80-bit

x87 number.

7. If the class is X87UP, the value is returned together with the previous X87

value in %st0.

8. If the class is COMPLEX_X87, the real part of the value is returned in

%st0 and the imaginary part in %st1.

As an example of the register passing conventions, consider the declarations

and the function call shown in Figure 3.5. The corresponding register allocation

is given in Figure 3.6, the stack frame offset given shows the frame before calling

the function.

Figure 3.5: Parameter Passing Example

typedef struct {

int a, b;

double d;

} structparm;

structparm s;

int e, f, g, h, i, j, k;

long double ld;

double m, n;

extern void func (int e, int f,

structparm s, int g, int h,

long double ld, double m,

double n, int i, int j, int k);

func (e, f, s, g, h, ld, m, n, i, j, k);

22

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

Figure 3.1: Scalar Types

Alignment AMD64

Type C sizeof (bytes) Architecture

_Bool† 1 1 boolean

char 1 1 signed byte

signed char

unsigned char 1 1 unsigned byte

short 2 2 signed twobyte

signed short

unsigned short 2 2 unsigned twobyte

int 4 4 signed fourbyte

Integral signed int

enum†††

unsigned int 4 4 unsigned fourbyte

long 8 8 signed eightbyte

signed long

long long

signed long long

unsigned long 8 8 unsigned eightbyte

unsigned long long 8 8 unsigned eightbyte

__int128†† 16 16 signed sixteenbyte

signed __int128†† 16 16 signed sixteenbyte

unsigned __int128†† 16 16 unsigned sixteenbyte

Pointer any-type * 8 8 unsigned eightbyte

any-type (*)()

Floating- float 4 4 single (IEEE-754)

point double 8 8 double (IEEE-754)

long double 16 16 80-bit extended (IEEE-754)

__float128†† 16 16 128-bit extended (IEEE-754)

Decimal- _Decimal32 4 4 32bit BID (IEEE-754R)

floating- _Decimal64 8 8 64bit BID (IEEE-754R)

point _Decimal128 16 16 128bit BID (IEEE-754R)

Packed __m64†† 8 8 MMX and 3DNow!

__m128†† 16 16 SSE and SSE-2

† This type is called bool in C++.
†† These types are optional.
††† C++ and some implementations of C permit enums larger than an int. The underlying

type is bumped to an unsigned int, long int or unsigned long int, in that order.

12

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39

General-Purpose Programming 31

24592—Rev. 3.14—September 2007 AMD64 Technology

Table 3-1. Implicit Uses of GPRs

Registers1

Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit

AL AX EAX RAX2 Accumulator

• Operand for decimal

arithmetic, multiply, divide,

string, compare-and-

exchange, table-translation,

and I/O instructions.

• Special accumulator encoding

for ADD, XOR, and MOV

instructions.

• Used with EDX to hold double-

precision operands.

• CPUID processor-feature

information.

BL BX EBX RBX2 Base

• Address generation in 16-bit

code.

• Memory address for XLAT

instruction.

• CPUID processor-feature

information.

CL CX ECX RCX2 Count

• Bit index for shift and rotate

instructions.

• Iteration count for loop and

repeated string instructions.

• Jump conditional if zero.

• CPUID processor-feature

information.

DL DX EDX RDX2 I/O Address

• Operand for multiply and divide

instructions.

• Port number for I/O

instructions.

• Used with EAX to hold double-

precision operands.

• CPUID processor-feature

information.

SIL2 SI ESI RSI2 Source Index

• Memory address of source

operand for string instructions.

• Memory index for 16-bit

addresses.

Note:

1. Gray-shaded registers have no implicit uses.

2. Accessible only in 64-bit mode.

32 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Arithmetic Operations. Several forms of the add, subtract, multiply, and divide instructions use AL

or rAX implicitly. The multiply and divide instructions also use the concatenation of rDX:rAX for

double-sized results (multiplies) or quotient and remainder (divides).

Sign-Extensions. The instructions that double the size of operands by sign extension (for example,

CBW, CWDE, CDQE, CWD, CDQ, CQO) use rAX register implicitly for the operand. The CWD,

CDQ, and CQO instructions also uses the rDX register.

Special MOVs. The MOV instruction has several opcodes that implicitly use the AL or rAX register

for one operand.

String Operations. Many types of string instructions use the accumulators implicitly. Load string,

store string, and scan string instructions use AL or rAX for data and rDI or rSI for the offset of a

memory address.

I/O-Address-Space Operations. The I/O and string I/O instructions use rAX to hold data that is

received from or sent to a device located in the I/O-address space. DX holds the device I/O-address

(the port number).

Table Translations. The table translate instruction (XLATB) uses AL for an memory index and rBX

for memory base address.

Compares and Exchanges. Compare and exchange instructions (CMPXCHG) use the AL or rAX

register for one operand.

DIL2 DI EDI RDI2
Destination

Index

• Memory address of destination

operand for string instructions.

• Memory index for 16-bit

addresses.

BPL2 BP EBP RBP2 Base Pointer
• Memory address of stack-

frame base pointer.

SPL2 SP ESP RSP2 Stack Pointer
• Memory address of last stack

entry (top of stack).

R8B–R10B2 R8W–R10W2 R8D–R10D2 R8–R102 None No implicit uses

R11B2 R11W2 R11D2 R112 None
• Holds the value of RFLAGS on

SYSCALL/SYSRET.

R12B–R15B2 R12W–R15W
2 R12D–R15D2 R12–R152 None No implicit uses

Table 3-1. Implicit Uses of GPRs (continued)

Registers1

Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit

Note:

1. Gray-shaded registers have no implicit uses.

2. Accessible only in 64-bit mode.

General-Purpose Programming 33

24592—Rev. 3.14—September 2007 AMD64 Technology

Decimal Arithmetic. The decimal arithmetic instructions (AAA, AAD, AAM, AAS, DAA, DAS)

that adjust binary-coded decimal (BCD) operands implicitly use the AL and AH register for their

operations.

Shifts and Rotates. Shift and rotate instructions can use the CL register to specify the number of bits

an operand is to be shifted or rotated.

Conditional Jumps. Special conditional-jump instructions use the rCX register instead of flags. The

JCXZ and JrCXZ instructions check the value of the rCX register and pass control to the target

instruction when the value of rCX register reaches 0.

Repeated String Operations. With the exception of I/O string instructions, all string operations use

rSI as the source-operand pointer and rDI as the destination-operand pointer. I/O string instructions

use rDX to specify the input-port or output-port number. For repeated string operations (those

preceded with a repeat-instruction prefix), the rSI and rDI registers are incremented or decremented as

the string elements are moved from the source location to the destination. Repeat-string operations

also use rCX to hold the string length, and decrement it as data is moved from one location to the other.

Stack Operations. Stack operations make implicit use of the rSP register, and in some cases, the rBP

register. The rSP register is used to hold the top-of-stack pointer (or simply, stack pointer). rSP is

decremented when items are pushed onto the stack, and incremented when they are popped off the

stack. The ENTER and LEAVE instructions use rBP as a stack-frame base pointer. Here, rBP points to

the last entry in a data structure that is passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address calculation implies the use of SS (stack segment)

as the default segment. Using any other GPR as a base register without a segment-override prefix

implies the use of the DS data segment as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA, POPAD) implicitly use all of the

GPRs.

CPUID Information. The CPUID instruction makes implicit use of the EAX, EBX, ECX, and EDX

registers. Software loads a function code into EAX, executes the CPUID instruction, and then reads the

associated processor-feature information in EAX, EBX, ECX, and EDX.

3.1.4 Flags Register

Figure 3-5 on page 34 shows the 64-bit RFLAGS register and the flag bits visible to application

software. Bits 15–0 are the FLAGS register (accessed in legacy real and virtual-8086 modes), bits

31–0 are the EFLAGS register (accessed in legacy protected mode and compatibility mode), and bits

63–0 are the RFLAGS register (accessed in 64-bit mode). The name rFLAGS refers to any of the three

register widths, depending on the current software context.

34 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by application software and hold the

following flags:

• One control flag (the direction flag DF).

• Six status flags (carry flag CF, parity flag PF, auxiliary carry flag AF, zero flag ZF, sign flag SF,

and overflow flag OF).

The direction flag (DF) flag controls the direction of string operations. The status flags provide result

information from logical and arithmetic operations and control information for conditional move and

jump instructions.

Bits 31–16 of the rFLAGS register contain flags that are accessible only to system software. These

flags are described in “System Registers” in Volume 2. The highest 32 bits of RFLAGS are reserved.

In 64-bit mode, writes to these bits are ignored. They are read as zeros (RAZ). The rFLAGS register is

initialized to 02h on reset, so that all of the programmable bits are cleared to zero.

The effects that rFLAGS bit-values have on instructions are summarized in the following places:

• Conditional Moves (CMOVcc)—Table 3-4 on page 43.

• Conditional Jumps (Jcc)—Table 3-5 on page 55.

• Conditional Sets (SETcc)—Table 3-6 on page 59.

The effects that instructions have on rFLAGS bit-values are summarized in “Instruction Effects on

RFLAGS” in Volume 3.

63 32

Reserved, RAZ

31 12 11 10 9 8 7 6 5 4 3 2 1 0

See Volume 2 for System Flags
O

F

D

F

S

F

Z

F

A

F

P

F

C

F

Bits Mnemonic Description R/W

11 OF Overflow Flag R/W

10 DF Direction Flag R/W

7 SF Sign Flag R/W

6 ZF Zero Flag R/W

4 AF Auxiliary Carry Flag R/W

2 PF Parity Flag R/W

0 CF Carry Flag R/W

General-Purpose Programming 59

24592—Rev. 3.14—September 2007 AMD64 Technology

target offset of the JMP instruction is ignored, and the new values loaded into CS and rIP are taken

from the call gate or from the TSS.

Conditional Jump

• Jcc—Jump if condition

Conditional jump instructions jump to an instruction specified by the operand, depending on the state

of flags in the rFLAGS register. The operands specifies a signed relative offset from the current

contents of the rIP. If the state of the corresponding flags meets the condition, a conditional jump

instruction passes control to the target instruction, otherwise control is passed to the instruction

following the conditional jump instruction. The flags tested by a specific Jcc instruction depend on the

opcode. In several cases, multiple mnemonics correspond to one opcode.

Table 3-6 shows the rFLAGS values required for each Jcc instruction.

Table 3-6. rFLAGS for Jcc Instructions

Mnemonic Required Flag State Description

JO OF = 1 Jump near if overflow

JNO OF = 0 Jump near if not overflow

JB

JC

JNAE

CF = 1

Jump near if below

Jump near if carry

Jump near if not above or equal

JNB

JNC

JAE

CF = 0

Jump near if not below

Jump near if not carry

Jump near if above or equal

JZ

JE
ZF = 1

Jump near if 0

Jump near if equal

JNZ

JNE
ZF = 0

Jump near if not zero

Jump near if not equal

JNA

JBE
CF = 1 or ZF = 1

Jump near if not above

Jump near if below or equal

JNBE

JA
CF = 0 and ZF = 0

Jump near if not below or equal

Jump near if above

JS SF = 1 Jump near if sign

JNS SF = 0 Jump near if not sign

JP

JPE
PF = 1

Jump near if parity

Jump near if parity even

JNP

JPO
PF = 0

Jump near if not parity

Jump near if parity odd

JL

JNGE
SF <> OF

Jump near if less

Jump near if not greater or equal

60 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—near

conditional jumps and short conditional jumps. To create a far-conditional-jump code sequence

corresponding to a high-level language statement like:

IF A = B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short

jump before the unconditional far jump. For example:

cmp A,B ; compare operands

jne NextInstr ; continue program if not equal

jmp far ptr WhenNE ; far jump if operands are equal

NextInstr: ; continue program

Three special conditional jump instructions use the rCX register instead of flags. The JCXZ, JECXZ,

and JRCXZ instructions check the value of the CX, ECX, and RCX registers, respectively, and pass

control to the target instruction when the value of rCX register reaches 0. These instructions are often

used to control safe cycles, preventing execution when the value in rCX reaches 0.

Loop

• LOOPcc—Loop if condition

The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ, and LOOPZ. These instructions

decrement the rCX register by 1 without changing any flags, and then check to see if the loop condition

is met. If the condition is met, the program jumps to the specified target code.

LOOPE and LOOPZ are synonyms. Their loop condition is met if the value of the rCX register is non-

zero and the zero flag (ZF) is set to 1 when the instruction starts. LOOPNE and LOOPNZ are also

synonyms. Their loop condition is met if the value of the rCX register is non-zero and the ZF flag is

cleared to 0 when the instruction starts. LOOP, unlike the other mnemonics, does not check the ZF

flag. Its loop condition is met if the value of the rCX register is non-zero.

Call

• CALL—Procedure Call

The CALL instruction performs a call to a procedure whose address is specified in the operand. The

return address is placed on the stack by the CALL, and points to the instruction immediately following

JGE

JNL
SF = OF

Jump near if greater or equal

Jump near if not less

JNG

JLE
ZF = 1 or SF <> OF

Jump near if not greater

Jump near if less or equal

JNLE

JG
ZF = 0 and SF = OF

Jump near if not less or equal

Jump near if greater

Table 3-6. rFLAGS for Jcc Instructions (continued)

Mnemonic Required Flag State Description

42 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

In most instructions that take two operands, the first (left-most) operand is both a source operand and

the destination operand. The second (right-most) operand serves only as a source. Instructions can

have one or more prefixes that modify default instruction functions or operand properties. These

prefixes are summarized in Section 3.5, “Instruction Prefixes,” on page 71. Instructions that access

64-bit operands in a general-purpose register (GPR) or any of the extended GPR or XMM registers

require a REX instruction prefix.

Unless otherwise stated in this section, the word register means a general-purpose register (GPR).

Several instructions affect the flag bits in the RFLAGS register. “Instruction Effects on RFLAGS” in

Volume 3 summarizes the effects that instructions have on rFLAGS bits.

3.3.2 Data Transfer

The data-transfer instructions copy data between registers and memory.

Move

• MOV—Move

• MOVSX—Move with Sign-Extend

• MOVZX—Move with Zero-Extend

• MOVD—Move Doubleword or Quadword

• MOVNTI—Move Non-Temporal Doubleword or Quadword

MOVx copies a byte, word, doubleword, or quadword from a register or memory location to a register

or memory location. The source and destination cannot both be memory locations. An immediate

constant can be used as a source operand with the MOV instruction. For MOV, the destination must be

of the same size as the source, but the MOVSX and MOVZX instructions copy values of smaller size to

a larger size by using sign-extension or zero-extension. The MOVD instruction copies a doubleword or

quadword between a general-purpose register or memory and an XMM or MMX register.

The MOV instruction is in many aspects similar to the assignment operator in high-level languages.

The simplest example of their use is to initialize variables. To initialize a register to 0, rather than using

a MOV instruction it may be more efficient to use the XOR instruction with identical destination and

source operands.

The MOVNTI instruction stores a doubleword or quadword from a register into memory as “non-

temporal” data, which assumes a single access (as opposed to frequent subsequent accesses of

“temporal data”). The operation therefore minimizes cache pollution. The exact method by which

cache pollution is minimized depends on the hardware implementation of the instruction. For further

information, see Section 3.9, “Memory Optimization,” on page 92.

Conditional Move

• CMOVcc—Conditional Move If condition

The CMOVcc instructions conditionally copy a word, doubleword, or quadword from a register or

memory location to a register location. The source and destination must be of the same size.

General-Purpose Programming 43

24592—Rev. 3.14—September 2007 AMD64 Technology

The CMOVcc instructions perform the same task as MOV but work conditionally, depending on the

state of status flags in the RFLAGS register. If the condition is not satisfied, the instruction has no

effect and control is passed to the next instruction. The mnemonics of CMOVcc instructions indicate

the condition that must be satisfied. Several mnemonics are often used for one opcode to make the

mnemonics easier to remember. For example, CMOVE (conditional move if equal) and CMOVZ

(conditional move if zero) are aliases and compile to the same opcode. Table 3-4 shows the RFLAGS

values required for each CMOVcc instruction.

In assembly languages, the conditional move instructions correspond to small conditional statements

like:

IF a = b THEN x = y

CMOVcc instructions can replace two instructions—a conditional jump and a move. For example, to

perform a high-level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals 5

jnz Continue ; test condition and skip if not met

mov eax, ebx ; move

Continue: ; continuation

but with a CMOVcc instruction, the code would look like:

cmp ecx, 5 ; test if ecx equals to 5

cmovz eax, ebx ; test condition and move

Replacing conditional jumps with conditional moves also has the advantage that it can avoid branch-

prediction penalties that may be caused by conditional jumps.

Support for CMOVcc instructions depends on the processor implementation. To find out if a processor

is able to perform CMOVcc instructions, use the CPUID instruction.

Table 3-4. rFLAGS for CMOVcc Instructions

Mnemonic Required Flag State Description

CMOVO OF = 1 Conditional move if overflow

CMOVNO OF = 0 Conditional move if not overflow

CMOVB

CMOVC

CMOVNAE

CF = 1

Conditional move if below

Conditional move if carry

Conditional move if not above or equal

CMOVAE

CMOVNB

CMOVNC

CF = 0

Conditional move if above or equal

Conditional move if not below

Conditional move if not carry

CMOVE

CMOVZ
ZF = 1

Conditional move if equal

Conditional move if zero

44 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Stack Operations

• POP—Pop Stack

• POPA—Pop All to GPR Words

• POPAD—Pop All to GPR Doublewords

• PUSH—Push onto Stack

• PUSHA—Push All GPR Words onto Stack

• PUSHAD—Push All GPR Doublewords onto Stack

• ENTER—Create Procedure Stack Frame

• LEAVE—Delete Procedure Stack Frame

PUSH copies the specified register, memory location, or immediate value to the top of stack. This

instruction decrements the stack pointer by 2, 4, or 8, depending on the operand size, and then copies

the operand into the memory location pointed to by SS:rSP.

POP copies a word, doubleword, or quadword from the memory location pointed to by the SS:rSP

registers (the top of stack) to a specified register or memory location. Then, the rSP register is

incremented by 2, 4, or 8. After the POP operation, rSP points to the new top of stack.

CMOVNE

CMOVNZ
ZF = 0

Conditional move if not equal

Conditional move if not zero

CMOVBE

CMOVNA
CF = 1 or ZF = 1

Conditional move if below or equal

Conditional move if not above

CMOVA

CMOVNBE
CF = 0 and ZF = 0

Conditional move if not below or equal

Conditional move if not below or equal

CMOVS SF = 1 Conditional move if sign

CMOVNS SF = 0 Conditional move if not sign

CMOVP

CMOVPE
PF = 1

Conditional move if parity

Conditional move if parity even

CMOVNP

CMOVPO
PF = 0

Conditional move if not parity

Conditional move if parity odd

CMOVL

CMOVNGE
SF <> OF

Conditional move if less

Conditional move if not greater or equal

CMOVGE

CMOVNL
SF = OF

Conditional move if greater or equal

Conditional move if not less

CMOVLE

CMOVNG
ZF = 1 or SF <> OF

Conditional move if less or equal

Conditional move if not greater

CMOVG

CMOVNLE
ZF = 0 and SF = OF

Conditional move if greater

Conditional move if not less or equal

Table 3-4. rFLAGS for CMOVcc Instructions (continued)

Mnemonic Required Flag State Description

