
Figure 3.2: Bit-Field Ranges

Bit-field Type Width w Range

signed char −2w−1 to 2w−1
− 1

char 1 to 8 0 to 2w
− 1

unsigned char 0 to 2w
− 1

signed short −2w−1 to 2w−1
− 1

short 1 to 16 0 to 2w
− 1

unsigned short 0 to 2w
− 1

signed int −2w−1 to 2w−1
− 1

int 1 to 32 0 to 2w
− 1

unsigned int 0 to 2w
− 1

signed long −2w−1 to 2w−1
− 1

long 1 to 64 0 to 2w
− 1

unsigned long 0 to 2w
− 1

ative values), these bit-fields have the same range as a bit-field of the same size

with the corresponding unsigned type. Bit-fields obey the same size and alignment

rules as other structure and union members.

Also:

• bit-fields are allocated from right to left

• bit-fields must be contained in a storage unit appropriate for its declared

type

• bit-fields may share a storage unit with other struct / union members

Unnamed bit-fields’ types do not affect the alignment of a structure or union.

3.2 Function Calling Sequence

This section describes the standard function calling sequence, including stack

frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.

Local functions that are not reachable from other compilation units may use dif-

14

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



ferent conventions. Nevertheless, it is recommended that all functions use the

standard calling sequence when possible.

3.2.1 Registers and the Stack Frame

The AMD64 architecture provides 16 general purpose 64-bit registers. In addition

the architecture provides 16 SSE registers, each 128 bits wide and 8 x87 floating

point registers, each 80 bits wide. Each of the x87 floating point registers may be

referred to in MMX/3DNow! mode as a 64-bit register. All of these registers are

global to all procedures active for a given thread.

This subsection discusses usage of each register. Registers %rbp, %rbx and

%r12 through %r15 “belong” to the calling function and the called function is

required to preserve their values. In other words, a called function must preserve

these registers’ values for its caller. Remaining registers “belong” to the called

function.5 If a calling function wants to preserve such a register value across a

function call, it must save the value in its local stack frame.

The CPU shall be in x87 mode upon entry to a function. Therefore, every

function that uses the MMX registers is required to issue an emms or femms

instruction after using MMX registers, before returning or calling another function.
6 The direction flag DF in the %rFLAGS register must be clear (set to “forward”

direction) on function entry and return. Other user flags have no specified role in

the standard calling sequence and are not preserved across calls.

The control bits of the MXCSR register are callee-saved (preserved across

calls), while the status bits are caller-saved (not preserved). The x87 status word

register is caller-saved, whereas the x87 control word is callee-saved.

3.2.2 The Stack Frame

In addition to registers, each function has a frame on the run-time stack. This stack

grows downwards from high addresses. Figure 3.3 shows the stack organization.

The end of the input argument area shall be aligned on a 16 byte boundary.

In other words, the value (%rsp − 8) is always a multiple of 16 when control is

5Note that in contrast to the Intel386 ABI, %rdi, and %rsi belong to the called function, not

the caller.
6All x87 registers are caller-saved, so callees that make use of the MMX registers may use the

faster femms instruction.

15

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



Figure 3.3: Stack Frame with Base Pointer

Position Contents Frame

8n+16(%rbp) memory argument eightbyte n

. . . Previous

16(%rbp) memory argument eightbyte 0
8(%rbp) return address

0(%rbp) previous %rbp value

-8(%rbp) unspecified Current

. . .

0(%rsp) variable size

-128(%rsp) red zone

transferred to the function entry point. The stack pointer, %rsp, always points to

the end of the latest allocated stack frame. 7

The 128-byte area beyond the location pointed to by %rsp is considered to

be reserved and shall not be modified by signal or interrupt handlers.8 Therefore,

functions may use this area for temporary data that is not needed across function

calls. In particular, leaf functions may use this area for their entire stack frame,

rather than adjusting the stack pointer in the prologue and epilogue. This area is

known as the red zone.

3.2.3 Parameter Passing

After the argument values have been computed, they are placed either in regis-

ters or pushed on the stack. The way how values are passed is described in the

following sections.

Definitions We first define a number of classes to classify arguments. The

classes are corresponding to AMD64 register classes and defined as:

7The conventional use of %rbp as a frame pointer for the stack frame may be avoided by using

%rsp (the stack pointer) to index into the stack frame. This technique saves two instructions in

the prologue and epilogue and makes one additional general-purpose register (%rbp) available.
8Locations within 128 bytes can be addressed using one-byte displacements.

16

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



INTEGER This class consists of integral types that fit into one of the general

purpose registers.

SSE The class consists of types that fits into a SSE register.

SSEUP The class consists of types that fit into a SSE register and can be passed

and returned in the most significant half of it.

X87, X87UP These classes consists of types that will be returned via the x87

FPU.

COMPLEX_X87 This class consists of types that will be returned via the x87

FPU.

NO_CLASS This class is used as initializer in the algorithms. It will be used for

padding and empty structures and unions.

MEMORY This class consists of types that will be passed and returned in mem-

ory via the stack.

Classification The size of each argument gets rounded up to eightbytes.9

The basic types are assigned their natural classes:

• Arguments of types (signed and unsigned) _Bool, char, short, int,

long, long long, and pointers are in the INTEGER class.

• Arguments of types float, double, _Decimal32, _Decimal64 and

__m64 are in class SSE.

• Arguments of types __float128, _Decimal128 and __m128 are split

into two halves. The least significant ones belong to class SSE, the most

significant one to class SSEUP.

• The 64-bit mantissa of arguments of type long double belongs to class

X87, the 16-bit exponent plus 6 bytes of padding belongs to class X87UP.

• Arguments of type __int128 offer the same operations as INTEGERs,

yet they do not fit into one general purpose register but require two registers.

For classification purposes __int128 is treated as if it were implemented

as:

9Therefore the stack will always be eightbyte aligned.

17

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



typedef struct {

long low, high;

} __int128;

with the exception that arguments of type __int128 that are stored in

memory must be aligned on a 16-byte boundary.

• Arguments of complex Twhere T is one of the types float or double

are treated as if they are implemented as:

struct complexT {

T real;

T imag;

};

• A variable of type complex long double is classified as type COM-

PLEX_X87.

The classification of aggregate (structures and arrays) and union types works

as follows:

1. If the size of an object is larger than two eightbytes, or it contains unaligned

fields, it has class MEMORY.

2. If a C++ object has either a non-trivial copy constructor or a non-trivial

destructor 10 it is passed by invisible reference (the object is replaced in the

parameter list by a pointer that has class INTEGER). 11

3. If the size of the aggregate exceeds a single eightbyte, each is classified

separately. Each eightbyte gets initialized to class NO_CLASS.

10A de/constructor is trivial if it is an implicitly-declared default de/constructor and if:

• its class has no virtual functions and no virtual base classes, and

• all the direct base classes of its class have trivial de/constructors, and

• for all the nonstatic data members of its class that are of class type (or array thereof), each

such class has a trivial de/constructor.

11An object with either a non-trivial copy constructor or a non-trivial destructor cannot be

passed by value because such objects must have well defined addresses. Similar issues apply

when returning an object from a function.

18

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



4. Each field of an object is classified recursively so that always two fields are

considered. The resulting class is calculated according to the classes of the

fields in the eightbyte:

(a) If both classes are equal, this is the resulting class.

(b) If one of the classes is NO_CLASS, the resulting class is the other

class.

(c) If one of the classes is MEMORY, the result is the MEMORY class.

(d) If one of the classes is INTEGER, the result is the INTEGER.

(e) If one of the classes is X87, X87UP, COMPLEX_X87 class, MEM-

ORY is used as class.

(f) Otherwise class SSE is used.

5. Then a post merger cleanup is done:

(a) If one of the classes is MEMORY, the whole argument is passed in

memory.

(b) If SSEUP is not preceeded by SSE, it is converted to SSE.

Passing Once arguments are classified, the registers get assigned (in left-to-right

order) for passing as follows:

1. If the class is MEMORY, pass the argument on the stack.

2. If the class is INTEGER, the next available register of the sequence %rdi,

%rsi, %rdx, %rcx, %r8 and %r9 is used12.

3. If the class is SSE, the next available SSE register is used, the registers are

taken in the order from %xmm0 to %xmm7.

4. If the class is SSEUP, the eightbyte is passed in the upper half of the last

used SSE register.

12Note that %r11 is neither required to be preserved, nor is it used to pass arguments. Making

this register available as scratch register means that code in the PLT need not spill any registers

when computing the address to which control needs to be transferred. %rax is used to indicate the

number of SSE arguments passed to a function requiring a variable number of arguments. %r10

is used for passing a function’s static chain pointer.

19

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



5. If the class is X87, X87UP or COMPLEX_X87, it is passed in memory.

When a value of type _Bool is passed in a register or on the stack, the upper

63 bits of the eightbyte shall be zero.

If there are no registers available for any eightbyte of an argument, the whole

argument is passed on the stack. If registers have already been assigned for some

eightbytes of such an argument, the assignments get reverted.

Once registers are assigned, the arguments passed in memory are pushed on

the stack in reversed (right-to-left13) order.

For calls that may call functions that use varargs or stdargs (prototype-less

calls or calls to functions containing ellipsis (. . . ) in the declaration) %al 14 is used

as hidden argument to specify the number of SSE registers used. The contents of

%al do not need to match exactly the number of registers, but must be an upper

bound on the number of SSE registers used and is in the range 0–8 inclusive.

Returning of Values The returning of values is done according to the following

algorithm:

1. Classify the return type with the classification algorithm.

2. If the type has class MEMORY, then the caller provides space for the return

value and passes the address of this storage in %rdi as if it were the first

argument to the function. In effect, this address becomes a “hidden” first

argument.

On return %rax will contain the address that has been passed in by the

caller in %rdi.

3. If the class is INTEGER, the next available register of the sequence %rax,

%rdx is used.

4. If the class is SSE, the next available SSE register of the sequence %xmm0,

%xmm1 is used.

5. If the class is SSEUP, the eightbyte is passed in the upper half of the last

used SSE register.

13Right-to-left order on the stack makes the handling of functions that take a variable number

of arguments simpler. The location of the first argument can always be computed statically, based

on the type of that argument. It would be difficult to compute the address of the first argument if

the arguments were pushed in left-to-right order.
14Note that the rest of %rax is undefined, only the contents of %al is defined.

20

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



Figure 3.4: Register Usage

Preserved across

Register Usage function calls

%rax temporary register; with variable arguments

passes information about the number of SSE reg-

isters used; 1st return register

No

%rbx callee-saved register; optionally used as base

pointer

Yes

%rcx used to pass 4th integer argument to functions No

%rdx used to pass 3rd argument to functions; 2nd return

register

No

%rsp stack pointer Yes

%rbp callee-saved register; optionally used as frame

pointer

Yes

%rsi used to pass 2nd argument to functions No

%rdi used to pass 1st argument to functions No

%r8 used to pass 5th argument to functions No

%r9 used to pass 6th argument to functions No

%r10 temporary register, used for passing a function’s

static chain pointer

No

%r11 temporary register No

%r12-r15 callee-saved registers Yes

%xmm0–%xmm1 used to pass and return floating point arguments No

%xmm2–%xmm7 used to pass floating point arguments No

%xmm8–%xmm15 temporary registers No

%mmx0–%mmx7 temporary registers No

%st0,%st1 temporary registers; used to return long

double arguments

No

%st2–%st7 temporary registers No

%fs Reserved for system (as thread specific data reg-

ister)

No

mxcsr SSE2 control and status word partial

x87 SW x87 status word No

x87 CW x87 control word Yes

21

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39



6. If the class is X87, the value is returned on the X87 stack in %st0 as 80-bit

x87 number.

7. If the class is X87UP, the value is returned together with the previous X87

value in %st0.

8. If the class is COMPLEX_X87, the real part of the value is returned in

%st0 and the imaginary part in %st1.

As an example of the register passing conventions, consider the declarations

and the function call shown in Figure 3.5. The corresponding register allocation

is given in Figure 3.6, the stack frame offset given shows the frame before calling

the function.

Figure 3.5: Parameter Passing Example

typedef struct {

int a, b;

double d;

} structparm;

structparm s;

int e, f, g, h, i, j, k;

long double ld;

double m, n;

extern void func (int e, int f,

structparm s, int g, int h,

long double ld, double m,

double n, int i, int j, int k);

func (e, f, s, g, h, ld, m, n, i, j, k);

22

AMD64 ABI Draft 0.99 – December 7, 2007 – 4:39


