
General-Purpose Programming 31

24592—Rev. 3.14—September 2007 AMD64 Technology

Table 3-1. Implicit Uses of GPRs

Registers1

Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit

AL AX EAX RAX2 Accumulator

• Operand for decimal

arithmetic, multiply, divide,

string, compare-and-

exchange, table-translation,

and I/O instructions.

• Special accumulator encoding

for ADD, XOR, and MOV

instructions.

• Used with EDX to hold double-

precision operands.

• CPUID processor-feature

information.

BL BX EBX RBX2 Base

• Address generation in 16-bit

code.

• Memory address for XLAT

instruction.

• CPUID processor-feature

information.

CL CX ECX RCX2 Count

• Bit index for shift and rotate

instructions.

• Iteration count for loop and

repeated string instructions.

• Jump conditional if zero.

• CPUID processor-feature

information.

DL DX EDX RDX2 I/O Address

• Operand for multiply and divide

instructions.

• Port number for I/O

instructions.

• Used with EAX to hold double-

precision operands.

• CPUID processor-feature

information.

SIL2 SI ESI RSI2 Source Index

• Memory address of source

operand for string instructions.

• Memory index for 16-bit

addresses.

Note:

1. Gray-shaded registers have no implicit uses.

2. Accessible only in 64-bit mode.

32 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Arithmetic Operations. Several forms of the add, subtract, multiply, and divide instructions use AL

or rAX implicitly. The multiply and divide instructions also use the concatenation of rDX:rAX for

double-sized results (multiplies) or quotient and remainder (divides).

Sign-Extensions. The instructions that double the size of operands by sign extension (for example,

CBW, CWDE, CDQE, CWD, CDQ, CQO) use rAX register implicitly for the operand. The CWD,

CDQ, and CQO instructions also uses the rDX register.

Special MOVs. The MOV instruction has several opcodes that implicitly use the AL or rAX register

for one operand.

String Operations. Many types of string instructions use the accumulators implicitly. Load string,

store string, and scan string instructions use AL or rAX for data and rDI or rSI for the offset of a

memory address.

I/O-Address-Space Operations. The I/O and string I/O instructions use rAX to hold data that is

received from or sent to a device located in the I/O-address space. DX holds the device I/O-address

(the port number).

Table Translations. The table translate instruction (XLATB) uses AL for an memory index and rBX

for memory base address.

Compares and Exchanges. Compare and exchange instructions (CMPXCHG) use the AL or rAX

register for one operand.

DIL2 DI EDI RDI2
Destination

Index

• Memory address of destination

operand for string instructions.

• Memory index for 16-bit

addresses.

BPL2 BP EBP RBP2 Base Pointer
• Memory address of stack-

frame base pointer.

SPL2 SP ESP RSP2 Stack Pointer
• Memory address of last stack

entry (top of stack).

R8B–R10B2 R8W–R10W2 R8D–R10D2 R8–R102 None No implicit uses

R11B2 R11W2 R11D2 R112 None
• Holds the value of RFLAGS on

SYSCALL/SYSRET.

R12B–R15B2 R12W–R15W
2 R12D–R15D2 R12–R152 None No implicit uses

Table 3-1. Implicit Uses of GPRs (continued)

Registers1

Name Implicit Uses
Low 8-Bit 16-Bit 32-Bit 64-Bit

Note:

1. Gray-shaded registers have no implicit uses.

2. Accessible only in 64-bit mode.

General-Purpose Programming 33

24592—Rev. 3.14—September 2007 AMD64 Technology

Decimal Arithmetic. The decimal arithmetic instructions (AAA, AAD, AAM, AAS, DAA, DAS)

that adjust binary-coded decimal (BCD) operands implicitly use the AL and AH register for their

operations.

Shifts and Rotates. Shift and rotate instructions can use the CL register to specify the number of bits

an operand is to be shifted or rotated.

Conditional Jumps. Special conditional-jump instructions use the rCX register instead of flags. The

JCXZ and JrCXZ instructions check the value of the rCX register and pass control to the target

instruction when the value of rCX register reaches 0.

Repeated String Operations. With the exception of I/O string instructions, all string operations use

rSI as the source-operand pointer and rDI as the destination-operand pointer. I/O string instructions

use rDX to specify the input-port or output-port number. For repeated string operations (those

preceded with a repeat-instruction prefix), the rSI and rDI registers are incremented or decremented as

the string elements are moved from the source location to the destination. Repeat-string operations

also use rCX to hold the string length, and decrement it as data is moved from one location to the other.

Stack Operations. Stack operations make implicit use of the rSP register, and in some cases, the rBP

register. The rSP register is used to hold the top-of-stack pointer (or simply, stack pointer). rSP is

decremented when items are pushed onto the stack, and incremented when they are popped off the

stack. The ENTER and LEAVE instructions use rBP as a stack-frame base pointer. Here, rBP points to

the last entry in a data structure that is passed from one block-structured procedure to another.

The use of rSP or rBP as a base register in an address calculation implies the use of SS (stack segment)

as the default segment. Using any other GPR as a base register without a segment-override prefix

implies the use of the DS data segment as the default segment.

The push all and pop all instructions (PUSHA, PUSHAD, POPA, POPAD) implicitly use all of the

GPRs.

CPUID Information. The CPUID instruction makes implicit use of the EAX, EBX, ECX, and EDX

registers. Software loads a function code into EAX, executes the CPUID instruction, and then reads the

associated processor-feature information in EAX, EBX, ECX, and EDX.

3.1.4 Flags Register

Figure 3-5 on page 34 shows the 64-bit RFLAGS register and the flag bits visible to application

software. Bits 15–0 are the FLAGS register (accessed in legacy real and virtual-8086 modes), bits

31–0 are the EFLAGS register (accessed in legacy protected mode and compatibility mode), and bits

63–0 are the RFLAGS register (accessed in 64-bit mode). The name rFLAGS refers to any of the three

register widths, depending on the current software context.

34 General-Purpose Programming

AMD64 Technology 24592—Rev. 3.14—September 2007

Figure 3-5. rFLAGS Register—Flags Visible to Application Software

The low 16 bits (FLAGS portion) of rFLAGS are accessible by application software and hold the

following flags:

• One control flag (the direction flag DF).

• Six status flags (carry flag CF, parity flag PF, auxiliary carry flag AF, zero flag ZF, sign flag SF,

and overflow flag OF).

The direction flag (DF) flag controls the direction of string operations. The status flags provide result

information from logical and arithmetic operations and control information for conditional move and

jump instructions.

Bits 31–16 of the rFLAGS register contain flags that are accessible only to system software. These

flags are described in “System Registers” in Volume 2. The highest 32 bits of RFLAGS are reserved.

In 64-bit mode, writes to these bits are ignored. They are read as zeros (RAZ). The rFLAGS register is

initialized to 02h on reset, so that all of the programmable bits are cleared to zero.

The effects that rFLAGS bit-values have on instructions are summarized in the following places:

• Conditional Moves (CMOVcc)—Table 3-4 on page 43.

• Conditional Jumps (Jcc)—Table 3-5 on page 55.

• Conditional Sets (SETcc)—Table 3-6 on page 59.

The effects that instructions have on rFLAGS bit-values are summarized in “Instruction Effects on

RFLAGS” in Volume 3.

63 32

Reserved, RAZ

31 12 11 10 9 8 7 6 5 4 3 2 1 0

See Volume 2 for System Flags
O

F

D

F

S

F

Z

F

A

F

P

F

C

F

Bits Mnemonic Description R/W

11 OF Overflow Flag R/W

10 DF Direction Flag R/W

7 SF Sign Flag R/W

6 ZF Zero Flag R/W

4 AF Auxiliary Carry Flag R/W

2 PF Parity Flag R/W

0 CF Carry Flag R/W

