
Supplement to C Interfaces and Implementations

by David R. Hanson

David R. Hanson and Norman Ramsey

September 2011

ii

Preface

For several years I have taught from Dave Hanson’s C Interfaces and Implementations.

Hanson’s interfaces provide an invaluable leg up to the student programmer, and they

have enabled my students to do more ambitious projects than would be possible other-

wise. But my students have consistently had difficulty with the Array interface. The

central issue is an old one: where is the memory allocated? Unlike the other container

abstractions in the book, the Array abstraction allocates and manages its own memory.

In the terminology of the compiler writer, Array elements are unboxed.

Unboxing the elements changes the abstraction just a little, and the change is

enough to warrant a slightly different interface. I hope this revision of the Array chap-

ter will help students work more effectively with unboxed arrays. I have also thrown in

some advice about how to work idiomatically with C-style polymorphism.

Norman Ramsey

Medford, Mass.

September 2011

iii

iv PREFACE

Chapter 21

Unboxed Dynamic Arrays

An array is a homogeneous sequence of values in which the elements in the sequence

are associated one-to-one with indices in a contiguous range. Arrays appear as built-in

data types in virtually all programming languages. In some languages, like C, all array

indices have the same lower bounds, and in other languages, like Modula-3, each array

can have its own bounds. In C, all arrays have indices that start at zero.

Array sizes are specified at either compile time or run time. The sizes of static

arrays are known at compile time. In ANSI C, for example, declared arrays must have

sizes known at compile time; that is, in the declaration int a[n], nmust be a constant

expression. A static array may be allocated at run time; for example, local arrays are

allocated at run time when the function in which they appear is called, but their sizes

are known at compile time.

The arrays returned by functions like Table toArray are dynamic arrays because

space for them is allocated by calling malloc or an equivalent allocation function.

Their sizes can be determined at run time. Some languages, such as Modula-3, have

linguistic support for dynamic arrays. In C, however, they must be constructed explic-

itly as illustrated by functions like Table toArray.

The various toArray functions show just how useful dynamic arrays are; the UArray

ADT described in this chapter provides a similar but more general facility. It exports

functions that allocate and deallocate dynamic arrays, access them with bounds checks,

and expand or contract them to hold more or fewer elements. And an element of a

UArray T need not be a pointer.

This chapter also describes the UArrayRep interface. It reveals the representation

of dynamic, unboxed arrays for those few clients that need more efficient access to the

array elements. Together, UArray and UArrayRep illustrate a two-level interface or a

layered interface. UArray specifies a high-level view of an array ADT, and UArrayRep

specifies another, more detailed view of the ADT at a lower level. The advantage of this

organization is that importing UArrayRep clearly identifies those clients that depend

on the representation of dynamic arrays. Changes to the representation thus affect only

those clients, not the clients that import only UArray.

521

522 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

21.1 Boxed and unboxed

In C programs, memory is managed explicitly, and every interface must specify who is

responsible for allocating and deallocating memory. The designer of any “container”

type has to decide whether the objects contained in it are to be stored in boxed or

unboxed form. A container that holds boxed objects stores only pointers to objects that

are allocated elsewhere. The storage for the data itself (the “box”) is under the control

of the client. Boxed data makes for simple interfaces but higher overheads. Most

containers in this book, including the List, Table, and Set interfaces from earlier

chapters, contain boxed objects.

A container that holds unboxed objects allocates and manages memory for its con-

tents. Like the Array interface in Chapter 10, the UArray interface described in this

chapter stores objects in unboxed form; the memory that holds the elements is part of

the UArray data structure.

Decisions about boxing should affect interfaces: if one container holds pointers to

boxed objects and another container holds the unboxed objects themselves, the inter-

faces to the two containers should look different. The different interfaces should reflect

the different ways in which the client and the abstraction regard memory management.

Some of these differences are highlighted in Table 21.1 on page 523.

The Array abstraction in Chapter 10 holds unboxed elements, but the parts of the

interface used to gain access to elements look too much like the interfaces for the

other containers in the book, which hold boxed elements. This chapter presents a new

interface, UArray, pronounced “unboxed array,” which is a better fit for the abstraction.

Think of it as a “reboot” of Chapter 10.

21.2 Interfaces

The UArray ADT, like other ADTs in this book, is represented as a pointer to an

incomplete struct. It is exported by the header file uarray.h:

522 〈uarray.h 522〉≡
#ifndef UARRAY_INCLUDED

#define UARRAY_INCLUDED

#define T UArray_T

typedef struct T *T;

〈exported functions 524a〉

#undef T

#endif

Defines:

T, used in chunks 524 and 531–33.

UARRAY INCLUDED, never used.

21.2. INTERFACES 523

Containers of boxed elements Containers of unboxed elements

(List, Table, Set, Seq, . . .) (UArray)

Each element is a pointer. An element may be a value of any

type, including struct.

Pointees are stored outside the

container.

Pointees are part of the container.

Memory for each pointee is

allocated by the client.

Memory for all pointees is

allocated by the container when

the container is created.

The container doesn’t know or

care how big a pointee is.

To allocate, the container has to

be told how big each pointee is.

Contained objects may outlive the

container.

When a container dies, its

contents die.

Changes in the container don’t

move pointees.

Resizing the container could

move pointees.

Clients own all pointers. Clients

put pointers in and take them out

using functions named get and

put.

The container owns all pointers.

Clients borrow them temporarily

(between resize calls) using a

function named at.

If the container is resized,

pointers previously stored in the

container are still valid.

If the container is resized, old

pointers to objects inside the

container are invalidated.

The interface is simple, but the

client has to know exactly when to

allocate and free each object in the

container, as well as the container

itself. Overhead for memory

management could be high.

The interface is less simple, but

the client only has to worry about

when to allocate and free the the

container—all the objects in the

container come along for the ride.

Overhead for memory

management is low.

Table 21.1: Differences between container types with boxed and unboxed elements

(A “pointee” is an object pointed to, i.e., an element contained.)

524 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

The UArray ADT exports functions that operate on an array of N elements accessed

by indices zero through N − 1. In any one array, each element has the same size,

but different arrays can have elements of different sizes. UArray Ts are allocated and

deallocated by

524a 〈exported functions 524a〉≡ (522) 524b ⊲

extern T UArray_new (int length, int size);

extern void UArray_free(T *uarray);

Uses T 522 522 525 530, UArray free 532a, and UArray new 531a.

UArray new allocates, initializes, and returns a new array of length elements with

bounds zero through length − 1, unless length is zero, in which case the array has

no elements. Each element occupies size bytes. The bytes in each element are initial-

ized to zero. The size parameter must include any padding that may be required for

alignment, so that when length is positive, the actual array can be created by allocat-

ing length · size bytes. It is a checked runtime error for length to be negative or for

size to be nonpositive, and UArray new can raise Mem Failed.

UArray free deallocates and clears *uarray. It is a checked runtime error for

uarray or *uarray to be null.

Unlike most of the other ADTs in this book, in which all values are boxed and

pointer to by void pointers, the UArray interface places no restrictions on the values

of the elements; each element is just a sequence of size bytes. The rationale for

this design is that UArray Ts are used most often to build other ADTs, such as the

sequences described in Chapter 11.

The functions

524b 〈exported functions 524a〉+≡ (522) ⊳ 524a 524c ⊲

extern int UArray_length(T uarray);

extern int UArray_size (T uarray);

Uses T 522 522 525 530, UArray length 532c, and UArray size 532c.

return the number of elements in uarray and their size.

Access to an array element is provided by

524c 〈exported functions 524a〉+≡ (522) ⊳ 524b 524d ⊲

void *UArray_at(T uarray, int i);

Defines:

UArray at, used in chunks 528a and 529a.

Uses T 522 522 525 530.

UArray at returns a pointer to element number i; it’s analogous to &a[i], when a is

a C array. Clients access the element by casting the pointer that UArray at returns,

then dereferencing the cast pointer (see Section 21.3 below).

It is a checked runtime error for i to be greater than or equal to the length of

uarray. It is an unchecked runtime error to call UArray at and then change the size

of array via UArray resize before dereferencing the pointer returned by UArray at.

524d 〈exported functions 524a〉+≡ (522) ⊳ 524c

extern void UArray_resize(T uarray, int length);

extern T UArray_copy (T uarray, int length);

Uses T 522 522 525 530, UArray copy 533b, and UArray resize 533a.

21.2. INTERFACES 525

UArray resize changes the size of array so that it holds length elements, expanding

or contracting it as necessary. If resizing makes the array larger, the new elements

are initialized to zeroes. Calling UArray resize invalidates any values returned by

previous calls to UArray at. UArray copy is similar, but returns a copy of array

that holds its first length elements. If length exceeds the number of elements in

array, the excess elements in the copy are initialized to zeroes. UArray resize and

UArray copy can raise Mem Failed.

UArray has no functions like Table map or Table toArray because UArray at

provides the machinery necessary to perform the equivalent operations.

It is a checked runtime error to pass a null T to any function in this interface.

The UArrayRep interface reveals that a UArray T is represented by a pointer to a

descriptor—a structure whose fields give the number of elements in the array, the size

of each element, and a pointer to the storage for the array.

525 〈uarrayrep.h 525〉≡
#ifndef UARRAYREP_INCLUDED

#define UARRAYREP_INCLUDED

#define T UArray_T

struct T {

int length; /* number of elements in ’elems’, at least 0 */

int size; /* number of bytes in one element */

char *elems; /* iff length > 0, pointer to (length * size) bytes */

};

extern void UArrayRep_init(T uarray, int length,

int size, void *elems);

#undef T

#endif

Defines:

T, used in chunks 524 and 531–33.

UARRAYREP INCLUDED, never used.

Uses UArrayRep init 531b.

Figure 10.1 in Chapter 10 shows the descriptor for an array of 100 integers returned by

UArray new(100, sizeof int) on a machine with four-byte integers. If the array

has no elements, the array field is null. Array descriptors are sometimes called dope

vectors.

Clients of UArrayRep may read the fields of a descriptor but may not write them;

writing them is an unchecked runtime error. UArrayRep guarantees that if uarray is

a T and if 0 ≤ i < uarray->length, then element number i is stored at address

uarray->elems + i*uarray->size.

526 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

UArrayRep also exports UArrayRep init, which initializes the fields of a UArray T

structure pointed to by uarray. The fields are set to the values of the arguments

length, size, and elems. This function is provided so that a client can initialize

a UArray T that is embedded in another structure. It is a checked runtime error for

uarray to be null, size to be nonpositive, length to be nonzero, and elems to be

null; also for length to be nonpositive and elems to be nonnull. It is an unchecked

runtime error to initialize a T structure by means other than calling UArrayRep init.

21.3 Idiomatic usage of unboxed arrays

This section presents an example that illustrates the use of polymorphic, unboxed ar-

rays. To deal with polymorphism, we copy a pointer of type void * into a variable of

the correct pointer type. This technique applies to all polymorphic containers, whether

elements are boxed or unboxed.

What distinguishes an unboxed container is that we never “put a pointer in.” Client

code only takes pointers out. Clients use the pointers for reading, writing, or both.

The example code assumes that we have an unboxed array of entries from the Inter-

net Movie Database, and that we want to select only those movies that have cool titles.

A title is cool if it has the word “Cowboy” or “Alien” in it.

The implementation uses atoms, lists, sequences, Str, and unboxed arrays. Inter-

nally, it defines a structure that represents a movie.

526 〈imdb.c 526〉≡
#include <stdlib.h>

#include "assert.h"

#include "atom.h"

#include "list.h"

#include "seq.h"

#include "str.h"

#include "uarray.h"

〈definition of struct Movie T and Movie T 527a〉

〈movie functions 527b〉

21.3. IDIOMATIC USAGE OF UNBOXED ARRAYS 527

Our Movie T structure holds only a fraction of what you would find in the real

IMDB:

527a 〈definition of struct Movie T and Movie T 527a〉≡ (526)

struct Movie_T {

const char *title; /* an atom */

const char *director; /* an atom */

int year; /* year of first release */

List_T cast; /* actors in the movie; element type is an atom */

}; /* invariants: all pointers except ’cast’ are non-null;

year is at least 1878 */

typedef struct Movie_T *Movie_T;

Defines:

Movie T, used in chunks 527–29.

Our ideas of what’s cool are likely to change, to instead of writing a function that

searches for “Cowboy” and “Alien,” we write a slightly more general function that takes

an unboxed array of movies and returns a Seq T containing pointers to all the movies

that have cool words in the title. The cool words are passed in sequence cool words.

527b 〈movie functions 527b〉≡ (526) 528b ⊲

Seq_T /* of Movie_T */ Movie_with_title_words

(UArray_T /* of struct Movie_T */ movies,

Seq_T /* of Atom */ cool_words)

{

Seq_T cool_movies = Seq_new(10);

/* elements have type Movie_T and

point into the internal memory of ’movies’ */

Movie_T movie; /* points to each movie in array */

int i, j;

assert(sizeof(*movie) == UArray_size(movies)); /* safety check */

〈for each movie in movies, if the movie has a cool word, add it to cool movies 528a〉
return cool_movies;

}

Uses cool movies 529b, Movie T 527a, and UArray size 532c.

The assertion about sizeof(*movie) does not guarantee that the movies array actu-

ally contains movie structures, but if the movies array contains something of the wrong

size, the assertion will detect it.

528 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

The assertion uses sizeof(*movie), not sizeof(struct Movie T). By using

the name of the variable, not its type, we maintain a single point of truth about the type

of movie, and we protect our code against future failures:

• If the name of the movie variable changes and we forget to change sizeof, the

compiler will issue an error message.

• If the type of the movie variable changes, the value of sizeof(*movie) might

change, but it should continue to do the right thing.

The loop allocates no memory and copies no data. The pointers added to cool movies

are valid only as long as the movies array is live and is not resized. Unless the movies

array is immutable and lives forever, this memory-management strategy is pretty risky.

We mitigate the risks below with function Movie uarray of seq. For now, here is

the loop:

528a 〈for each movie in movies, if the movie has a cool word, add it to cool movies 528a〉≡ (527b)

for (i = 0; i < UArray_length(movies); i++) {

movie = UArray_at(movies, i);

for (j = 0; j < Seq_length(cool_words); j++) {

if (Str_find(movie->title, 0, 1, Seq_get(cool_words, j))) {

Seq_addhi(cool_movies, movie); /* no data is copied */

break;

}

}

}

Uses cool movies 529b, UArray at 524c 532b, and UArray length 532c.

Here are some things to notice:

• By assigning the result of UArray at() to movie, we implicitly convert the

void * result into a pointer of type Movie T. This idiom resolves void * poly-

morphism and enables us to get to the title.

• No data is copied or moved. Only pointers are copied. If elements of UArray T

were boxed, our work would be done—all pointers would be owned by the client.

But because elements of UArray T are not boxed, we have an unhealthy rela-

tionship between the movies array and the cool movies sequence: if movies

changes size or is freed, cool movies has a bunch of invalid pointers.

To correct the relationship between cool movies and movies, we define a func-

tion Movie uarray of seq. We can use it to copy the cool movies, making them

independent of the original array of movies. Copying data is a trick that is commonly

used to simplify memory management.

528b 〈movie functions 527b〉+≡ (526) ⊳ 527b 529a ⊲

UArray_T Movie_uarray_of_seq(Seq_T some_movies);

/* takes pointers from some_movies and copies all their pointees

into a newly allocated array. An element of the Seq_T has

type Movie_T, but an element of the result array has type

’struct Movie_T’ */

Uses Movie T 527a and Movie uarray of seq 529a.

21.3. IDIOMATIC USAGE OF UNBOXED ARRAYS 529

The specification of Movie uarray of seq(Seq T some movies) highlights the dis-

tinction between boxed and unboxed. The sequence, which contains boxed elements,

holds pointers. The array, which contains unboxed elements, holds pointees. The pointees

are structs.

529a 〈movie functions 527b〉+≡ (526) ⊳ 528b 529b ⊲

UArray_T Movie_uarray_of_seq(Seq_T some_movies) {

UArray_T result; /* element type is struct Movie_T */

Movie_T dst, src; /* used to copy data */

int i;

result = UArray_new(Seq_length(some_movies), sizeof(*dst));

for (i = 0; i < Seq_length(some_movies); i++) {

dst = UArray_at(result, i); /* to be written */

src = Seq_get(some_movies, i); /* to be read */

*dst = *src; /* copies data to the ’result’ array */

}

return result;

}

Defines:

Movie uarray of seq, used in chunks 528b and 529b.

Uses Movie T 527a, UArray at 524c 532b, and UArray new 531a.

This function shows how we use get with a container of boxed elements and at with

a container of unboxed elements.

Finally, we can use these functions to produce an array of cool movies. The array

contains all the movie structures it needs and can be used even after the original array

is destroyed.

529b 〈movie functions 527b〉+≡ (526) ⊳ 529a

/* Given an array of movie structures, return a similar array

containing copies of the original structures, but only those

movies that have a cool word in the title */

UArray_T cool_movies(UArray_T movies) {

Seq_T cool_words = Seq_seq((void*)Atom_string("Cowboy"),

(void*)Atom_string("Alien"),

NULL);

Seq_T cool_movies = Movie_with_title_words(movies, cool_words);

UArray_T result = Movie_uarray_of_seq(cool_movies);

Seq_free(&cool_words);

Seq_free(&cool_movies);

return result;

}

Defines:

cool movies, used in chunks 527b and 528a.

Uses Movie uarray of seq 529a.

530 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

Here’s a summary of what the example shows:

• All our containers are polymorphic and use void * pointers, but when possible

we work with pointers like movie, which we declared to have type Movie T.

• We assign the result of UArray at to a movie pointer. We can then read or write

through movie. Our code has one example each or reading and writing.

• When we copy just the movie pointer, we have to remember that the underlying

pointee is part of the array. When the array dies, the pointer will be invalidated.

• If we want movies we can store indefinitely, we make a new UArray T and copy

data into it.

• When expecting an unboxed array of movie structures, we check to make sure

that the size of a single array element is sizeof(*movie).

21.4 Implementation of unboxed arrays

The implementation of UArray is almost identical to the implementation of Array

in Chapter 10. A single implementation exports both the UArray and UArrayRep

interfaces:

530 〈uarray.c 530〉≡
#include <stdlib.h>

#include <string.h>

#include "assert.h"

#include "uarray.h"

#include "uarrayrep.h"

#include "mem.h"

#define T UArray_T

〈functions 531a〉

Defines:

T, used in chunks 524 and 531–33.

21.4. IMPLEMENTATION OF UNBOXED ARRAYS 531

UArray new allocates space for a descriptor and for the array itself if length is

positive, and calls UArrayRep init to initialize the descriptor’s fields:

531a 〈functions 531a〉≡ (530) 531b ⊲

T UArray_new(int length, int size) {

T array;

NEW(array);

if (length > 0)

UArrayRep_init(array, length, size, CALLOC(length, size));

else

UArrayRep_init(array, length, size, NULL);

return array;

}

Defines:

UArray new, used in chunks 524a, 529a, and 533b.

Uses T 522 522 525 530 and UArrayRep init 531b.

UArrayRep init is the only valid way to initialize the fields of descriptors; clients

that allocate descriptors by other means must call UArrayRep init to initialize them.

531b 〈functions 531a〉+≡ (530) ⊳ 531a 532a ⊲

void UArrayRep_init(T uarray, int length, int size, void *elems) {

assert(uarray);

assert((elems && length > 0) || (length == 0 && elems == NULL));

assert(size > 0);

uarray->length = length;

uarray->size = size;

if (length > 0)

uarray->elems = elems;

else

uarray->elems = NULL;

}

Defines:

UArrayRep init, used in chunks 525 and 531a.

Uses T 522 522 525 530.

Calling UArrayRep init to initialize a T structure helps reduce coupling: These

calls clearly identify clients that allocate descriptors themselves and thus depend on

the representation. It’s possible to add fields without affecting these clients as long

as UArrayRep init doesn’t change. This scenario would occur, for example, if a

field for an identifying serial number were added to the T structure, and this field were

initialized automatically by UArrayRep init.

532 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

UArray free deallocates the array itself and the T structure, and clears its argu-

ment:

532a 〈functions 531a〉+≡ (530) ⊳ 531b 532b ⊲

void UArray_free(T *uarray) {

assert(uarray && *uarray);

FREE((*uarray)->elems);

FREE(*uarray);

}

Defines:

UArray free, used in chunk 524a.

Uses T 522 522 525 530.

UArray free doesn’t have to check if (*uarray)->elems is null because FREE ac-

cepts null pointers.

UArray at provides a pointer to an element of a UArray T:

532b 〈functions 531a〉+≡ (530) ⊳ 532a 532c ⊲

void *UArray_at(T uarray, int i) {

assert(uarray);

assert(i >= 0 && i < uarray->length);

return uarray->elems + i*uarray->size;

}

Defines:

UArray at, used in chunks 528a and 529a.

Uses T 522 522 525 530.

A pointer returned by UArray at is valid until the next call of UArray resize.

UArray length and UArray size return the similarly named descriptor fields:

532c 〈functions 531a〉+≡ (530) ⊳ 532b 533a ⊲

int UArray_length(T uarray) {

assert(uarray);

return uarray->length;

}

int UArray_size (T uarray) {

assert(uarray);

return uarray->size;

}

Defines:

UArray length, used in chunks 524b and 528a.

UArray size, used in chunks 524b and 527b.

Uses T 522 522 525 530.

21.4. IMPLEMENTATION OF UNBOXED ARRAYS 533

Clients of UArrayRepmay access these fields directly from the descriptor. UArray resize

calls Mem’s RESIZE to change the number of elements in the array, and it changes the

array’s length field accordingly.

533a 〈functions 531a〉+≡ (530) ⊳ 532c 533b ⊲

void UArray_resize(T uarray, int length) {

assert(uarray);

assert(length >= 0);

if (length == 0)

FREE(uarray->elems);

else if (uarray->length == 0)

uarray->elems = ALLOC(length*uarray->size);

else

RESIZE(uarray->elems, length*uarray->size);

uarray->length = length;

}

Defines:

UArray resize, used in chunk 524d.

Uses T 522 522 525 530.

Unlike with Mem’s RESIZE, a new length of zero is legal, in which case the array is

deallocated, and henceforth the descriptor describes an empty dynamic array.

UArray copy is much like UArray resize, except that it copies array’s descrip-

tor and part or all of its array:

533b 〈functions 531a〉+≡ (530) ⊳ 533a

T UArray_copy(T uarray, int length) {

T copy;

assert(uarray);

assert(length >= 0);

copy = UArray_new(length, uarray->size);

if (copy->length >= uarray->length && uarray->length > 0)

memcpy(copy->elems, uarray->elems, uarray->length*uarray->size);

else if (uarray->length > copy->length && copy->length > 0)

memcpy(copy->elems, uarray->elems, copy->length*uarray->size);

return copy;

}

Defines:

UArray copy, used in chunk 524d.

Uses T 522 522 525 530 and UArray new 531a.

534 CHAPTER 21. UNBOXED DYNAMIC ARRAYS

21.5 Further Reading

Some languages support variants of dynamic arrays. Modula-3 (Nelson 1991), for

example, permits arrays with arbitrary bounds to be created during execution, but they

can’t be expanded or contracted. Lists in Icon (Griswold and Griswold 1990) are like

dynamic arrays that can be expanded or contracted by adding or deleting elements from

either end; these are much like the sequences described in the next chapter. Icon also

supports fetching sublists from a list and replacing a sublist with a list of a different

size.

Compilers for very high-level languages such as Haskell and ML sometimes pro-

vide unboxed arrays for better performance (Peyton Jones and Launchbury 1991). Un-

boxed arrays of double-precision floating-point numbers are especially in demand.

21.6 Exercises

21.1 Design and implement an ADT for boxed arrays: dynamic arrays of pointers.

Your ADT should provide ”safe” access to the elements of these arrays via

functions similar in spirit to the functions provided by Table. Use UArray or

UArray Rep in your implementation.

