
Big Endian vs. Little Endian
Storage of Numeric Data

CS 40: Machine Structure
and

Assembly Language Programming (Spring 2024)

© 2010 Noah Mendelsohn

Goals for this presentation

▪ Explore two different conventions for storing numbers in

computer memory

▪ Learn the specifics of “Big-endian” and “Little-endian”

representations

▪ Focus on “little-endian” – used by our AMD 64 computers

▪ Note: none of this affects the storage of characters or

character strings! Here, we are discussing only multibyte

numeric types.

2

© 2010 Noah Mendelsohn

The Problem

© 2010 Noah Mendelsohn

What’s the issue?

▪ We usually think of an integer variable as a single value:

int myint = 0x1A2B3C4E;

▪ If we store it in memory, that takes 4 bytes, each of which is

addressable…which is stored first?

4

.

© 2010 Noah Mendelsohn

What’s the issue?

▪ We usually think of an integer variable as a single value:

int myint = 0x1A2B3C4E;

▪ If we store it in memory, that takes 4 bytes, each of which is

addressable…which is stored first?

5

1A 2B 3C 4E

4E 3C 2B 1A

Big Endian

Little Endian

© 2010 Noah Mendelsohn

What’s the issue?

▪ We usually think of an integer variable as a single value:

int myint = 0x1A2B3C4E;

▪ If we store it in memory, that takes 4 bytes, each of which is

addressible…which byte of the int is stored first?

6

1A 2B 3C 4E

4E 3C 2B 1A

Big Endian

Little Endian

© 2010 Noah Mendelsohn

What’s the issue?

▪ We usually think of an integer variable as a single value:

int myint = 0x1A2B3C4E;

▪ If we store it in memory, that takes 4 bytes, each of which is

addressible…which byte of the int is stored first?

7

1A 2B 3C 4E

4E 3C 2B 1A

Big Endian

Little Endian

The choice depends on the
model of computer you

are using.

Our AMD64 machines are
little endian!

© 2010 Noah Mendelsohn

Can your program tell the difference?

© 2010 Noah Mendelsohn

Pointing to integers in memory

▪ We usually think of an integer variable as a single value:

int myint = 0x1A2B3C4E;

char *ip = &myint;

▪ If we store it in memory, that takes 4 bytes, each of which is

addressible…which byte of the int is stored first?

1A 2B 3C 4E

4E 3C 2B 1A

Big Endian

Little Endian

Pointer is always address
of first byte.

If you print *ip in hex on our AMD 64 machines you will get 4E
…on other computers you may get 1A from the same program!

© 2010 Noah Mendelsohn

Example: positive number

▪ We usually think of an integer variable as a single value:

int myint = 258;

10

00 00 01 02 Big Endian

02 01 00 00 Little Endian

REMEMBER: Our AMD 64 machines are little endian!

© 2010 Noah Mendelsohn

Example: negative number

▪ We usually think of an integer variable as a single value:

int myint = (-2);

11

FF FF FF FE Big Endian

FE FF FF FF Little Endian

© 2010 Noah Mendelsohn

Can we ever observe the difference?

12

int

main(int argc, char *argv[])

{

 (void) argc;

 (void) argv;

 int pos = 258;

 int neg = (-2);

 float float12 = 12.0;

 float floatneg12 = (-12.0);

 printf("The bytes in memory for signed integer %d are ", pos);

 printbytes(&pos, sizeof(pos));

 printf("\n");

 printf("The bytes in memory for signed integer %d are ", neg);

 printbytes(&neg, sizeof(neg));

 printf("\n");

 printf("The bytes in memory for float %f are ", float12);

 printbytes(&float12, sizeof(float12));

 printf("\n");

 printf("The bytes in memory for float %f are ", floatneg12);

 printbytes(&floatneg12, sizeof(floatneg12));

 printf("\n");

}

/*

 * Print bytes in memory in hex

 */

void

printbytes(void *p, unsigned int len)

{

 unsigned int i;

 unsigned char *cp = (unsigned char *)p;

 for (i = 0; i < len; i++) {

 printf("%02X", *cp++);

 }

}

RUN THIS PROGRAM
ON OUR MACHINES!!

The bytes in memory for signed integer 258 are 02010000
The bytes in memory for signed integer -2 are FEFFFFFF
The bytes in memory for float 12.000000 are 00004041
The bytes in memory for float -12.000000 are 000040C1

Output:

© 2010 Noah Mendelsohn

Summary

© 2010 Noah Mendelsohn

Do we care about "endianness"?

▪ Mostly, we don’t worry about it…variables generally work

as you would expect

▪ When we store data in memory or externally (on disk, in a

network packet), the endianness matters

▪ Times you care most:

– When writing numeric variables or arrays from memory to files

– When writing numeric variables or arrays from memory to a network

– In these cases, you and the reader must agree on byte order

▪ Note that HW4 specifies the endianness of the output file

you must produce!

▪ When we store data in memory or externally (on disk, in a

network packet), the endianness matters

14

© 2010 Noah Mendelsohn

How did this happen?

▪ Both ways work

▪ Many people feel big-endian is most natural, but…

▪ There are some advantages for little-endian:

– Regardless of int, long ,etc, you always consistently address the low order

byte with pointers.

– A simple addition circuit can work from low addresses to high, doing addition

or subtraction in the natural way.

▪ Imagine writing a BigNum package…you would have to

manage the storage of the digits in some order

15

	Slide 1: Big Endian vs. Little Endian Storage of Numeric Data
	Slide 2: Goals for this presentation
	Slide 3: The Problem
	Slide 4: What’s the issue?
	Slide 5: What’s the issue?
	Slide 6: What’s the issue?
	Slide 7: What’s the issue?
	Slide 8: Can your program tell the difference?
	Slide 9: Pointing to integers in memory
	Slide 10: Example: positive number
	Slide 11: Example: negative number
	Slide 12: Can we ever observe the difference?
	Slide 13: Summary
	Slide 14: Do we care about "endianness"?
	Slide 15: How did this happen?

