
Module 2: Virtual-Machine Loader

Introduction
This week you’ll load virtual object code into your virtual machine, and you’ll be able to
run it.

• What am I doing?

– Read virtual object code and load it into your VM.

– Start to learn about parsing.

– Implement some more VM instructions, and continue to apply operational se-
mantics to systems concepts.

• Why am I doing it?

– You’re starting to work on two of themain skills you’ll get from the course. The
first is to implement a programming language in stages, at each stage adding
just a little bit to what you already have. Virtual object code adds just a little
bit to virtual-machine code.

The other main skill is parsing, which will be a focus for the next three weeks.
You’ll be introduced to tokens, and you’ll learn about LL(1) parsing techniques,
which are both efficient and easy to implement. This is a first step toward de-
signing your own concrete syntax and your own grammars.

– VM instructions and ability with operational semantics will be needed down
the line, when you want to run code with recursive functions.

• How will I do it?

– Before lab you’ll study virtual object code and the semantics of loading, and
you’ll watch an amateur video on LL(1) parsing or learn from other sources.
You’ll also familiarize yourself with key interfaces and with existing parsing
functions.

– In lab you’ll write a parser for the literal values (Booleans, strings, numbers,
and so on) that can be mentioned in a machine instruction. And youmay start
writing a loader.

1

02Avo.html
../videos/parsing-demo.mp4


– After lab, you’ll complete the loader. Then you’ll exercise your entire system
by implementing some more VM instructions. You should be able to load and
run this “hello, world” program:

.load module 3
loadliteral 77 string 14 72 101 108 108 111 44 32 119 111 114 108 100 33 10
print 77
halt

You’ll test additional instructions using check and expect.

– On Monday night, you’ll deliver source code that builds an svm binary (with
our makefile). And using the check and expect instructions, you’ll deliver
two programs, pass.vo and fail.vo (one is meant to pass a test, and one is
meant to fail a test).

The module step by step
The top of the mountain
(1) I have not yet properly introduced vScheme, the language we are ultimately meant

to implement. A short description is posted in the “course overview” section of the
home page. It can wait a few weeks, so you can skip this step, or you can read it now.

Preparation before lab
(2) Read the handout on virtual object code.

(3) Learn the basics of LL(1), recursive-descent parsing.

• Start with the parsing-background video, which explains you’ll learn and why.

• Watch my parsing demo of LL(1) parsing with railroad diagrams. The video
discusses most of the grammar for virtual object code.

If you’d rather read than watch, I’ve curated three different written explanations:

• The best overall explanation is section 6.2 of Bob Nystrom’s book Crafting
Interpreters. The opening rant of chapter 6 is pretty good, too. But be aware that
Section 6.1 is thewrongway to handle operator precedence and associativity. By
“wrong” I mean that although it works well enough, it gratuitously limits what
your language can do with precedence and associativity. If you want a rant on
the topic, ask me.

Nystrom’s section 5.1 on context-free grammars is also good.

• If you want something shorter, the best short explanation is Ira Baxter’s an-
swer to a question asked on Stack Overflow.

• If you want something really short, the shortest good explanation is from an
old page by Zerksis D. Umrigar at Binghamton University. It’s short and sweet,

2

00vscheme.html
../index.html
02Avo.html
../videos/parsing-background.mp4
../videos/parsing-demo.mp4
https://craftinginterpreters.com/parsing-expressions.html#recursive-descent-parsing
https://craftinginterpreters.com/parsing-expressions.html#recursive-descent-parsing
https://craftinginterpreters.com/representing-code.html#context-free-grammars
https://stackoverflow.com/questions/2245962/is-there-an-alternative-for-flex-bison-that-is-usable-on-8-bit-embedded-systems/2336769#2336769
https://stackoverflow.com/questions/2245962/is-there-an-alternative-for-flex-bison-that-is-usable-on-8-bit-embedded-systems/2336769#2336769
http://www.cs.binghamton.edu/~zdu/parsdemo/recintro.html


and if you like you can skip the part about “avoiding left recursion,” because
I’ve already avoided left recursion on your behalf.

(4) Update your git repository in two steps:

1. Be sure all your own code is committed. Confirm using git status.

2. Update your working tree by running git pull (or you might possibly need
git pull origin main).

If git gives you trouble, please post on the #git-fu channel in Slack.

(5) The git pull should deliver about 18 new files. You’ll need to look at just a few
of them. Familiarize yourself with these key interfaces and idioms, which you will
need for lab:

• To recognize tokens, you will need the tokens.h interface, especially function
first_token_type and the four tokens_get functions.

• To make literal values, you will need the embedding functions in the value.h
interface, like mkBooleanValue. To make strings, you will also need the VM-
String_buffer, VMString_putc, and VMString_of_buffer functions in the
vmstring.h interface.

• To encode an instruction that involves literals or global variables, youwill need
the eR1U16 function from the iformats.h interface. To see an example of how
that function is used, look at the ce0fun function in file testfuns.c.

Lab
(6) Using the <literal> nonterminal in the grammar for virtual object code, write a

recursive-descent parser for the literal values (Booleans, strings, numbers, and so on)
that can be mentioned in a machine instruction. Put your code in file iparsers.c.
I recommend that you define a function with this prototype:

static Value get_literal(Tokens *litp, const char *input);

The litp argument can be passed to functions like tokens_get_name.

If you’re not sure how to get started with parsing a token sequence, look at function
loadmodule in file loader.c.

(7) Using the parseliteral function you’ve just written, implement parseR1LIT, to
parse an instruction that takes one register and a literal value. The new function will
closely resemble parseR1U16, but instead of reading a 16-bit index, it will read a .vo
literal. It will then call literal_slot to get a 16-bit index.

This parser, which goes in file iparsers.c, will be used for instructions like load-
literal, check, and expect.

(8) Now implement parseR1GLO, to parse an instruction that takes one register and a
global variable. The new function will be almost exactly like parseR1LIT, except
instead of calling literal_slot, it will call global_slot.

3

https://cs106spring2023.slack.com/archives/C04HNQPJ6AJ
02Avo.html#grammar


This parser, which also goes in file iparsers.c, will be used for instructions set-
global and getglobal.

After lab
(9) Continue with your recursive-descent parsing: in file loader.c, implement func-

tions get_instruction and loadfun. Function get_instruction reads a single
instruction from the input file. To read an instruction, you’ll read a line, tokenize it,
and parse the tokens according to the <instruction> nonterminal in the grammar
for virtual object code.

(Usually reading an instruction consumes exactly one line, butwhen get_instruction
encounters a .load directive, it must call loadfun, and the call to loadfun may
consume many lines.)

The loadfun function takes a count parameter, and it reads instructions from the
input by calling get_instruction count times. The count parameter says exactly
howmany instructions are in the loaded function, so loadfun can allocate space for
them before it starts to read instructions. Protip: allocate space for one additional
instruction at the end, and fill that space with a Halt instruction. This instruction
acts as a “sentinel.”

At the end of loadfun, you’ll allocate and return a VMFunction. The arity is a
parameter, the size is count + 1 (the “+1” is for the sentinel Halt instructions), and
the instructions are what you read. But what about themysterious nregs parameter?
That is the number of registers that could be mentioned, which is one more than
the largest register mentioned in the code.1 That information will be crucial later
on, when we implement function calls—we won’t want to let a function use more
registers than it needs. To compute nregs, create a local variable maxreg, initialize
it, and pass its address to every parsing function. Then nregs will be one more than
maxreg.

(10) If you haven’t done so already, implement the LoadLiteral opcode in your vmrun
function.

(11) You can now build your SVM with make. Test it using this virtual object code:

.load module 3
loadliteral 77 string 14 72 101 108 108 111 44 32 119 111 114 108 100 33 10
print 77
halt

You should find that code in file hello.vo, and you should be able to run it by run-
ning

svm hello.vo

(12) Your next step is to revisit your literal_slot function in file vmstate.c. If you
took the shortcut of storing every literal in slot 0, you will now have to make it work

1A function that mentions only register 0 mentions 1 register.

4

02Avo.html#grammar
02Avo.html#grammar


withmore than one literal. There are some space/time tradeoffs here, and I want you
to make them thoughtfully. For details, please peek ahead at the learning outcomes
for this module.

(13) Now implement function global_slot in file vmstate.c. The easy path here is to
represent the global variables using an association list in the VM state. But the name
of a global variable is guaranteed to be a string with no internal zeroes, which gives
you more options for your data structures. One interesting option is the stable.h
interface, which uses an efficient ternary search tree.

(14) While you’re editing vmstate.c, define functions literal_value and global_name.
Their specifications are in file vmstate.h.

These functions are is for use in disasm.c; in particular, don’t use literal_value
in vmrun.

(15) You’ll wrap up the module by building out the set of instructions you can load and
run. The loader’s parsing is driven by a table in file instructions.c, which is in-
dexed by opcode (and opcode name). The same table supports instruction disassem-
bly at run time. Building out the table is your next step; your table needs to support
at least 15 VM instructions:

• halt, print, loadliteral, check, and expect, for which I provide parsers
and unparsing templates (5 instructions)

• 3 instructions of your own choice from last week, which you must add to the
table

• getglobal and setglobal, which you must add to the table

• 5 more instructions of your own choice, which you must add to the table

If you want to go all meta, you can design a machine instruction that loads object
code from a file, then puts the resulting module value in a register. That’s part of a
depth goal.

(16) The final coding step is to add the new instructions to your vmrun. Make sure all 15
opcodes are recognized by your vmrun function, and that they have plausible imple-
mentations. (Not all the implementations have to work; as long as you can get the
test cases in step (17) to work, broken opcodes won’t cost you any points.)

If you have a working add instruction with opcode +, you’ll be able to run this virtual
object code, which I’ve compiled from the unit test (check-expect (+ 2 2) 5):

.load module 6
loadliteral 1 2
loadliteral 2 2
+ 0 1 2
check 0 string 7 40 43 32 50 32 50 41
loadliteral 0 5
expect 0 string 1 53

5



So that you can see if your literal strings are loaded correctly, I have deliberately
set up this test to fail.

Also note: I’ve assumed the loader will put a halt instruction at the end, so I don’t
have to write one explicitly.

(17) By hand, write two test cases pass.vo and fail.vo. Each test case should include a
check and an expect, and each should load successfully. When run, one test should
fail and the other should pass.

The tests do not have to be fancy; if you like, you can do everything with just load-
literal, check, and expect. If you want to produce string literals, experiment with
the Unix od command, as in

echo string | od -A n -t d1

At this point, it would be reasonable to use check and expect to test all of the op-
codes you’ve implemented. But coding string literals is tedious, so it would also be
reasonable towait until you have aworking assembler that can code the string literals
for you. Either way, you’re ready to submit.

What and how to submit
(18) OnMonday, submit the homework. In the src/svm directory you’ll find a file SUBMIT.

That file needs to be edited to answer the same sorts of questions you’ll answer every
week: who did the work, what you’re proud of, where code review should focus, and
so on. And from this week onward, there are new questions:

• Say if part of your submission includes someone else’s code. This includes code
you might have gotten from me, unless that code was distributed to everyone
as part of the assignment—code that is part of an assignment doesn’t have to
be acknowledged.

• Say what code, if any, you materially changed in response to code review. Your
answer to this question may affect multiple people’s participation points, so to
get it right, please refer to the discussion in the syllabus.

• Say if you’re willing to present at the plenary code review, and if you’re not
selected to present, what code you would like to see presented. And whether
you’re willing to serve on the review panel.

Run make clean.

To submit, you’ll need to copy your working tree to the department servers. We rec-
ommend using rsync, but scp also works.

Now log into a department server, change to the src directory of your working tree,
and submit your entire svm directory:

provide cs106 hw02 svm

6

../syllabus.html#how-do-i-earn-participation-points


(19) On Tuesday, submit your reflection. Create a plain text file REFLECTION, which will
hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus whatever is
called for in the section “How to claim the project points”—usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using provide:

provide cs106 reflection02 REFLECTION

Reading in depth
Occasionally I’ll suggest reading that may enrich your view of programming-language im-
plementation.

• Parsing. Don Knuth’s 1965 paper “On the Translation of Languages from Left to
Right”2 revolutionized parsing. By inventing the class of LR(𝑘) languages, Don
brought order and method to what had been a chaotic field. Almost all work since
then is based on LR parsing.

The paper is heavy in parts, but the examples are incisive.

• Grammars. NiklausWirth’s 1977 note on grammar notation observes that “notation
for syntactic description eludes any commonly agreed standard form, although the
underlying ancestor is invariably the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying for their very lack of an ap-
parent motivation.” He proposes we all use EBNF. Alas, Randall Munroe has his
number.

• Linking and loading. The idea of a textual object code has a long history. Chris Fraser
andDaveHanson describe amachine-independent object code that supports loading
and linking (that is, resolution of global names before run time), all with multiple
instruction formats. A beautiful piece of work that gets at the essence of object code
and linking.

Learning outcomes
Outcomes available for points
Learning outcomes for project points:

1. Instruction table. Youunderstand the infrastructurewell enough to define an instruc-
tion table that includes at least 15 different instructions.

2. Instruction semantics. You understand the semantics of instructions well enough
that your vmrun recognizes at least 15 opcodes.

2If you can’t get through the paywall, let me know and I’ll help you out.

7

https://www.sciencedirect.com/science/article/pii/S0019995865904262/pdf?md5=e1e68f344e52c8e0a3360763fc8f6cee&pid=1-s2.0-S0019995865904262-main.pdf
https://www.sciencedirect.com/science/article/pii/S0019995865904262/pdf?md5=e1e68f344e52c8e0a3360763fc8f6cee&pid=1-s2.0-S0019995865904262-main.pdf
https://www.cs.tufts.edu/comp/150FP/archive/niklaus-wirth/ebnf.pdf
https://xkcd.com/927/
https://xkcd.com/927/
https://www.cs.tufts.edu/~nr/cs257/archive/david-hanson/linker-scan.pdf


3. Reuse of language. Supposing you were asked to implement a language not in the
Scheme family, you can say how you would reuse virtual object code.

4. Reuse of code. Supposing youwere asked to implement a language not in the Scheme
family, you can say whether and how you could reuse the loader and the instruction
table.

5. Performance. You can explain your choices of performance tradeoffs in implement-
ing function literal_slot.

6. LL(1) parsing. You can identify howalternatives in a grammar correspond to a choice
point in a recursive-descent parser.

7. Invariants. You can name an invariant that virtual machine code must satisfy but
virtual object code need not satisfy.

8. Embedding. You understand how the <literal> syntax from virtual object code is
embedded into the VM Value type.

9. Projection. You understand which VM instructions can be projected directly into
virtual object code.

10. Formalism. Your code implements the operational semantics (loader edition).

Just as a reminder, unless they are designated to expire, depth points can be redeemed at
any time during the term. Somemore learning outcomes for depth points are as follows:

11. Operational semantics [0.25 points]. You canwrite down a rule of operational seman-
tics to specify what the loader does with the <module> form.

12. Operational semantics [1 point]. The vScheme global environment 𝜌 is meant to
be represented by a compositional mapping from names to locations: 𝜌 = 𝐺 ∘ 𝑁 .
And in vScheme, the initial basis 𝜌0 is a total function: every named variable has a
location. But in the virtualmachine,𝐺 is a partial function: only finitelymany global
variables have designated locations in the VM. This discrepancy can be resolved by
writing suitable operational semantics, and you can show two different ways to do it
(half a point each, partial credit OK).

13. Tokenization and parsing [0.5 points]. Suppose that we want to change the on-disk
representation of object code so that instead of a sequence of integer codes, a literal
string is represented as a C-style string literal, with double quotes. To handle the new
representation, what has to change in the interface described in file <tokens.h>?

14. Dynamic compilation and loading [2 points]. 𝜇Scheme and vScheme both have a
use syntactic form, which tells the interpreter to load and run code. This goal is to
implement two machine instructions, one to call popen and read from a pipe, and
one to load a list of modules from an open file descriptor. These two instructions can
then eventually be used to call the compiler and load the results. These instructions
can be tested now, and then by the time of module 4, they can be used to implement
a use function.

8



How to claim the project points
Each of the numbered learning outcomes 1 to 10 is worth one point, and the points can be
claimed as follows:

1. Have submitted, byMonday night, an instructions.cwhose table includes at least
15 different instructions. Each entry must include a parsing function and an unpars-
ing template.

2. Have submitted, by Monday night, a vmrun.c whose vmrun function recognizes at
least 15 different opcodes. Each opcode must have a plausible implementation, but
the implementations do not need to have been tested, and don’t have to be correct—
each implementation just has to look like a good-faith effort to implement an instruc-
tion.

3. To claim the project point for this outcome, choose a language not in the Scheme
family. Enumerate the forms of literal values that can be written in the language,
and for each form, say whether you could express a literal of that form as a <lit-
eral> in virtual object code, or whether a compiler for your chosen language would
have to generate a sequence of VM instructions to materialize the literal. If there are
any forms of literal that would have to be materialized using a sequence of machine
instructions, pick one and explain how the form would be materialized. Otherwise,
pick any literal form and explain how it would be expressed using an object-code
<literal>.

4. To claim the project point for this outcome, choose the same language you chose for
the previous outcome, and say whether you expect to be able to reuse the loader and
the instruction table. (I am asking not about the instructions themselves, but about
the mechanisms used to list, parse, and encode instructions.) If you think you could
reuse the code, say what would have to change, if anything. If you think you could
not reuse the code, explain why not.

5. We’d like literal_slot to have all of these properties:

• There is no wasted space in the literal pool; that is, except for nil, different
slots never contain equal literals.

• Adding a literal to the pool takes constant time.

• Implementing literal_slot is quick and easy.

But it might be necessary to compromise. To claim the project point for this outcome,
say which of these properties your implementation has, and explain why you chose
the properties you did.

6. The grammar for virtual object code shows six different forms of <literal>.
To claim the project point for this outcome, identify the exact lines of code where
your parser chooses which form of <literal> it thinks it sees. Since there are
multiple forms of <literal>, there might be multiple lines in the code.

9



7. The VM machine language and the language of virtual object code have very simi-
lar forms of instructions. As an invariant, for example, both forms can express an
instruction that operates on two registers. But the language of virtual-machine code
is more limited: a virtual-machine instruction cannot mention a literal; it can only
mention 8-bit, 16-bit, or 24-bit fields. A virtual object code instruction can mention
a literal. To claim the project point for this outcome, name an invariant that virtual
machine code must satisfy but virtual object code need not.

8. The grammar for virtual object code shows 6 forms of <literal>. To claim the
project point for this outcome, say which of these 6 forms, if any, can be embedded
into a VM Value, assuming that no VM state is available. If there are any such forms,
point to one location in your code that embeds one such form.

9. There are 232 values of type Instruction, but for this question we consider only
the ones produced using the instruction table in file instructions.c. (They are
produced using a form of embedding.) Of the instructions listed in your instruction
table, which ones can be projected into virtual object code matching one of the three
<instruction> forms, even without access to a VM state? What do these instruc-
tions have in common?

10. Two rules of the operational semantics share similar premises: in one case,𝐿  ⊆  𝐿′

and 𝐿′(𝑘) = 𝑉 , and in the other case, 𝐿′  ⊆  𝐿″ and 𝐿″(𝑘) = 𝑉 . You can say
where in your code those premises are implemented.

VM Instructions: Suggestion of the week
The Standard ML string library contains two nice primitive functions: explode and im-
plode. Function explode takes a string as parameter and returns a list of the characters
found in the strong. And implode is its inverse. They would make a nice pair of VM in-
structions for operating on strings—and you could then implement string processing using
all the usual list-processing functions, including the parsing combinators you will develop
in modules 3 and 4.

If you want to make really nice versions of these instructions, make themwork with UTF-8.

10


	Introduction
	The module step by step
	The top of the mountain
	Preparation before lab
	Lab
	After lab
	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points

	VM Instructions: Suggestion of the week

