Module 4: Assembly

Introduction

This week you’ll finish the parser for your assembly language, and you’ll im-
plement the first forward pass in your translator: from assembly language to
virtual object code. You'll be able to run hand-written assembly code by trans-
lating it to object code and handing the result to your VM. The translation pass
is the intellectual meat of the module, but the theme of the week is “let’s build
infrastructure for debugging.”

o What am I doing?
— Complete and debug a parser for your assembly language.

— Implement the label-elimination pass that translates assembly lan-
guage to virtual object code.

— Build out your assembly language to support every vScheme primi-
tive.

e Why am I doing it?

— A readable assembly language will help you debug the rest of your
Universal Forward Translator. You'll be able to read assembly-
language output, and when necessary, edit it by hand and send the
results downstream.

— Parsing and unparsing skills will serve you well even after class is
over: They are useful in any situation where data is stored archivally
on disk but is operated on in memory.

— Label elimination introduces you to the technique of structuring a
translator as a sequence of simple passes. The pass itself, which
captures the essence of assembly code as “machine code plus labels,”
is commendably simple.

e How?

— In lab you’ll develop a fold operation over sequences of assembly
instructions, and you’ll use it to implement a two-step translation

pass (label elimination) from assembly code to object code. Or if
you prefer, you can get help debugging your parser.

— At the end of the module, you'll deliver a working Universal Forward
Translator that implements two passes: The vs-vs pass parses and
unparses assembly language, validating both the parser and the un-
parser. The vs-vo pass turns assembly language into virtual object
code, which you can run. You’ll also deliver your grammar, some test
files written in assembly language, and any updates that are needed
to make sure the resulting object code can be loaded into your VM
(but not necessarily run).

The module step by step

There are a lot of steps, but many of them are very small.

Before lab
(1) Download updates. Update your git repository in two steps:
a. Be sure all your own code is committed. Confirm using git status.

b. Update your working tree by running git pull (or you might possibly
need git pull origin main). You should not encounter any merge
conflicts in asmparse.sml. If you do, ask course staff for help.

(2) Build. Confirm that you can build a UFT with make.

(3) Learn about languages in the UFT and the SVM. The course overview
includes a video that reviews our low-level languages (assembly code, vir-
tual object code, and virtual machine code). If you haven’t watched the
video yet, watch it before you decide on a lab.

(4) Decide on a lab. Look over the two lab options below, and by 11:00am
Thursday, let me know if you prefer option 1 (label elimination) or option 2
(parsing help). If you're not sure, pick option 1 (label elimination)—there
will be plenty of parsing help available later in the week.

(5) Review for your chosen lab.

e If you’ve chosen option 1, review the differences between Assembly-
Code.instr and ObjectCode.instr. Particularly the two forms of GOTO
and the fact that the ObjectCode form does not have any analog to
AssemblyCode.DEFLABEL.

o If you've chosen option 2, write down in a grammar the part of the
concrete syntax you want help parsing, and review your parsing code.

../videos/04lang.mp4
../videos/04lang.mp4

Lab option 1: Label elimination

Today’s lab can get you most of the way to your translation pass. If that seems
like a good use of today’s time, choose option 1 for lab, with steps (6) to (9).
If getting help with your parser seems like a better plan, choose option 2 for lab,
with step (10).

Label elimination takes two passes:
e The first pass computes and records the position of every label.

e The second pass replaces assembly-language GOTO LABEL, which branches
to a label, with an object-code GOTO0, which branches relative to the position
of the GOT0. And it discards the labels.

Everything else just mapping each assembly-language instruction and function
into the corresponding object-code instruction and function.

Because each pass has the same overall structure, in step (7) I recommend that
you define a fold function that can be used for both passes. You can then
implement the passes in steps (8) and (9).

(6) Get ready to code. In this lab you’ll edit file assembler.sml in directory
src/uft. Start by renaming function translate to old translate.

(7) Fold over instruction streams. We’d like to implement both passes by fold-
ing from left to right. But an ordinary fold over a list of instructions gives
its argument function just two values: an instruction and an accumulator.
To implement label elimination, we also need to know the position of every
instruction in the instruction stream—that is, the number of instructions
that will precede it in the translated object code. To compute this po-
sition, define a new, right-to-left’ fold function that operates on lists of
type AssemblyCode.instr list. The fold function applies a function f of
three arguments:

e The next thing in the list of type AssemblyCode.instr

e The number of machine instructions, not counting label definitions,
that precede the next thing in the list

e An accumulator of unspecified type 'a

Function f returns a (possibly new) accumulator of type 'a, so its type is
f :+ int * AssemblyCode.instr * 'a -> 'a
The complete type of fold is

val fold : (int * AssemblyCode.instr * ‘'a ->

> AssemblyCode.instr list -> 'a

n a right-to-left fold, the result of a recursive fold is passed to f. In a left-to-right fold, the
result of calling f is passed to a recursive fold. Both directions work equally well for labelEnv,
but the right-to-left is what you want for labelElim. (Using a left-to-right for labelElim will
reverse the list of instructions.)

You’ll use your fold function in each pass.

To define fold, you need to know exactly how much space each assembly
instruction takes up in the final object code:

o A label definition takes no space.
o An IF GOTO_LABEL takes two slots (one for if and one for goto).

e Every other instruction, including LOADFUNC, takes exactly one slot.
(The LOADFUNC carries many instructions, but they go into a VMFunc-
tion that is added to the literal pool. As you know from your SVM,
only a single load-literal instruction is emitted into the current in-
struction stream.)

Function fold should not do any error handling. Leave the error handling
to other functions.

Function fold can’t be recursive! To solve the problem recursively, you
have to know the position of each instruction, which changes. But fold
always starts at position 0. So define a recursive helper function, then
define fold by calling the helper with initial position O.

(8) Find label definitions. Use your fold function to define this function:
val labelEnv : AssemblyCode.instr list -> int Env.env error

This function returns an environment that says, for each label, what po-
sition in the instruction stream it stands for. The function fails (that is,
returns ERROR with a message) if any label is defined in more than one
place.

To help with labelEnv, I found it useful to define a 1ift function that
takes care of error handling. It has this type:*

val lift : ('‘a* 'b* 'c -> 'cerror) -> ('a* 'b* 'cerror -> 'c error)

I defined 1ift because error handling is hell. I want to write a function g
that just takes in an 'a, a 'b, and a 'c, and g never has to worry about
bad input. That makes g easy to write. But what if the third input could
be bad? Then I can use lift g, which is still guaranteed to get a good
‘a and 'b, but might get a bad 'c. How does 1ift g work? If it gets a good
‘c, wrapped in Error.0K, then it passes three good inputs to g. Otherwise
it can’t call g, and it already has a 'c error, so it just returns it.

I then applied fold to 1ift f. And within my f, I used fail as a synonym
for Error.ERROR:

val fail = Error.ERROR

(9) Eliminate labels. Use your fold function again to define two mutually
recursive functions:

2If the type of lift baffles you, think about the type of fold.

val labelElim :
AssemblyCode.instr list -> int Env.env ->
ObjectCode.instr list Error.error

val translate :
AssemblyCode.instr list -> ObjectCode.instr list Error.error

Both of these functions return the same value: either a successfully trans-
lated list of object-code instructions, or an error message. The only possi-
ble error is an attempt to go to a label that is not defined.

The mutual recursion works like this:

e Function labelElim calls translate when it needs to eliminate labels
from the body of a LOADFUNC form.

e Function translate combines the two passes labelEnv and labelElim.

This structure ensures that labels within a function’s body are private to
that function.

Notes:

e To define labelElim, I didn’t use 1ift; instead, I used <$> and <*>
from the error monad. I used this boilerplate code, which I left in
assembler.sml for you to use also:

type 'a error = 'a Error.error

val (succeed, <*>, <$>, >=>) = (Error.succeed, Error.<*>, Error.<$>, Error.>=>)
infixr 4 <$>

infix 3 <*>

infix 2 >=>

e Function translate can be defined in one line, but the multiple error
types make its definition a bit tricky. The argument list is used twice,
so a simple function composition is not going to work. I wound up
using the Kleisli composition arrow >=>, then applying the resulting
composition to the input list of instructions. There other good ways
to do it; work through the types.

Lab option 2: Parser design and construction

(10) Get help with parsing. This option allows you to use lab time essentially
as extra office hours. You have these options:

e Help with the lab exercises from last week

e Help getting your own parsers to typecheck

e Help getting your own parsers to work

o Help changing or extending the assembly-language lexer.

03asmsyntax.html#lab

After lab

Parsing and unparsing

(11)

(13)

(14)

Create a test file for your parser. Create file allsyntax.vs. Using the
concrete syntax that you have designed for your assembly language, this
file should include

e At least one example of every instruction that your SVM recognizes

o At least one example of the “goto label” and “if register then goto
label” instructions, even if your SVM doesn’t recognize them yet

e An example label definition

The code in file allsyntax.vs needn’t do anything; it is meant to test
parsing and unparsing.

Parse what you have so far. In file asmparse.sml, build out your
one_line instr parser to the point where everything in allsyntax.vs can
be parsed without error. You may want to consult my hints for writing
and debugging combinator parsers.

A workable approach here is to run
uft vs-vs allsyntax.vs > /dev/null

and correct whatever issue is reported in the last error message. Keep
going until there are no more error messages.

As you work, record your first diagnosed bug and your most chal-
lenging bug for use in the learning outcome on debugging parsers.

Confirm parsing and unparsing. Using your UFT, confirm that every
instruction in allsyntax.vs can be parsed and unparsed successfully. The
output should be identical to the input, or possibly have differences in
white space. Here is a way to test it at the command line:

uft vs-vs allsyntax.vs | diff -b allsyntax.vs -

Implement function loading. In file asmparse.sml, search for “grammar”,
which has this grammar for instructions:

<instruction> ::= <one line instruction> EOL
| <loadfunStart> {<instruction>} <loadfunEnd>

(The EOL stands for “end of line” and is how the \n character is represented
inside the parser.) Observe the loadfunStart and loadfunEnd parsers: they
are placeholders that you are meant to replace. Complete this step in three
stages:

o Design concrete syntax to mark the start of a “load function” instruc-
tion. This syntax must include the destination register into which
the function will be loaded, plus the number of arguments that the

04Apdebug.html
04Apdebug.html

function is expecting. If you have already implemented an unparser
for the LOADFUNC form, start with that syntax.

Implement the loadfunStart parser. The marker for a function start
can be as simple as a single token or as fancy as you like.

A “load function” instruction is followed by a sequence of assembly-
language instructions, one per line. This sequence should be followed
by some sort of closing delimiter, perhaps on a line by itself. Design
concrete syntax for that delimiter, and implement it in the loadfunEnd
parser.

The delimiter can be as simple as a single token or as fancy as you
like. But it must not look like an instruction.

Create a test file loadfun.vs that exercises the new syntax.

Confirm that assembling the file generates a “load function” for the
SVM:

uft vs-vo loadfun.vs | fgrep .load
Confirm that the function loads without error:®
uft vs-vo loadfun.vs | svm

You’ll confirm that it loads correctly later, after you’ve made a small
extension to the SVM.

Label elimination

(15) Deploy the translator from lab. If you haven’t already, in file assembler.sml,
replace my toy version of function translate with a complete one. Follow
steps (6) to (9) from the lab, option 1.

A complete instruction set

The final

part of the homework is to enrich your parser, unparser, and

SVM loader to handle all the primitive functions of vScheme. These functions
come in two species: those executed for value and those executed for side effect.
The primitives that are executed for value are as follows:

function?
pair?
symbol?
number?
boolean?
null?
nil?

cdr = idiv hash
car >/
cons < *

+

3We cannot call functions yet, so you cannot test if it runs.

Each corresponding VM instruction needs to put a result value in a register.
This need should be reflected in the concrete syntax, as it is in these examples:

rl :=r2 + r3
r7 := symbol? r9

The primitives that are executed only for side effect do mot produce a result
value in a register:

error
printu
print
println

For these primitives, I recommend a concrete syntax that simply names the
argument, as in

print r7
But you may do as you wish.

If you are unsure what the primitives do, you can experiment with vscheme -vv.
(To build the vscheme binary, run make in directory src/vscheme.) Most of these
primitives are also primitives of uScheme, so if you have taken or are taking
CS 105, you know them already.

This week, you have to parse and load all these instructions, but you don’t
have to implement them all in vmrun.

Complete these steps:

(16) Design assembly-language syntaz for primitive vScheme functions. Ex-
tend your assembly-language grammar to support vScheme’s primitive
functions. Put your (extended) grammar, with all of your instructions, in
file GRAMMAR.

For each primitive, add a case to your allsyntax.vs file (unless the file
has one already).

(17) Extend your parser. In file asmparse.sml, extend function one_line_instr,
which you began last week (when it was called instr). Handle every
instruction in allsyntax.vs.

(18) Eztend your unparser. Any new instructions you added in step (16) needs
to be unparsed. Add them to function unparse in file asmparse.sml.

(19) Confirm your extended parser and unparser. The following test should
not produce any output:

uft vs-vs allsyntax.vs | diff -b allsyntax.vs -

Recognizing the instructions in the SVM

(20)

(21)

Ezxtend your instruction table. In your SVM, add entries to instructions.c
and opcode.h so that every new opcode is recognized and has an internal
form. It is OK for a single internal form like Add to have multiple opcodes
in a .vo file, like both add and +. Just create multiple entries in the
instruction table.

Confirm that your SVM builds with make.

Confirm instruction loading and SVM disassembly. In this module, the
SVM ships with a new executable binary program svm-dis. Use this binary
to confirm that the unparsing templates in the instruction table produce
good output. You won’t match the if or goto instructions, but the others
should be close.

uft vs-vo allsyntax.vs | svm-dis | diff -y -W 80 allsyntax.vs -

Put at least one working instruction in file round-trip.vs, and confirm
that the input is reproduced exactly. This command should show only
the addition of a halt instruction (by the loader).

uft vs-vo round-trip.vs | svm-dis | diff round-trip.vs -

If round-trip.vs contains just one instruction, the output should look like
this:

1la2
> halt

Confirm function loading and SVM disassembly. You won’t be able to
compare output line by line: In assembly code and virtual object code,
one function’s instructions may be interrupted to load another function,
but after loading, each function’s instructions are contiguous. But you
can still eyeball the result and see if the VM loaded a function with the
right instructions:

uft vs-vo loadfun.vs | svm-dis

What and how to submit

(23)

On Monday, submit the homework. In the src/uft directory you’ll find a
file SUBMIT.04. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw@4 src

(24) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”™—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection04 REFLECTION

Reading in depth

Occasionally I'll suggest reading that may enrich your view of programming-
language implementation. Here is the original article on applicative functors,
which defines succeed (there called pure), <*>, and <$>:

¢ Conor Mcbride and Ross Paterson. 2008 (January). Applicative program-
ming with effects Journal of Functional Programming, 18(1):1-13

I regret to say that the examples in the paper are mostly unfamiliar, and that
they don’t delight me.

Learning outcomes

Outcomes available for points

You can claim a project point for each of the learning outcomes listed here.
Instructions about how to claim each point are found below.

1. Understanding label elimination. You understand error detection in the
label-elimination pass.

2. Writing test codes. Your allsyntax.vs includes at least one example of
each of these instructions from previous modules: check, expect, condi-
tional, goto, get and set global variable, register move (copy), error, load-
literal, and halt instructions.

3. Parsing single-line instructions. You can explain your one line instr
parser.

4. Parsing function loads. You can explain how your parser is intended to
handle function loading.

5. Debugging combinator parsers. You can explain how you debugged your
parser.

6. Unparsing in the instruction table. You understand how to use the un-
parsing template in the SVM’s instruction table.

10

http://strictlypositive.org/IdiomLite.pdf
http://strictlypositive.org/IdiomLite.pdf

9.
10.

Ezxtending the instruction set. Your allsyntax.vs includes an example of
each vScheme primitive listed in step (16).

Embedding and projection. You understand embedding and projection as
it relates to asmparse.sml.

Monads. You understand how to transfer operations between monads.

Combinator parsing. You understand the producer interface well enough
to define new parsing combinators.

You can claim most of a depth point for improving the:

11.

Parsing quoted text [0.8 points]. My function the works only when the
argument given is a single token. Update the function so it works even
when the argument has to be represented by a sequence of tokens, like " !=".

(The ability to do stuff like this is a big chunk of why people like parsing
combinators.)

The fractional point expires with this module, i.e., it must be claimed by
submitting an updated the Monday night.

How to claim the project points

Each of the numbered learning outcomes 1 to N is worth one point, and the
points can be claimed as follows:

1.

2.

To claim this point, do two things:

e In assembly.sml, point to a line of code you have written that passes
a message to Error.ERROR. Explain in source-language terms what
error the code reports.

e Give an example of an analogous error that could occur in a C pro-
gram or an ML program, that a compiler would be able to detect.
A description in informal English is enough; the example need not
show source code. And the analogy need not involve labels per se.

To claim this point, tell us where in your allsyntax.vs the examples can
be found. “Right at the beginning” would be a good and sufficient answer
(if accurate).

. A claim for this point will have to be supported by an instruction from

your allsyntax.vs. The computer can find the middle line for you; if you
run sh or bash, you can run this command:

sed -n "$(expr $(cat allsyntax.vs | wc -1) / 2)p" allsyntax.vs

If that line contains an instruction, use it; if it contains function-loading
syntax, use the nearest preceding instruction.

11

To claim this point, show us the instruction, and identify the lines of code
in your one line instr function in your asmparse.sml that are intended
to parse the instruction.

4. To claim this point, give us the line numbers of the start and end of the
first (and possibly only) function loaded in your loadfun.vs file. And
explain how your parser in asmparse.sml is intended to handle those lines.

5. To claim this point,

o Identify a part of your assembly-language parser that did not work
initially.

o Identify the line in your test file (allsyntax.vs, loadfun.vs, or other)
that contains an input that exposed the fault.

o Say what you tried to diagnose or correct the fault and whether your
efforts were successful.

If everything you wrote worked on the first try, you cannot claim this
point.

6. This point can be claimed only if you submitted the working round-trip.vs
that you wrote in step (21) above. To claim the point, identify the entry
in the instruction table that contains the relevant unparsing template.

7. To claim this point, tell us where in your allsyntax.vs the examples can be
found. “At the end” would be a good and sufficient answer (if accurate).

8. The candidates for embedding and projection in asmparse.sml are the
“unparser,” which is understood to mean function AsmParse.unparse, and
the “parser,” which is understood to mean a suitable Kleisli composition of
AsmParse.parse with map AsmLex.tokenize and Error.list (as in uft.sml).
To claim this point,

e Say whether the parser and wunparser constitute an embed-
ding/projection pair.

o If they are such a pair, which is the embedding and which is the
projection?

e Say how you know the answers to the previous two questions.

9. The parsing monad and error monad actually share more operations than
are shown in their interfaces as I provided them. To claim this point,
transfer an operation from one monad to the other in one of the following
three ways:*

e To claim the point on easy mode, give the type of the choice combi-
nator <|> in the error monad, and give algebraic laws that define its
behavior.

41 claim that each of these transferred operations is useful.

12

10.

e To claim the point on normal mode, give the type of the list function
in the parsing monad, and give algebraic laws that define its behavior.

e To claim the point on hard mode, give the type of the monadic bind
operation >>= in the parsing monad, and define its behavior by giving
either algebraic laws or ML code.

All three modes are worth the same: one point. Claiming multiple modes
does not earn multiple points. Providing three modes give you a chance
to discover where you are.

To claim this point, define a parsing combinator commaSeparated that cap-
tures the common syntactic abstraction of “zero or more things separated
by commas.” Give the type of commaSeparated, and define its behavior by
giving either algebraic laws or ML code.

If you successfully claimed the point in the previous module, you can’t
claim it again.

13

	Introduction
	The module step by step
	Before lab
	Lab option 1: Label elimination
	Lab option 2: Parser design and construction
	After lab
	Parsing and unparsing
	Label elimination
	A complete instruction set
	Recognizing the instructions in the SVM

	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points

