
Module 7: Functions in the virtual machine

Introduction
This week you’ll head back to the virtual machine. You’ll implement register
windows and function calls, including optimized tail calls.

• What am I doing?

– Add support for functions to your VM state: register windows and a
call stack.

– Implement call, tailcall, and return instructions.

• Why am I doing it?

– A high-level language needs functions (or methods).

– Register windows are a fabulous trick that is very efficient and that
enables us to avoid worrying about register allocation and spilling in
the UFT.

• How?

– Before lab you’ll do some reading on procedure calls and register
windows.

– Before lab you’ll also get your SVM and UFT ready: to prepare
to use your lab time productively, you’ll tell the SVM how to load
instructions call, tailcall, and return; you’ll set up placeholders for
call, return, and tailcall instructions in your vmrun function; and
you’ll enable idump debugging in vmrun (if you haven’t already).

And so you can try using the assembly code distributed to support
the lab, you’ll tell your assembly-language parser that blank lines
are OK.

– In lab you’ll extend your VM state with a call stack and a register-
window pointer, and you’ll implement the call instruction (for calling
VM functions only). There’s a decent chance that you also can do
the return instruction.

1

07Ctests.html
07Ctests.html

– After lab, you’ll implement tail calls, and you’ll add overflow checks
to both call and tailcall instructions.

– At the end of the week, you’ll deliver a virtual machine that works
with first-order functions.

The module step by step
Before lab

(1) Update your SVM source code. I fixed a show-stopping bug in disasm.c.
To get the fix, you’ll need to git pull. I don’t expect any merge conflicts.

(2) Review hardware procedure calls (recommended). You’ll want to remind
yourself how calls and returns work and how they interact through a call
stack. A reminder about passing parameters in registers won’t hurt either.

If you’re not sure what to review, try one of these suggestions:

• For a high-level view of a call stack, there’s a decent short video
from CS 50. What the speaker calls “a procedure on pause” is more
usually called “a suspended activation.”

• For a slightly lower-level view that mentions machine registers, com-
plete with a little animation, there’s a blog post by Connor Stack.

• You could just dive straight into the comparison section of the
procedure-call handout, which includes an example of C code
compiled to AMD64 assembly language.

(3) Read about how to implement calls (essential). Implementing calls is the
entire module, and I don’t expect you to have grasped it all before lab.
But in order to be productive during lab, you will need to have some idea
what is going on.

1. To develop your overall understanding, read my handout on Un-
derstanding Procedure Calls.

2. To master the details of instructions’ behavior and coding,
read the operational semantics.

Before lab, take notes on two topics:

• What goes into an activation (a frame on the call stack) and how you
want to represent it

• The actions of a call instruction

For both sets of notes, the operational semantics will be useful.

2

https://www.youtube.com/watch?v=aCPkszeKRa4
https://www.youtube.com/watch?v=aCPkszeKRa4
https://medium.com/@connorstack/a-guide-to-x86-calling-convention-824a3236ed65
07Acalls.html#comparison
07Acalls.html#comparison
07Acalls.html
07Acalls.html
07Bopsem.html

(4) Add procedure-call instructions to the SVM loader (essential). In lab,
you’ll implement instructions you can run, but you need to come into lab
already being able to load them.

You need three instructions: call, tail call, and return. Each needs an
internal and an external opcode, a parsing function, and an unparsing
template. The choices I recommend are as follows:

Opcode in .vo Parser Unparsing template
call parseR3 rX := call rY (rY+1, ..., rZ)
return parseR1 return rX
tailcall parseR2 tailcall rX (rX+1, ..., rY)

Add the opcodes to opcodes.h and the instructions to instructions.c.

(5) Add procedure-call cases to vmrun (essential). For each opcode you added
in the previous step, add a case to your vmrun function. For now, each
case can simply assert(0).

(6) Make sure your SVM has a debugging mode (recommended). Check your
vmrun function to be sure you can configure it to call idump on every in-
struction. Here’s an example of how to use debugging mode and what the
results look like, computing four factorial:

Trace of SVM computing and checking four factorial (click arrow to reveal)

3

To turn this mode on in your own SVM, you’ll need to take these steps:

• In vmrun, initialize two variables when vmrun starts:

const char *dump_decode = svmdebug_value("decode");
const char *dump_call = svmdebug_value("call");
(void) dump_call; // make it OK not to use `dump_call`

• In vmrun, immediately after decoding an instruction, before using
switch on the opcode, if dump_decode is set, call idump:

if (dump_decode)
idump(stderr, vm, pc, instr, window_position, pRX, pRY, pRZ);

The parameters are as follows:

vm The VM state
pc The current program counter (as an integer)
instr The instruction word just decoded

4

window_position An integer saying where the current register window points
pRX, pRY, pRZ Pointers to the values stored in registers X, Y, and Z

The window_position can be any number that meaningfully tells you
the position of the register windows. All idump does with it is print it.

• If you want to write out additional information at call, return, and
tail-call instructions, do so only when dump_call is not NULL.

To make these codes compile, your vmrun.c will need to #include both
"svmdebug.h" and "disasm.h".

(7) Update your assembly-language parser to support blank lines (lightly rec-
ommended). In file asmparse.sml,

• In the instruction parser, change each single occurrence of eol to
accept one or more newlines: many1 eol.

• Change function parse to accept initial blank lines:

val parse =
Error.join o
P.produce (Error.list <$> (many eol >> many instruction)) o
List.concat

These changes will enable your parser to handle assembly code with blank
lines and comment lines.

Recompile your UFT.

Lab
(8) Define a procedure activation. Using abstract-machine state from the

operational semantics, put fields in the definition of struct Activation
in file vmstack.h.

(If you’re not sure how to get started here, you could consider jumping
forward to step (10) and then coming back.)

(9) Enlarge the VM state. Increase the total number of registers in your
VM state. And add support for a finite stack of activation records.1 Sizes
are up to you, but you probably want capabilities that are comparable to
other interpreters. For the call stack, here are some data points:

1It is possible to allocate procedure activations dynamically and to keep running until malloc
fails, but this plan is terrible, on two grounds: (1) It makes calls inefficient. (2) If a user runs
a VM program that has an infinite recursion, it’s not sensible for the SVM to run until it
gobbles up as much address space as the operating system will allow it—the sensible response
is to cap the size of the call stack, and when the call stack overflows, to issue an informative
error message.

5

07Bopsem.html
07Bopsem.html

• The interpreters used in CS 105 support recursion to depth of around
5000 (the exact number can depend on the size of a single activation
record).

• The standard interpreter for the Icon programming language defaults
to a stack of 10,000 words, which I’m guessing might be ballpark of
2,000 activations.

• In 2010, a standard Python interpreter had a default stack limit of
1000 activations.

For the register file, I don’t have data, but 10 registers per activation
might be in the right ballpark.

(10) Implement call. When given a function, the call should push a new acti-
vation onto the call stack, shift the register window, and start executing
the new function from instruction 0. For a precise specification, con-
sult the operational semantics. When given a non-function, the call
instruction should report a checked run-time error (step (12)).

If you’re not sure how to approach this step, especially if you skipped
ahead from step (8), ask yourself these questions:

• How do I transfer control to the function I wish to call (the “callee”)?

• How do I adjust the register window to ensure that the callee sees its
own value in register 0, its first parameter in register 1, and so on?

• What do I need to remember so that when the call completes, I can
continue executing my own code in the caller? (It’s the stuff you
need to remember that goes into an activation record.)

These questions are mostly answered by the operational semantics.
It helps to relate the notations in the operational semantics to the
variables in the code: what is 𝑅, what is 𝐼 , and so on.

The operational semantics doesn’t account for the limited space allocated
to procedure activations and register windows. A call might overflow
either the call stack or the register file, but for lab, don’t worry about
overflow—you’ll deal with it in step (14).

In the implementation of the call instruction, I recommend you define
these local C variables:

destreg The number of the register that is meant to receive the result of
the call. For the call instruction this is the X field.

funreg The number of the register that holds the function being called.
For the call instruction this is the Y field.

lastarg The number of the register that holds the last argument (or in the
case where there are no arguments, again the function being called).
For the call instruction this is the Z field.

6

https://www2.cs.arizona.edu/icon/
07Bopsem.html#ordinary-calls

Then write your code in terms of these variables.

Test your call instruction using the testing handout:

A. See if control is transferred: the callt test calls a function that runs
check and expect, then halts.

B. See if an argument can be passed and the register window works
correctly. The callarg test code puts a function in register 200 and
an argument in register 201. For the test to pass, the callee must see
the actual parameter in register 1.

C. See if the SVM detects when a function is called with the wrong
number of arguments. Use the callwrong.vserr test.

Don’t overlook the run-time disassembler built into the SVM.
As mentioned in step (6), your vmrun function should have the option of
calling idump after every instruction is fetched. This feature is great for
debugging, and if you followed the advice in step (6), yours should be set
up to be enabled by running env SVMDEBUG=decode svm.

Caution!

Beware of trying to implement call by making a recursive call to vmrun.
It can be made to work, but there are risks:

• I hope you’ll exit the course with a strong grasp of recursion. But
if you rely on C recursion instead of implementing it yourself, you
might not grasp it as well.

• You won’t be able to implement tail calls this way.
• You won’t be able to spit out a stack trace on error.
• When we get to garbage collection in module 11, you’ll be screwed

and you’ll have to do the calls over.

(11) Implement return. Implement the return instruction. Informally, this
instruction should grab the return value, pop the caller’s activation off
the stack,2 then restore the instruction stream, program counter, and
register window. It should then set the destination register and continue
executing in the caller’s code. For a precise specification, consult the
operational semantics.

Once your return is implemented, test it using the testing handout:

D. See if control is transferred there and back, and if the register window
is restored correctly. Test returnt is rigged so that if the return
doesn’t restore the proper program counter, code will hit some error
instructions.

E. See if a value can be returned correctly. Test returnv tests that value
1852 is correctly returned from a function.

2Or if the stack is empty, signal a checked run-time error

7

07Ctests.html#testing-call
07Bopsem.html#returns
07Ctests.html#testing-return

F. Test recursion. Test fact recursively computes 5 factorial.

After lab
Undefined functions

(12) Report calls to undefined functions. When testing, it’s all too common to
forget that the UFT does not have the same predefined functions built in,
the way the vscheme interpreter does:

$ echo '(gcd 39 27)' | vscheme -v
3
echo '(gcd 39 27)' | uft fo-vo | svm
Run-time error:

Tried to call nil; maybe global `gcd` is not defined?

That diagnostic is invaluable. To get it, find the place in your vmrun.c
where your call instruction can detect nil in the function position. To find
the name of the global variable form which the function was set, if any, call
lastglobalset on funreg. The function is documented in file disasm.h.

Tail calls

If you want a super-quick review of tail calls, you could do worse than my
lecture notes from CS 105. For a detailed explanation of tail-call optimization,
I recommend a blog post by Richard Wild.

(13) Implement tail call. Implement the tailcall instruction. Informally, this
instruction should update the instruction stream, use memmove to shift reg-
ister values into place, and start executing the new function from instruc-
tion 0. A tail call can’t overflow the call stack, but it can overflow the
register file (you’ll deal with overflow in step (14)). For a precise spec-
ification, consult the operational semantics.

A tail call has no destreg, but you can and should define local variables
funreg and lastarg, which for a tail call are instruction fields X and Y. If
you have used these variables wisely, you can copy, paste, and edit code
from your call instruction in step (10).

The registers that have to be shifted are the function register and all the
arguments: registers funreg to lastarg, inclusive. Beware of off-by-one
errors.

Once your tailcall is implemented, test it using the testing handout:

G. Test tail makes a tailcall r0(r1), so it has a chance of working
even if the registers aren’t moved. The test counts down from 555,000
by ones, making a tail call at each step. The uscheme and vscheme
interpreters can’t run this test, because they don’t optimize tail calls.
The uschemeplus interpreter can run it.

8

https://www.cs.tufts.edu/comp/105-2019s/notes.html#tail-calls
https://codurance.com/2017/12/05/on-tail-call-optimisation/
07Bopsem.html#tail-calls
07Ctests.html#testing-tail-call

Run this test using valgrind, which may detect if you have a bug
that makes your call stack overflow.

H. Test tailm uses tail calls to add 12 to 99, 1.2 million times. This one
requires that the registers be shifted into place correctly. The test
runs over 10 times faster than the same test in uschemeplus.

Stack overflow

(14) Detect overflow. The SVM has two data structures that can overflow:

• A call instruction can overflow the call stack by attempting to push
an activation when the stack is full. This situation should be handled
by a call to runerror.

A tailcall instruction does not push an activation record, so it can-
not overflow the call stack.

• A call instruction can overflow the register file by attempting to
shift the current window in such a way that not all register names
(0 to 255) point to correctly allocated memory. This situation should
also be handled by a call to runerror.

A tailcall can also overflow the register file.

Extend your call and tailcall instructions so they detect over-
flow.

Overflow can be caused in two ways: run out of registers while still having
plenty of activation records, and run out of activation records while still
having plenty of registers. Demonstrate your understanding with these
test files:

overstack.vs Contains a program that, when executed, overflows the call
stack of your SVM. (A good way to do this is with a deep recursive
call.)

overreg.vs Contains a program that, when executed, does not overflow
the call stack of your SVM, but does overflow the register file. It is
sufficient if the register file overflows before the call stack. (A good
way to do this is to adapt the previous program so the recursive
function uses register 255, which will then eat up 256 registers per
call.)

overtail.vs Contains a program that is as similar as possible to the pro-
gram in overstack.vs, but in which the recursive call is a tailcall.
This program should run to completion without error.

9

What and how to submit
(16) On Monday, submit the homework. In the src/uft directory you’ll find a

file SUBMIT.07. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw07 src

(17) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection07 REFLECTION

Learning outcomes
Outcomes available for points
You can claim a project point for each of the learning outcomes listed here.
Instructions about how to claim each point are found below.

1. Operational semantics. You understand the operational semantics of reg-
ister windows.

2. Operational semantics. You understand the operational semantics of the
return instruction.

3. Overflow. You can build an SVM that detects stack overflow, preventing
memory errors.

4. Optimized tail calls. You can use tail calls to write a deeply recursive
function that avoids overflow.

5. Invariants, part I. You know the invariants satisfied by your representation
of a VM function.

6. Invariants, part II. You know how VM-function invariants are used in your
vmrun function.

7. Performance of register windows. You understand the benefits and costs
of register windows.

10

8. Error detection. You know how to provide a useful diagnostic when things
go wrong at run time.

You can claim depth points for doing things with the call stack.

9. Stack trace [3 points]. When a run-time error occurs, your code produces
a stack trace. To make the stack trace useful, you extend the represen-
tation of FUNCODE to include a string that encodes the function’s name
(if known) and source-code location (if known). The extension is sup-
ported by your K-normal form, assembly code (including parser), object
code, SVM loader, and vmrun.

This work may count toward depth points or toward module 12, but not
both.

10. Error checking and recovery [4 points]. You implement a check-error
instruction, which works by putting a special frame on the call stack. If
that frame is returned to by normal execution, the check-error test fails.
But if an error occurs while that frame is on the stack, the test succeeds.

This work may count toward depth points or toward module 12, but not
both.

11. Code improvements for tail calls, part I: Register targeting. [3 points] You
define an optimization pass for K-normal form which changes the register
bindings so that every tail call is made to a function in register 0 with
arguments in registers 1 to 𝑁 . This is done not by adding new bindings
(which the VM can to more efficiently) but by changing the registers used
in existing bindings. Such a renaming is always possible, and the cost can
be limited to at most a single new VM instruction.

In native code, this optimization is important. In a VM, its payoff is
small. But it enables the next optimization, which has high payoff in both
settings.

This work may count toward depth points or toward module 12, but not
both.

12. Code improvements for tail calls, part II: Optimized tail recursion
[2 points]. Building on the previous step, your UFT recognizes when
a tail call is a recursive call, and it optimizes that tail call into a goto
instruction. (A good heuristic for recognizing that a tail call is recursive
is that it calls a function in register 0.)

This optimization is essential for functional languages: a tail-recursive
function is optimized into a loop.

This work may count toward depth points or toward module 12, but not
both.

13. Curried functions [5 points]. You implement automatic currying as de-
scribed in the handout on understanding procedure calls.

11

07Acalls.html#currying
07Acalls.html#currying

The strategy I recommend is called “eval/apply” and is described by Simon
Marlow and Simon Peyton Jones in a landmark 2006 paper. The paper
has way more detail than you need, but the important bits will involve
what new species of value and what new species of activation record are
useful for implementing curried functions.

This work may count toward depth points or toward module 12, but not
both.

14. Exceptions [5 points]. Implement exceptions and exception handlers. I rec-
ommend defining two VM instructions that resemble the “long label” and
“long goto” features from chapter 3 of my book, which I can give you.
Then build exceptions on top of that.

This work may count toward depth points or toward module 12, but not
both.

15. Coroutines [10 points]. A coroutine is a synchronous, cooperative,
lightweight, concurrent abstraction. It’s like a thread, only simpler.
A coroutine is represented by a suspended VM state. Coroutines need at
least the following:

• A new form of value whose payload is a VM state.

• Instructions that create a coroutine (from a function) and wait for
one to terminate.

• Instructions that transfer control between coroutines. These can be
symmetric (as in Icon or asymmetric (as in Lua).

Coroutines are a good first step toward fully preemptive concurrency with
synchronous communication, as in Erlang or Go.

This work may count both toward depth points and module 12. If it is
counted toward both, the depth points will be halved.

How to claim the project points
Each of the numbered learning outcomes 1 to 8 is worth one point, and the
points can be claimed as follows:

1. To claim this point, give us the number of the line of code in file vmrun.c
that implements 𝑅 ⊕ 𝑟0 in the rule for call.

2. To claim this point, give us the number of the line of code in file vmrun.c
that computes 𝜎(𝑅(𝑟)) and the line of code that updates location 𝑅′(𝑟′)
in 𝜎.

3. To claim this point, submit files overstack.vs and overreg.vs from
step (14), and confirm that they assemble, load, and detect overflow by
the following commands:

12

https://www.cs.tufts.edu/comp/150FP/archive/simon-peyton-jones/eval-apply-jfp.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/ralph-griswold/coexpressions.pdf
https://www.lua.org/pil/9.1.html

uft vs-vo overstack.vs | valgrind svm
uft vs-vo overreg.vs | valgrind svm

Confirm that

• Each command causes the svm to terminate with a sensible error
message.

• The error messages are different in the two cases.

• No memory errors are detected by valgrind.

4. To claim this point, submit the overtail.vs file from step (14), along with
a brief explanation—one or two sentences at most—of its similarities to
and differences from overstack.vs.

5. To claim this point, identify one important invariant that the represen-
tation of struct VMFunction must satisfy. (Hint: If any information is
redundant, it must be internally consistent.)

6. To claim this point, explain how the invariant in the previous step is
exploited in the implementation of vmrun.

7. To claim this point, answer these two questions:

• Explain what, if any, is the performance benefit of using register
windows in the SVM, as opposed to a fixed set of 256 VM registers.

• Explain what, if any, is the performance cost (in your VM code) of
using register windows in the SVM, as opposed to a fixed set of 256
VM registers.

8. When your SVM runs code that involves a call to an undefined function, as
in the Scheme example (wait---what? 42), the error message should show
the name of the function. To claim this point, identify the line numbers
in vmrun.c where this error message is issued. There should be at least
two locations: one for ordinary calls and one for tail calls.

13

	Introduction
	The module step by step
	Before lab
	Lab
	After lab
	Undefined functions
	Tail calls
	Stack overflow

	What and how to submit

	Learning outcomes
	Outcomes available for points
	How to claim the project points

