
Module 9: K-Normalization

Introduction
This week you’ll finally translate a real high-level language—and you’ll be able
to run a vast quantity of Scheme code.

• What am I doing?

– Translate first-order Scheme into K‑normal form.

• Why am I doing it?

– You’ll be running Scheme code! The UFT is almost done!

– You’ll get an idea how a compiler manages machine registers.

– You’ll capture a key compilation idea (“put this result in a register”)
using continuation-passing style.

• How?

– Before lab you’ll extend the UFT driver with support for
K‑normalization, and you’ll read about continuation-passing
style for register binding.

– In lab you’ll build a simple representation of register sets, and you’ll
get K‑normalization working for two forms of expression: a literal,
and a primitive applied to one argument. These forms will get you
Scheme code that you can compile and run.

– After lab, you’ll complete your K‑normalizer, starting with check-
expect and working your way through all the syntactic forms of First-
Order Scheme. When allocating multiple registers, as for both call
forms and the let form, you’ll use a higher-order function to separate
policy from mechanism and to reuse code.

You’ll test your K‑normalizer with at least one new test per syntactic
form, plus a test suite derived from a CS 105 homework assignment.

– At the end of the week you’ll deliver a translator that translates first-
order vScheme, including passes fo-fo, fo-kn, fo-vs, and fo-vo. Your
translator will pass an impressive set of tests.

1

The module step by step
Before lab
Getting your UFT code ready for lab

(1) Get new code. Using git pull, get the new code for this module. I’m not
expecting merge conflicts.

(2) Add a new pass to the UFT. You’ll integrate K‑normalization into the
UFT by adding support for First-Order Scheme. This step is just like
what you did in modules 5 and 6 to add support for K‑normal form and
code generation.

This is a key step. Some other pre-lab steps can perhaps be fudged,
but if you skip this one, you’re unlikely to be able to use your lab time
productively. The step looks like it has a lot of moving parts, but most of
the parts are copy/paste/edit, so the step should go quickly.

A. If you need to, review the handout on the UFT driver.

B. Define reader function FO_of_file, which should work by com-
posing the reader schemexOfFile with the projection function
FOUtil.project. Its type should be

val FO_of_file : instream -> FirstOrderScheme.def list error

Function FO_of_file should look a lot like function KN_of_file.

C. Define materializer function FO_of, which should materialize First-
Order Scheme. If asked to materialize FO from FO, it should return
FO_of_file; otherwise it should raise Backward (because as we’ll see
next week, nothing else translates into FO).

D. Define emitter function emitFO by composing emitScheme with embed-
ding function FOUtil.embed. Function emitFO should look a lot like
function emitKN.

E. Add a case to translate to handle the case when outLang is FO.
It should look a lot like the other cases.

F. Update the function KN_reg_of that you wrote in module 6. Your
current version should have a catchall case that raises NoTransla-
tionTo KN. Replace that case with a function that materializes FO
and composes the result with List.map KNormalize.def. The mate-
rializer can fail, but K‑normalization cannot fail, so you will have
to manage the error type. If you need help, consult the handout on
composing functions with error types.

G. Update the KN_text_of function you wrote in module 5. The updated
function should either read K-normal form from a file or should return

2

05Cuft.html
05Dcomposition.html
05Dcomposition.html
05knf.html#kn-text-of

a result from KN_reg_of, with registers renamed to strings. A suitable
renaming will rename register 1 to string "r1", and so on.

Getting your brain ready for lab

(3) Read about K‑normalization and register allocation. Read and understand
the background handout K-Normalization and Register Allocation. Only
two sections are important for lab: the introduction and the section “Our
approach to register allocation.” You can fudge the rest, but if you don’t
grok those sections, you may have a hard time being productive in lab.

(4) Review the source and target languages. Review the abstract syntax of
first-order vScheme in file foscheme.sml. This language is a subset of the
Unambiguous vScheme you worked with in module 5.

Review the abstract syntax of your K‑normal form in file knf.sml, also
from module 5.

You can fudge this step.

(5) Look over the environment interface. In file env.sml you’ll find an environ-
ment interface. It’s the same one used for disambiguation in module 5, but
in module 5 you didn’t have to pay much attention. In your K‑normalizer
you’ll need not only to look up names in an environment but also to build
new environments.

The only environment you’ll use in lab is the empty environment Env.empty,
so in practice you can postpone this step until after lab.

Lab
In lab you will start building the following ML module, which is templated for
you in file knormalize.sml:

structure KNormalize :> sig
type reg = int (* register *)
type regset (* set of registers *)
val regname : reg -> string

val exp : reg Env.env -> regset -> FirstOrderScheme.exp -
> reg KNormalForm.exp
val def : FirstOrderScheme.def -> reg KNormalForm.exp

end

The FirstOrderScheme structure is defined in source file foscheme.sml; it is just
like Disambiguated vScheme, except it doesn’t have LETREC or LAMBDA. The KNor-
malForm structure is the one you built in module 5.

3

09Aknormalize.html
09Aknormalize.html#introduction
09Aknormalize.html#our-approach-to-register-allocation
09Aknormalize.html#our-approach-to-register-allocation

Register sets

(6) Limited implementation of register sets. You can do a full-blown imple-
mentation of sets, but because the K‑normalizer always picks the smallest
available register, I recommend a trick: represent only sets of contiguous
available registers. For example,

datatype regset = RS of int (* RS n = represents { r | r >= n } *)

A set of registers needs to support two main operations:

val smallest : regset -> reg
val -- : regset * reg -> regset (* remove a register *)

• If somebody asks to remove a register r that is not the smallest in set rs,
it is OK to remove additional registers. Just return what’s left of rs after
removing r and everything smaller than r.

Implement smallest and --. You might like to declare

infix 6 --

Allocating registers in continuation-passing style

(7) Allocating registers with smart let bindings. The primary operation per-
formed by the K‑normalizer is “put the value of this expression in a
register.” This operation will be implemented by function bindAnyReg,
which ensures that a target-language expression (type exp) is in a register—
allocating that register if need by. Function bindAnyReg uses continuation-
passing style; the continuation has type reg -> exp.

type exp = reg KNormal.exp
val bindAnyReg : regset -> exp -> (reg -> exp) -> exp

As described in the background handout, bindAnyReg has this contract:
bindAnyReg A e k returns an expression e' that is roughly equivalent to

⟦let t = e in $(k t)⟧, where t ∈ A

In detail,

• Evaluating e' may kill registers in A (and only in A)

• The result of evaluating e' is equivalent to the result of evaluating
let t = e in e'' where t is an element of set A and expression e''
is produced by applying continuation k to t.

• If e has the form of a name y, then e' equals k y. That is, if e
is already in a register, bindAnyReg reuses that register; it does not
allocate a new one.

4

09Aknormalize.html#introduction

Less precisely, bindAnyReg binds the value of e into a newly allocated
register, unless e is in a register already. It then continues with the identity
of the register that holds e.

Function bindAnyReg need not manage the set of available registers.
That will be the job of the calling function, exp.
Implement bindAnyReg.

K-normalizing a primitive call

(8) Special-case primitives. Implement enough cases so that you can
K‑normalize a call to print, like this:

$ echo "(println 'first-steps)" | uft fo-kn
(let ([$r0 'first-steps]) (println $r0))

You’ll need these cases:

• A special case in exp that handles F.PRIMCALL (p, [e])
• A case in exp that handles F.LITERAL v
• A case in def that handles F.EXP e

The source-language expression F.PRIMCALL (p, [e]) should be
K‑normalized by recursively K‑normalizing e, binding the result to
a register, and generating a primitive call in K‑normal form. (A very
similar example can be found in a handout.) In step (18) you will
generalize this case to handle multiple arguments to a primitive.

The F.LITERAL v case you can figure out.

The F.EXP e case means an expression at top level, so that means
K‑normalizing e in a context where all registers are available and the
environment is the empty environment Env.empty.

After lab
Be alert to let*

You might be surprised by seeing let* in your debugging output, when you
haven’t done anything to support it. As always, let* is syntactic sugar for a
nested series of let expressions. My parser desugars let* using function letstar
in file vscheme-parse.sml. And my prettprinter resugars nested let forms into
let* , using function nestedBindings in file wppscheme.sml. So internally there
are only let and letrec; let* is only syntactic sugar.

The desugaring and resugaring enables us to work with more readable code.

Unit tests

Next you’ll build unit tests. They make testing everything else easier.

5

09Aknormalize.html#an-example
09Aknormalize.html#an-example
09Aknormalize.html#an-example

(9) Unit tests. Your source language is a subset of Unambiguous vScheme, and
the F.CHECK_EXPECT form includes strings representing both expressions.
To K‑normalize F.CHECK_EXPECT, all you need to do is generate a sequence
of the form (e₁; e₂) where e₁ calls primitive check and e₂ calls primitive
expect. Each primitive call will have the form @(t, v), where @ is P.check
or P.expect, t is a register holding the value of an expression and v is the
literal string describing the source code of the expression. Because such
a call is a primitive call taking exactly one register, the code will closely
resemble your K‑normalization of print in step (8). You may want to
write a helper function.

The F.CHECK_ASSERT form is similar.

In your def function, write cases that K‑normalize the F.CHECK_EXPECT
and F.CHECK_ASSERT forms. You will use primitives P.check, P.expect, and
P.check_assert. And since these forms are executed at top level, all regis-
ters are available. You’ll test this code in the next step.

(10) Start a test file. Test your work so far by creating file kntest.scm. This
file should contain first-order Scheme that your system can successfully
K‑normalize, generate code for, assemble, and run. Start with these three
tests:

;; F.LITERAL, F.CHECK_EXPECT, F.CHECK_ASSERT
;;
(check-expect (number? 3) #t)
(check-expect (number? 'really?) #f)
(check-assert (symbol? 'really?))

Confirm that everything works:

> uft fo-vo kntest.scm | svm
All 3 tests passed.

Easy cases

First-Order Scheme has a bunch of forms that neither allocate registers nor
manipulate environments. These forms are relatively easy to K‑normalize—
every subexpression uses the same set of available registers as its parent expression
(11) Local variables. Using the environment passed to exp as a parameter,

K‑normalize the F.LOCAL and F.SETLOCAL forms. Neither of these forms
has to allocate a register.1

You won’t be able to test local variables until you can create
some local variables—for example, using let or lambda. But once you’ve

1The disambiguator guarantees that every local variable is defined. It is up to the
K‑normalizer to build the environment correctly so that the lookup always succeeds. If your
environment lookup fails, either there is a bug in your disambiguator or there is a bug in your
K‑normalizer.

6

done step (20), come back and add test cases to kntest.scm, and document
them with comments ;; F.LOCAL and ;; F.SETLOCAL.

(12) Global variables. Using the environment passed to exp as a parameter,
K‑normalize the F.GLOBAL and F.SETGLOBAL forms.

• The F.GLOBAL form translates into a call to primitive function
P.getglobal.

• The F.SETGLOBAL form, like print, takes a parameter that has to be
allocated into a register. And its translation is nuanced: in Scheme
source code, F.SETGLOBAL is executed both for value and for side ef-
fect. But in K-normal form, primitive P.setglobal is executed only
for side effect. So the F.SETGLOBAL form has to be translated into
a let expression whose body has the form (setglobal(localname,
globalname); localname).

K-normalize these two forms. Add test cases to kntest.scm and document
them with comments like those in step (11).

Now K-normalize the F.VAL definition form. It desugars into a
F.SETGLOBAL.

(13) Sequence. The Scheme begin form sequences the evaluation of a list of
expressions: none, one, or many. No registers have to be allocated or
preserved. An empty begin must evaluate to #f; a nonempty begin must
evaluate to the result of its last expression. To implement this semantics,
it will be useful to define a recursive helper function.

K‑normalize form F.BEGIN, add test cases to kntest.scm, and document
the test cases.

(14) Control flow. K‑normalize the F.IFX and F.WHILEX forms. Both forms
include a condition that must be stored in a register.

• The F.IFX form is K‑normalized by evaluating the condition, binding
the result to a temporary register t, and using t in the K‑normal form
if. This transformation works because the condition is evaluated
only once.

Also, once the condition has been evaluated, the decision is made, so
register t is dead. That means register t is available to be reused in
both branches.

• The F.WHILEX form is K‑normalized by allocating an available regis-
ter t that does not bind the result of the expression. Instead that
register is used in the K‑normal form as in while t := e do e', where
the condition is evaluated multiple times. Register t is assigned to
on every trip through the while loop.

As in the if, register t is available to be used in both e and e'.

7

K‑normalize F.IFX and F.WHILEX, add test cases to kntest.scm, and docu-
ment the test cases.

Environment manipulation: Function definitions

The define form K‑normalizes into an assignment to a global variable. The
right-hand side of the assignment is FUNCODE, and the key is to get the right
names and environments:

• Formal parameters arrive in registers 1 through 𝑛, where 𝑛 is the number
of formal parameters.

• The body should be K‑normalized in an environment where the function’s
name stands for register 0 and the name of each formal parameter stands
for the corresponding register. The environment can be built using foldl
or a recursive function.

When the body is K‑normalized, registers 0 to 𝑛 are unavailable; the first
available register is register 𝑛 + 1.

To set the global variable, you need to put the FUNCODE in a register. At top
level, register 0 is always available.

(15) Function definition. In your def function, K‑normalize the F.DEFINE form.

Add a simple test case to your kntest.scm and document it. (Until you
can call the function, about all you can do is apply a type predicate like
function?.)

Expressions that allocate multiple registers: Calls

Calls are the first form for which your K-normalizer has to manage the set of available
registers. For example, if you are K-normalizing (append e₁ e₂), the register that
holds the normal form of e₁ is not available while e₂ is being normalized. And the
computation of the available-register set depends on the form of the call: A primitive
call may use any available registers; a function call must use consecutive available
registers. Each form therefore requires a different register-allocation policy. But
they are otherwise K-normalized using the same algorithm. You will implement this
algorithm using a higher-order function that takes the register-allocation policy as
a parameter.
The core of the algorithm, which implements both calls, is to bind a list of
actual parameters to a nest of let-bound names. Compared with bindAnyReg,
there are two complications:

• The actual parameters can’t be K‑normalized independently: register al-
location for later parameters must be affected by the registers chosen
for earlier parameters. For example, if I am K‑normalizing a call like
(cons e₁ e₂), and if the value of e₁ is bound to register t₁, then t₁ is not

8

available to be used in the computation of e₂. This dynamic can be seen
in the example K-normalization of (+ 2 3).

• Primitive calls and function calls are governed by different register-
allocation policies: a primitive can take its arguments in any registers,
but a function must have its arguments in consecutive registers. For
example, a call like (append xs ys) might be K‑normalized into code like
this:

let r7 = append in let r8 = xs in let r9 = ys in call r7 (r8, r9)

This call would kill (that is, potentially overwrite) registers numbered r7
and up.

(16) Warmup: Normalize a primitive with two arguments. Add another special
case in exp that handles F.PRIMCALL (p, [e1,e2]). This case should create
a continuation that removes a temporary register from the available set.

Test your code as follows:

$ echo "(println (car (cons 'second-step '())))" | uft fo-vo | svm
second-step

There are too many cases to deal with them all by hand. Instead, you will define
a higher-order function that handles every first-order form that takes multiple ar-
guments. This function will be parameterized by a register-allocation policy. The
type of a policy is the same as the type of bindAnyReg:

type policy = regset -> exp -> (reg -> exp) -> exp

A policy looks at the exp and regset and chooses a reg to be passed to the
continuation (which has type reg -> exp).

You will define a function nbRegsWith, which takes a normalizer and a policy
and returns a register-allocation function for lists of items.

type 'a normalizer = regset -> 'a -> exp
val nbRegsWith : 'a normalizer -> policy ->

regset -> 'a list -> (reg list -> exp) -> exp

The name is short for “K‑normalize and bind to registers.” With the help of a
suitable parameter of type 'a normalizer, this function can K-normalize any list,
but in this module, you will use it only to normalize lists of first-order Scheme
expressions.

By contract, nbRegsWith normalize p A es k returns a nested let expression
that

• Sequentially K‑normalizes each expression in es (using normalize)

• Sequentially binds each K‑normalized expression to a register in A accord-
ing to policy p

9

09Aknormalize.html#an-example

• Marks registers bound to earlier expressions as “not available” for the
K‑normalization of later expressions.

• Finishes with expression k ts, where ts is the list of registers to which
expressions in es are bound

What is the continuation k of type reg list -> exp? It’s a function that takes
the list of registers that hold the values of expressions es. When you get a list
of registers, most likely you are going to use it to make a primitive form like
@(x₁,…,xₙ) or a function-call form like x(x₁,…,xₙ). If the continuation has a
form like fn ts => e' , then the result returns by nbRegsWith will be morally
equivalent to this:

let t₁ = e₁ in ⋯ let tₙ = eₙ in e'

The moving parts all cooperate:

• Policy p finds registers t₁ to tₙ in A
• Function normalize puts each expression e₁ through eₙ into K-normal

form.
• Continuation k builds e'
• Function nbRegsWith orchestrates it all.

If your continuation-passing skills are rusty, have a look at the example of map
in continuation-passing style.

You will implement nbRegsWith and use it to K‑normalize both forms of call.

(17) Implement function nbRegsWith. Define function nbRegsWith. The key
ideas are as follows:

• Function nbRegsWith is an ordinary recursive function that consumes
a list, and it deals with just two cases: the input list is either []
or e::es.

• When the input list is [], the result is just k [].

• When the input list is e::es, nbRegsWith must K‑normalize e, bind the
result to a register according to policy p, then continue by recursively
binding the remaining es. The binding to e may use any of the
available registers in A. The recursive bindings to es may also use any
of those available registers except the register to which e is bound.

Each of these bindings requires a continuation: the call to p needs a
continuation that expects the single temporary to which e is bound.
And the recursive call needs a continuation that expects the list or
temporaries to which the remaining es are bound.

The key to getting the code right is constructing the right continuations to
pass to both the policy and the recursive call. These are new continuations
that you will have to synthesize using fn. (You might wish to review the
synthesis of new continuations in the Boolean-formula solver from CS 105.)

10

If your continuations have the right types and they remove the register
that binds e, you are probably in good shape.

List processing in continuation-passing style: An example

If your continuation skills are rusty, check out this example where I trans-
form an ordinary recursive map into a CPS map'. The standard (“direct
style”) map looks like this:

val map : ('a -> 'b) -> 'a list -> 'b list
fun map f = []
| map f (x :: xs) =

let val y = f x
val ys = map f xs

in y :: ys
end

The intermediate results are let-bound to names y and ys for this reason:
in the continuation-passing version, those names become lambda-bound
names (parameters to a continuation written with fn). And the function
parameter is also in continuation-passing style:

val map' : ('a -> ('b -> 'answer) -> 'answer)
-> 'a list
-> ('b list -> 'answer)
-> 'answer

fun map' f' [] k = k []
| map' f' (x :: xs) k =

f' x (fn y => map' f' xs (fn ys => k (y :: ys)))

Function map' synthesizes two continuations: one passed to f' which re-
ceives y, and one passed to the recursive call, which receives ys. These
two continuations cooperate to build the list y :: ys which is then passed
to the original continuation k.

Your function nbRegsWith will be structured along similar lines. In the
role of function f', you will provide a policy, and the 'answer type will
be exp. And you will synthesize two continuations: one that takes a single
temporary register, and one that takes the rest of the temporary registers.

Confirm that nbRegsWith has the right type by placing the following lines
after the definition of nbRegsWith:

val nbRegsWith : 'a normalizer -> policy -> regset -> 'a list -
> (reg list -> exp) -> exp
= nbRegsWith

(18) Implement primitives. Retire your special-case primitive code from
step (8). Replace it with general-case code that K‑normalizes

11

F.PRIMCALL (p, es), where list es may contain any number of ex-
pressions.

The template I provide you for the exp function includes an internal def-
inition of nbRegs, which normalizes and binds expressions in the current
environment rho. Your case for F.PRIMCALL should use nbRegsWith with
bindAnyReg as the policy.

Add suitable test cases to kntest.scm and document them.

(19) Define a consecutive-register policy. Define a function

val bindSmallest : regset -> exp -> (reg -> exp) -> exp

that behaves just like bindAnyReg, except it doesn’t optimize for the case
of an expression already in a register. That is, bindSmallest e A k returns
let t = e in e'' where t is the smallest register in set A and expression
e'' is k t. When used sequentially, bindSmallest will produce consecutive
registers.

If you like, you can refactor bindAnyReg so that it and bindSmallest share
some code.

(20) Implement function calls. K‑normalize the F.FUNCALL form. You will need
to use bindSmallest to put the function in the smallest available register,
then K‑normalize the arguments using nbRegs with bindSmallest as the
policy. When K-normalizing the arguments, do not overwrite the register
that holds the function.

Like the helper function nbRegsWith itself, this one is all about finding the
right continuations.

(21) Test function calls. Add simple test cases to kntest.scm and document
them.

• Tests for function calls and function definitions
• Tests for local variables that you put off in step (11)

For a more ambitious test, try un-nesting calls, as in this example from a
functional Quicksort:

(append (qsort (filter left? rest))
(cons pivot (qsort (filter right? rest))))

K-normalizes to

(let* ([$r0 append]

[$r1 qsort]
[$r2 filter]
[$r3 left?]
[$r4 rest]
[$r2 ($r2 $r3 $r4)]

12

[$r1 ($r1 $r2)]

[$r2 pivot]
[$r3 qsort]
[$r4 filter]
[$r5 right?]
[$r6 rest]
[$r4 ($r4 $r5 $r6)]

[$r3 ($r3 $r4)]
[$r2 (cons $r2 $r3)])

($r0 $r1 $r2))

Expressions that allocate multiple registers: Scheme’s let

Like a call, a let binds a sequence of expressions to a list of registers. What’s
interesting is the K‑normalization of the body: The body needs to be normalized
in an environment that knows in what register each let-bound name is placed.
And in the body, none of those registers are available.

(22) Review the difference between let and let*. The difference is entirely in the
environments. In a let form, no bound names are visible on any right-hand
side. All right-hand sides are evaluated in the same environment. In a
let* form, names bound in earlier bindings are visible on the right-hand
sides of later bindings. Every right-hand side is evaluated in a different
environment.

Optional: Grab the �Scheme interpreter from Chapter 5 of Programming
Languages: Build, Prove, and Compare (page 310), and compare how
environments are manipulated in the interpretation of let and let*.

Create test cases in first-order Scheme that shows the difference between
let and let* with the same bindings. Be sure that at least one test
case includes something of the form (let ([x y] [y x]) …), where both
x and y are local names. (Function parameters will do.) Confirm your
understanding by making sure your tests pass the vscheme interpreter.

(23) Implement let bindings. K‑normalize the F.LET form. I encourage you to
use nbRegs; you can figure out an appropriate policy. The continuation
will have to remove all the bound registers from the available set. You
can implement this operation in a special-purpose recursive function, or
you can use a fold with a “flipped” version of function --.2

Some functions in the [ListPair].meta interface are useful here.

Although F.LET bindings “feel” parallel, in K-normal form all the names
are bound sequentially. The parallel feel comes entirely from the fact that

2You’ll have to define flip.

13

all the right-hand sides are K-normalized in the same environment.

Run your code on the let binding from the test case you wrote in step (22).
If you choose the bindAnyReg policy and if both x and y are already in
registers, the swap will generate no code at all. Your UFT will simply
K‑normalize the body of the let using a different environment in which the
names are swapped. With the bindAnyReg policy, that’s expected behavior,
not a bug. If you have concerns about that behavior, choose a different
policy.

Add your tests to kntest.scm. Document them.

Integration test

(24) Predefined functions. Use the vscheme interpreter to extract the first-order
predefined functions:

vscheme -predef | grep -vw lambda > fopredef.scm

Confirm that your system can compile and load all these functions:

uft fo-vo fopredef.scm | svm

There should be no output: no test results, no complaints.

If so, place your compiled functions in the build directory by run-
ning

make predef

from the vscheme directory.

(25) End-to-end testing. Demonstrate the complete viability of your system
via end-to-end testing:

• If you are now taking or have taken CS 105 at Tufts, create a file
scheme105.scm that contains your complete solution to the CS 105
scheme homework (the third homework) of whatever version you took.
Update the source code as follows:

– If any check-error form takes more than one line, remove it.

– If any definitions or tests depend on lambda (likely if you did
arg-max), remove those also.

Confirm that all the check-expect and check-assert tests pass with
both the uscheme and vscheme interpreters.

• If you have not taken CS 105 at Tufts, implement a recursive merge
sort on a list of integers, not higher-order. Write test cases. Put your
results in a file msort.scm. Confirm that the tests pass with vscheme.

Confirm that your stuff compiles with your UFT and that all tests pass
with the SVM. In your bin directory I have provided a shell script that

14

compiles and runs first-order code with the first-order predefined func-
tions:3

$ run-fo-with-predef scheme105.scm

If anything goes wrong, take notes, which you will use in a learning
outcome.

(26) Congratulate yourself. Congratulations! You have implemented a com-
plete (if small) first-order language that can run efficiently on commodity
hardware. We won’t stop now—we’ll be doing higher-order functions next
week—but this is a good time to recognize just how far you’ve come.

What and how to submit
(27) On Monday, submit the homework. In the src/uft directory you’ll find a

file SUBMIT.09. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw09 src

or if you keep an additional tests directory,

provide cs106 hw09 src tests

(28) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection09 REFLECTION

Overview of the code
Code you will write or edit
uft.sml The UFT driver, which you have edited before. You’ll be adding an

new language and translation, just as you did in modules 5 and 6.
3This shell script has some sanity checks. For example, if your compiled predefined func-

tions are older than your UFT, it complains.

15

knormalize.sml You’ll define your K‑normalizer here.

Code you will need to understand
env.sml A definition of environments. Your find calls should always succeed, so

you should not catch the NotFound exception—if that exception is raised,
it indicates a bug in your UFT.

foscheme.sml Defines First-Order Scheme, which is a subset of Unambiguous
vScheme. The ASTs are identical, except that First-Order Scheme lacks
lambda and letrec.

New code that you don’t need to care about
foutil.sml Embedding and projection for First-Order Scheme. This is the easi-

est embedding/projection pair ever. Because the code is boring and repet-
itive, I’ve written it for you.

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Craft. You can add a new pass to the UFT driver.

2. Continuations and register allocation. You can define a continuation that
reserves an allocated register, preventing its reuse.

3. Continuations and register reuse. You can define a continuation that
reuses an allocated register.

4. Functional programming. You can use higher-order functions to avoid
near-duplicate code.

5. Calling conventions. You can implement a procedure calling convention.

6. New calling conventions. You can identify implications of changing calling
conventions.

7. Syntactic-form testing. Your K‑normalizer is comprehensively tested.

8. Integration testing. Your K‑normalizer passes an integration test.

9. Functional languages and mutation. You can explain how the possibility
of mutation affects choices available to the UFT.

Learning outcomes available for depth points:

10. Let-floating [3 points]. Use the equations of translation (the function)
from module 6 to show when the following two expressions have the same
translation:

16

06Atranslation.html#equations-of-translation

• let y = (let x = e₁ in e₂) in e₃
• let x = e₁ in (let y = e₂ in e₃)

Hint: it works when x is not free in e₃ and in one other special case.

Then deploy your insight in your K‑normalizer to rewrite the first form to
the second form. You’ll know you’ve got it right when your uft fo-kn pro-
duces no nested let expressions—my prettyprinter will sugar everything
into let*.

Hint: define a so-called “smart constructor” to use in place of K.LET.

11. More powerful if instructions [3 points]. Extend your SVM to include
two-register if instructions that can compute a Boolean expression and
“skip next if false”, all in a single VM instruction. For example, if r1 < r2.
Similarly, extend your SVM to include a one-register if instruction that
uses the type predicate null? in the condition.4 Extend your K‑normal
form and your K‑normalizer to exploit these instructions. Demonstrate
your extensions and measure how much the extension can shrink your
generated VM code.

12. Small-integer literals [3 points]. Extend your SVM to include instructions
in R2U8 or R2I8 format, so that expressions like x > 0 or n + 1 can be
computed using a single VM instruction. Extend your K‑normalizer to
exploit these instructions. Demonstrate your extensions and measure how
much the extension can shrink your generated VM code.

13. Optimized let expressions [2 points]. K‑normalize let by defining a hybrid
policy that results in code that is superior to whatever you would get by
using a one-size-fits-all policy in step (23).

14. Efficient compilation of long list literals [1 point]. Using strict left-to-right
evaluation for long list literals uses a number of registers proportional to
the length of a list. That means, for example, that we can’t compile a
literal list with 15 numbers, because we would run out of registers. But if
the first argument to cons is a literal value, we can change the evaluation
order to compute the second element first. Do so, and confirm that your
UFT can compile a literal list of numbers, no matter how long, using only
two registers.

15. Polymorphic code generation [1 point]. Assuming you’ve already imple-
mented A-normal form, define your K-normalizer as a functor so that your
K-normalizer can generate both K-normal form and A-normal form, just
by applying the functor to two different actual parameters.

16. Bignums in vScheme [2 points]. (Not related to K-normalization.) Re-
purpose your SML bignum implementation from CS 105 to work inside
the vScheme interpreter. Add a suitable type of value, and update the
arithmetic primitives so they do mixed arithmetic. (Alter higher-order

4Other type predicates optional.

17

06codegen.html#ANF-depth

function arithOp to handle mixed inputs and to provide a single point of
truth about promotion rules.)

17. Bignums in the SVM [4 points]. (Not related to K-normalization.) Im-
plement bignum arithmetic in the SVM. You can port one of your imple-
mentations to C, or you can port my array-based implementation from
�Smalltalk. Or you can try using the GNU multiprecision library (gmp).5

How to claim the project points
1. To claim this point, submit source code that compiles and builds a uft

binary that understands what fo-kn is asking for.

2. To claim this point, identify a line of your code that contains a continua-
tion passed to bindAnyReg, bindSmallest, or a similar function, and explain
how the continuation reserves the allocated register to prevent its reuse.

3. To claim this point, identify a line of your code that contains a continua-
tion passed to bindAnyReg, bindSmallest, or a similar function, and explain
how the continuation does not reserve the allocated register but rather al-
lows its immediate reuse.

4. To claim this point, identify (by line number) every case in your
K‑normalizer that binds a list of expressions to a list of registers, and
confirm that each case uses the same higher-order function.

5. To claim this point, identify the lines of your code where it is determined
that a function’s incoming actual parameters are in consecutive registers
starting at register 1.

6. Suppose we change the calling convention so that the function register and
argument registers are not killed by a call. Instead they are required to
have the same values after the return that they had at the call. With this
change, it becomes very difficult to use the tailcall instruction except
for direct recursion. And other changes, unrelated to tail calls, might also
be required in the UFT. To claim this point, identify one such required
change, either in the K-normalizer or in the code generator.

7. To claim this point, submit a file kntest.scm in which every value con-
structor in foscheme.sml, for both exp and def types, is exercised by some
test. Each test must be documented by a comment that names the value
constructor or value constructors that it tests. And uft fo-kn kntest.scm
must actually generate code. (It is not necessary for the generated code
to run or for all the tests to pass.)

8. To earn this point, your system must run and pass all the tests in
scheme105.scm. To claim the point, let us know that you accomplished
this goal, and in the reflection, tell us how many tests are included in the

5Field reports suggest that gmp is a mixed blessing. At best.

18

file. If anything went wrong in your first run of step (25), let us know one
thing that went wrong and how you fixed it.

9. To claim this point, justify your choice of policy for K‑normalizing a let
expression in step (23). Justification should include an explanation of
why another policy is inferior and should be demonstrated with a code
example.

Keep in mind that vScheme local variables are mutable; that’s what makes
this issue difficult.

19

	Introduction
	The module step by step
	Before lab
	Getting your UFT code ready for lab
	Getting your brain ready for lab

	Lab
	Register sets
	Allocating registers in continuation-passing style
	K-normalizing a primitive call

	After lab
	Be alert to let*
	Unit tests
	Easy cases
	Environment manipulation: Function definitions
	Expressions that allocate multiple registers: Calls
	Expressions that allocate multiple registers: Scheme's let
	Integration test

	What and how to submit

	Overview of the code
	Code you will write or edit
	Code you will need to understand
	New code that you don't need to care about

	Learning outcomes
	Outcomes available for points
	How to claim the project points

