
Module 10: Closure Conversion

Introduction
This week you’ll finish your UFT by translating pure, higher-order Scheme into
first-order Scheme.

• What am I doing?

– Implement lambda by adding closure conversion to your UFT. You’ll
implement a limited form that does not support mutation of variables
captured in closures.

• Why am I doing it?

– You’ll learn how first-class, nested functions are implemented—and
you may be surprised how simple they can be. And you’ll learn a
realistic technique that scales to industrial compilers.

– You’ll skip mutation because putting mutable data in closures rarely
makes sense. Mutable data can be dealt with through a variety of
techniques, but the easy one is to implement an additional pass that
does a little static analysis, then moves captured mutable variables
to the heap. Such a pass can be implemented for depth points.

– Closure conversion illustrates every possible step in adding a new
feature to a virtual-machine system: new syntax (lambda), new VM
support (a closure type and three supporting instructions), a new
compiler pass (closure conversion), small updates to existing com-
piler passes (K-normalization and code generation), and new VM
instructions.

• How?

– Before lab, you’ll read about how closures work: each lambda is turned
into a record allocation. And you’ll see how closure records can be
simulated in vScheme by embedding them as lists.

– In lab you’ll closure-convert a couple of lambdas by hand, and you’ll
implement the embedding you read about before lab.
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– After lab you’ll build the closure-conversion pass and the necessary
extensions throughout the UFT and SVM system. Not too challeng-
ing, but you’ll touch a lot of code.

– At the end of the week, you’ll submit a translator that includes pass
ho-cl (for debugging) as well as ho-kn, ho-vs, and ho-vo (to run the
code). Your system (translator plus VM) will be able to run any
mutation-free Scheme code from CS 105.

The module step by step
Before lab: New code, free variables, and closures

(1) If necessary, refresh your memory on free variables. I recommend
section 5.6 from Programming Languages: Build, Prove, and Compare,
pages 315–317. Before lab, have a look at the first three paragraphs and
the examples of free variables.

If you’ve done the “Improving closures” problem in CS 105, you might
find that worth reviewing as well. It will help you understand the ideas,
but there’s nothing specific there that you need to review before lab.

If you already understand and remember the ideas of free variables, you
can skip this step.

(2) Read about closure conversion. Read the handout How Closures Work.
Before lab, the key sections are the introduction, how it works, and em-
bedding.)

This the key step.

(3) Download updates. Update your git repository in two steps:

A. Be sure all your own code is committed. Confirm using git status.

B. Update your working tree by running git pull (or you might possibly
need git pull origin main). I hope to avoid merge conflicts.

Verify that your UFT builds with the new code.

If you don’t get to this step, you’ll be able to complete the first part of
the lab but not the second part.

Lab: Closure-conversion highlights
This lab will give you the highlights of closure conversion, as well as all of the
ideas you need to complete the module. A lot of details will follow, but if you
have a productive lab, the details won’t give you trouble.
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The idea of closure conversion is to turn lambda into a data structure.
(A data structure is something we already know how to implement.) In lab,
we’ll work with the two lambdas in this version of Quicksort:1

(define o (f g) (lambda (x) (f (g x))))

(define qsort (xs)
(if (null? xs)

'()
(let* ([pivot (car xs)]

[rest (cdr xs)]
[right? (lambda (n) (> n pivot))]
[left? (o not right?)])

(append (qsort (filter left? rest))
(cons pivot (qsort (filter right? rest)))))))

You’ll closure-convert this code by hand. To run the converted code, you’ll need
a test case.

[Click for a test case]

(define iota^ (n)
; return reversed list of natural numbers 1..n
(if (= n 0) '() (cons n (iota^ (- n 1)))))

(check-expect
(qsort '(65 15 87 42 62 45 6 81 53 34 33 82 79 7 17 39 71 18 98 92 77 41 51 16 86 30 49 10 4 68 35 52 69 12 85 36 47 5 1 61 74 64 31 80 25 29 93 78 72 24 99 48 76 19 66 70 3 56 23 32 84 100 91 58 20 60 26 37 97 54 46 13 21 63 28 14 59 67 38 88 57 40 55 94 11 95 22 44 27 9 83 50 43 8 90 73 75 96 89 2 ))
(reverse (iota^ 100)))

Let’s get started!

(4) Confirm that vscheme behaves as expected. Compile the vscheme interpreter
by running make mosml in your src/vscheme directory.

Capture qsort and its test case from the web browser and put them in file
qsort.scm.

Confirm that the test passes:

$ vscheme < qsort.scm
The only test passes.

Make a copy of qsort.scm in file qsort-orig.scm.

(5) Closure-convert Quicksort by hand. The closure handout describes three
species of variables: global, local, and free. Start by identifying these
species in the two lambda expressions in file qsort.scm.

1Quicksort is used for demonstration purposes only. Quicksort is great for sorting a mutable
array. An immutable list, not so much.
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A. The lambda in the o function contains names f, g, and x. Classify
each of these names as global, free, or local.

B. The lambda in the qsort function contains names >, n, and pivot.
Classify each of these names as global, free, or local.

C. Now rewrite each of these lambda expressions to closure-convert the
code by hand:

• Each lambda becomes a closure record, which contains revised
code and the values of free variables.

• In the vScheme embedding (which is what you are writing), the
closure record is created by calling mkclosure with two arguments:
(1) the revised code and (2) a list containing the values of the
captured variables.

• The revised code is derived from the original lambda. It is also
a lambda, but it acquires a new, first parameter $closure. And
internally, every reference to a free variable is replaced by code
that extracts the variable’s value from its slot in the $closure
record.

The extraction should be implemented using the predefined
vScheme function CAPTURED-IN. When r is a list that represents
the embedding of a closure record, (CAPTURED-IN i r) returns
the value stored in slot number i of the closure. Slots are
numbered from 0.

If you’re not certain what the embedded code is supposed to look like,
have another look at the embedding of flip in the closures handout.

D. Run your edited qsort.scm with the vscheme interpreter and confirm
that the test still passes:

$ vscheme < qsort.scm
The only test passes.

(6) Embed closure-converted code. Now shift your attention the UFT. This
part of lab will solidify your understanding of closure representation.

In file clscheme.sml, write the embedding for the C.CLOSURE and C.CAPTURED
forms. This is the embedding you just did by hand. The C.CLOSURE form
carries a pair that holds the revised code and the free variables. The
C.CAPTURED form contains only a slot number; it always refers to a slot in
the current function’s closure.

To generate Scheme code, generate APPLY nodes that call predefined
vScheme functions like mkclosure or CAPTURED-IN.

Verify that your UFT builds.
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After lab
The rest of the module should proceed in an orderly, methodical way. You’ll
touch a lot of different files, so pace yourself. If you wait until Monday, you’ll
have a rough time.

You’ll proceed downward in stages:

• Implement the closure conversion you’ve done by hand.
• K‑normalize closures and references to captured variables.
• Generate code for those K‑normal forms.
• Implement new instructions to support the run-time representation of clo-

sures.

I recommend doing the instructions before the code generator—that way you’ll
know exactly what you’re targeting.

In the last part of the module, you’ll visit the entire stack again, this time to
add mutual recursion via letrec.

Closure-converting non-recursive lambdas

Closure conversion is small compared to the infrastructure needed to support it.
That’s typical; new features often require a lot of infrastructure.

(7) Change the type of your K‑normalizer. Your K‑normalizer will eventually
have to deal with two new forms; that’s step (14). For now, go to file
knormalize.sml and make the following changes:

• Globally search for FirstOrderScheme and replace it with Closed-
Scheme.

• Extend your K‑normalizer function exp with three new pattern
matches: F.CLOSURE (lambda, captured), F.CAPTURED i, and
F.LETREC (bindings, body). For now, each right-hand side should
call Impossible.exercise ``CLOSURE'' or something similar.

(8) Complete the UFT driver. Confirm that your git pull has given you three
new materializers in file uft.sml: HOX_of, HO_of, and CL_of. Then make
these changes:

• Change your function KN_reg_of to use the CL_of materializer instead
of your old FO_of materializer.

• Add these cases to your translate function:

| CL => CL_of inLang >>> ! (emitCL outfile)
| HO => HO_of inLang >>> ! (emitHO outfile)
| HOX => HOX_of inLang >>> ! (emitHO outfile)

Because HO and HOX have the same internal representation, they share
an emitter.
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• Remove the wildcard case from your translate function.

Confirm that your UFT compiles.

(9) Identify free variables. In file closure-convert.sml, define function free
of type X.exp ‑> X.name S.set. (You can confirm the type by putting
val _ = free : X.exp ‑> X.name S.set after the definition of free.)
The S is an abbreviation for the Set module defined in file set.sml, which
includes such operations as set union, set difference, and so on.

The free variables of an expression are defined by proof rules that appear
in section 5.6 from Programming Languages: Build, Prove, and Compare
(pages 315–317). Those proof rules are expressed in terms of set member-
ship, and what you need is a set of names. So the rules require translation:

• If there is a single way to prove membership, as in the X.LOCAL case,
that’s going to translate to a singleton set.

• If there are multiple ways to prove membership, as in the cases for
X.IF, X.BEGIN, X.FUNCALL, X.PRIMCALL, and several others, that’s going
to translate using function S.union'.

• If there’s a premise that says 𝑦 ∉ 𝐴, for some set 𝐴, that’s going to
translate using function S.diff.

The tricky cases are X.LET and X.LETREC. And X.GLOBAL—in the jargon of
closure conversion, a global variable is not a free variable.

(10) Implement the core cases of closure conversion. In file closure-
convert.sml, build out internal functions closure and exp.

Begin with exp. This function will be a lot like the disambiguator you
wrote in module 5: most cases are structural, and the real action is limited
to just a few key forms. In closure conversion, those key forms are lambdas
and references to local variables.

• When you get to the X.LAMBDA case, call internal function closure.
Leave closure unimplemented until you get the other code to type-
check.

• An attempt to read a local variable either stays as is or gets turned
into CAPTURE. An attempt to write a local variable either stays as is
or triggers an assertion failure (Impossible.impossible): if code tries
to write a captured variable, there is a bug elsewhere in the UFT.

• In the X.LETX case, match only the X.LET form. Postpone X.LETREC
until step (24). For now, use Impossible.exercise.

The disambiguation pass you implemented in module 5 distinguishes
global variables from other species of variables, but it does not distinguish
local variables from free variables—both are represented using the value
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constructor X.LOCAL. To distinguish local variables from free variables,
you’ll have to use the parameters passed to function closeExp.

Confirm that your UFT builds—that is, your code typechecks.

Next implement function closure. This function converts a higher-order
lambda into a closure. The environments require careful attention:

• The names that are captured by the new closure are the free names
of the lambda—or if you prefer, the names that are free in the body
but are not formal parameters. Set functions S.elems and S.ofList
may be useful here.

The names that are captured are not necessarily related to the cap-
tured list passed to closeExp. The body of the lambda is closed with re-
spect to these names, not with respect to the captured names passed
to closeExp.

• If a name on the free list is itself captured in the outer context—that
is, if it does appear on the captured list passed to closeExp—then it
has to go into the closure using the C.CAPTURED form, not as a local
variable. That’s why in Closed Scheme the captured variables in a
closure are represented as an exp list, not a name list. The easiest
way to manage this conversion is to get closeExp captured to do it
for you recursively.

Verify that your UFT builds.

(11) Closure-convert definitions. Implement function close in file closure-
convert.sml. The definition forms get closed in the same way as expression
forms, except that a definition never occurs inside a let or a lambda, so it
does not capture any variables. Your conversion should preserve structure
(val to val, define to define, and so on). The heavy lifting will be done
by calling closeExp with an empty list of captured variables.

Verify that your UFT builds.

(12) Test closure conversion. Try out your closure conversion on the copy of
Quicksort you made in step (4):

uft ho-cl qsort-orig.scm | less

The results may be a little hard to read, but look for CAPTURED-IN—you
should be able to spot the uses and decide if they are OK.

If things look good, confirm that you can run the closure-converted, re-
embedded code:

$ uft ho-cl qsort-orig.scm | vscheme
The only test passed.
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Ripples downstream: K‑normalization

You have now completed the main intellectual work of the module. The rest
of the module requires you to propagate the CAPTURED and CLOSURE forms
downstream—and eventually to deal with recursion.

(13) Add capture and closure forms to K‑normal form. In your knf.sml file,
define syntactic forms for a captured variable and a closure.

• A captured variable has exactly the same form as in Closed Scheme:
it’s defined by a small integer slot number that is known at compile
time.

• A closure is represented almost as it is in Closed Scheme, except the
value of every captured variable must be in a register. My code uses
ML’s withtype modifier to define a type synonym:

withtype 'a closure = ('a list * 'a exp) * 'a list
(* (funcode, registers holding values of captured variables) *)

I also define

type 'a funcode = 'a list * 'a exp (* lambda with no free names *)

Add these forms to your embedding in file embedkn.sml. You can clone
and modify the embedding you defined in clscheme.sml. And add them
to your renamer in file knrename.sml.

To get this code to compile, you will have to extend your code generator
with two new cases. For now, leave them as calls to Impossible.exercise.

Verify that your UFT builds.

(14) K‑normalize captured and closure forms. Extend your K‑normalization
function to handle the two new cases.

• The CAPTURED case has no subexpressions, so it requires almost no
thought.

• In a CLOSURE, if the list of captured variables is empty, then the closure
can be K‑normalized just as a funcode without any free names. This
little optimization is worth doing because it makes the code both
faster and easier to read.

If the list of captured variables is not empty, then the captured vari-
ables have to be put in registers, after which a K‑normal form closure
can be built by K‑normalizing the funcode part.

To put the captured variables in registers, use nbRegsWith (exp rho)
from the K‑normalization module. The continuation allocates the
closure.
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Functions have to be K-normalized in both of the cases above, and they
will be K-normalized in a third place when you K-normalize LETREC. So
it’s worth defining a helper function. Mine is

val funcode : F.funcode ‑> reg K.funcode

This function does almost the same thing as the code you have written
that K‑normalizes the F.DEFINE form: the formal parameters go into an
environment, and every nonzero register that is not used to hold a formal
parameter is available. The only difference from F.DEFINE is that in a
lambda expression, the function has no name, so the environment does not
bind a function name to register 0.

Note: In a funcode closure, the formal parameters of the funcode are
referred to by name, but captured variables are not. During the closure-
conversion process, every reference to a captured variable is replaced by
an expression of the form F.CAPTURED 𝑖.

(15) Test K‑normalization. For an eyeball test, I would try to K‑normalize the
predefined functions o and curry.

echo '(lambda (f g) (lambda (x) (f (g x))))' | uft ho-kn
echo '(lambda (f) (lambda (x) (lambda (y) (f x y))))' | uft ho-kn

For a full test, you should be able to K‑normalize qsort-orig.scm and then
run the embedded code in the vscheme interpreter:

$ uft ho-kn qsort-orig.scm | vscheme
The only test passed.

Ripples downstream: Code generation and VM instructions

The SVM already has the data structures you need to finish the module. In par-
ticular, it has the struct VMClosure described in the closures handout. It remains
only for you to define, implement, and generate the relevant instructions.

(16) Implement new VM instructions. To create and use closures, you’ll need
three new VM instructions:

• You’ll need an instruction that allocates a new closure. This instruc-
tion should take three operands: the register in which to place the
new closure, the function that should go in the f field, and a lit-
eral saying how many slots to allocate for captured variables. This
instruction will resemble the instruction for cons.

I’ve called mine mkclosure, and I unparse it using the template
"rX := closure[rY,Z]".

• You’ll need an instruction that loads the value of a captured variable
from a slot. This instruction should take three operands: the register
into which the value should be loaded, the register holding the closure,
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and the literal index of the slot from which the value should be loaded.
This instruction will resemble the instruction for car or cdr, except
the slot index will be a field of the instruction, not hard-coded into
vmrun.2

I’ve called mine getclslot, and I unparse it using the template
"rX := rY.Z".

• You’ll need an instruction that stores the value of a captured variable
in a slot. This instruction should take three operands: the register
holding the closure, the register holding the value, and the literal
index of the slot into which the value should be stored.

I’ve called mine setclslot, and I unparse it using the template
"rX.Z := rY".

Implement these instructions by updating opcodes.h, instructions.c, and
vmrun.c.

(17) Modify call instructions so they understand closures. In vmrun, update
your implementations of call and tailcall so that the thing called can
be a function or a closure. The only difference is that instead of getting a
struct VMFunction straight out of a register, you put the value of funreg
in a C variable of type Value, then check the tag of that value.

• Supposing the variable is named callee, then if callee.tag shows
that callee is a function, you’ll call callee.f.

• If callee is a closure, you’ll instead call callee.hof‑>f.
• And if callee is neither a function nor a closure, that’s a checked

run-time error.

(18) Write utilities to generate the new instructions. In file asmutil.sml, extend
the signature of the AsmGen structure with these declarations:

val mkclosure : reg ‑> reg ‑> int ‑> instruction
(* x := new closure with k slots; x‑>f := y; *)

val setclslot : reg ‑> int ‑> reg ‑> instruction
(* x.k := y *)

val getclslot : reg ‑> reg ‑> int ‑> instruction
(* x := y.k *)

val captured : reg ‑> int ‑> instruction

Implement the first three by using A.OBJECT_CODE with the O.REGINT form
of object code. Implement captured by using getclslot with the closure
in register 0.

(19) Unparse the new instructions. In file asmparse.sml, add patterns that
2And you could consider bounds-checking the index against the nslots field of the closure.
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match the new instructions and that unparse them according to the tem-
plates you chose in file instructions.c in step (16).

(20) Generate code for closures. By now you know the data structure used
to represent a closure, you have the instructions needed to manipulate it,
and you have the utility functions that emit the instructions. It’s time to
go back and finish the code-generator cases that I told you to put off in
step (13).

• To fetch the value of a captured variable, fetch it out of its slot in its
closure, which is in register 0. Use A.captured or A.getclslot.

• To generate code that places a CLOSURE form into a register 𝑟,

a. Load the closure’s funcode into register 𝑟.
b. Using A.mkclosure, allocate the closure into that register.
c. Initialize the slots by emitting a sequence of instructions created

using A.setclslot.

Since a closure has to be translated in both toReg' and toReturn',
it may be worth creating a helper function. (If a CLOSURE form is
evaluated for side effect, it is simply discarded.)

During this step, the SML Basis Library function List.mapi could be
useful, but it is missing from Moscow ML. It’s defined as follows:

(* mapi : (int * 'a ‑> 'b) ‑> 'a list ‑> 'b list *)
fun mapi f xs = (* missing from mosml *)
let fun go k [] = []

| go k (x::xs) = f (k, x) :: go (k + 1) xs
in go 0 xs
end

(21) Test code generation. Eyeball your code generator by checking out results
for o and curry:

echo '(define o (f g) (lambda (x) (f (g x))))' | uft ho-vs
echo '(define curry (f) (lambda (x) (lambda (y) (f x y))))' | uft ho-vs

You can compare your results with mine:

My assembly code for o

r0 := function (2 arguments) {
r0 := function (1 arguments) {

r2 := r0⟨1⟩
r3 := r0⟨0⟩
r4 := r1
r3 := call r3 (r4)
tailcall r2 (r3)

}
r0 := closure[r0,2]
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r0⟨0⟩ := r2
r0⟨1⟩ := r1
return r0

}
global "o" := r0

My assembly code for curry

r0 := function (1 arguments) {
r0 := function (1 arguments) {

r3 := r0⟨0⟩
r0 := function (1 arguments) {

r2 := r0⟨1⟩
r3 := r0⟨0⟩
r4 := r1
tailcall r2 (r3, r4)

}
r0 := closure[r0,2]
r0⟨0⟩ := r1
r0⟨1⟩ := r3
return r0

}
r0 := closure[r0,1]
r0⟨0⟩ := r1
return r0

}
global "curry" := r0

Once these outputs look good, you can try Quicksort. I provide a script
run-ho-with-predef:

$ run-ho-with-predef qsort-orig.scm
The only test passed.

Recursive and mutually recursive lambdas

Every functional language provides a mechanism that enables internal recursion
and mutual recursion. In Scheme, it’s letrec. The ideas are the same ideas
you’ve already implemented, but the details can be fiddly. The key notion is
that both the right-hand side lambdas and the body of the letrec are translated
in the same environment with the same available registers: one in which each
lambda corresponds to a closure that is stored in a known register. The rest is
detail.

We’ll implement the letrec from vScheme or �Scheme, both of which require
that all the right-hand sides be lambdas. The general form of letrec that is
specified by the full Scheme standard can be translated into our simplified form
(Waddell, Sarkar, and Dybvig 2005).
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You’ll build letrec from the bottom up. Everything in the SVM is already in
place, so you’ll start with K‑normal form and code generation.

(22) Add LETREC to K‑normal form, and translate it. In both Closed Scheme
and K‑normal form, a LETREC recursively names closures, then evaluates an
expression in the body. Only the representation of closures has changed.

The LETREC should leverage the representation of closures that you already
have. Here’s what mine looks like in K‑normal form; compare it with the
definition in file clscheme.sml:

datatype 'a exp
= ...
| LETREC of ('a * 'a closure) list * 'a exp

The translation of a single closure allocates the closure and initializes the
slots. The translation of the closures in LETREC is the same, with one
proviso: all of the closures are allocated before any are initialized. If
every binding has the form (fᵢ, cᵢ), with a list of captured variables of
length kᵢ, then the translation is roughly like this:

let f₁ = mkclosure c₁ k₁ in
let f₂ = mkclosure c₂ k₂ in
�

let fₙ = mkclosure cₙ kₙ in
( set slots of f₁
; set slots of f₂

�
; set slots of fₙ
; e
)

where e is the translation of the body of the letrec.

What makes it mutually recursive is that the list of captured variables
in each closure may include some of the fᵢ registers, even though those
registers haven’t been initialized yet. That’s OK, because the when the
K‑normalizer emits the LETREC in step (23), it knows that the code gener-
ator will initialize all the f_i registers before storing them in the closure
slots (this step).

Complete this step in three parts:

A. Add LETREC to your K‑normal form in file knf.sml.

B. Add cases to files embedkn.sml and knrename.sml. (Your compiler
should complain that the relevant cases are missing)

C. Extend your code generator to translate LETREC using a sequence of
allocations and assignments.
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Because the body of a LETREC can have any of the three destinies (to be
returned, to be put in a register, or to be evaluated for effect), you’ll want
to implement the translation using a higher-order helper function that
is mutually recursive with toReturn', toReg', and forEffect'. A useful
template might look like this:

fun letrec gen (bindings, body) =
let val _ = letrec : (reg K.exp ‑> instruction hughes_list)

‑> (reg * reg K.closure) list * reg K.exp
‑> instruction hughes_list

(* one helper function to allocate and another to initialize *)
fun alloc (f_i, closure as (funcode as (formals, body), captures)) = ...
fun init (f_i, closure as (funcode as (formals, body), captures)) = ...

in hconcat (map alloc bindings) o hconcat (map init bindings) o gen body
end

and toReg' ...
and forEffect' ...
and toReturn' ...

Each of the other functions toReg', forEffect', and toReturn' will call
letrec while passing itself as the gen parameter.3

(23) K‑normalize LETREC. A LETREC is K‑normalized using ideas and techniques
you’ve already mastered. But a warning: I was not very successful reusing
the code. My LETREC translation is a full 20 lines of ML, which is a lot.
The code breaks down into these steps:

D. Allocate a fresh register for each closure.

Because the closures must all be allocated before any can be initial-
ized, we can’t use bindAnyReg or nbRegsWith for this step. I wound
up writing a helper function that takes one fresh register for each
binding in the LETREC. My list of fresh registers is called ts.

E. Create a new available-register set A': start with the currently avail-
able set and remove every register in ts.

If you like accumulating parameters, you could combine this step
with the previous step. Or you could do it using an inscrutable fold.

F. Create a new environment rho' in which to K‑normalize the right-
hand sides and the body.

The environment extends the current environment with a new bind-
ing for each name in the original letrec to the corresponding register
from the list ts. I used ListPair.foldrEq with E.bind.

3In the case of toReg', “passing itself” means passing toReg' dest where dest is the current
destination register.
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G. Using the new available-register set A' and the new environ-
ment rho', define a helper function that K‑normalizes a single
closure (in continuation-passing style).

Mine is called closure, and it has type

val closure : F.closure ‑> (reg K.closure ‑> exp) ‑> exp

It uses nbRegsWith (exp rho') to put all the captured variables into
registers.

H. Produce the K‑normal LETREC by using the continuation-passing map'
from module 9 with function closure o snd, where snd is defined by

fun snd (_, c) = c

This one gets a continuation that receives a list of K‑normal clo-
sures cs and returns a K.LETREC whose bindings zip together ts and cs
and whose body is K‑normalized using rho' and A'.

(24) Closure-convert LETREC. You’ll finish by completing the closure-conversion
function you started in step (10): in file closure-convert.sml, complete
the case for X.LET with the X.LETREC keyword. Now that you know what’s
going on, it’s simple: you closure-convert each right-hand side and the
body.

There’s just one subtle point: The source syntax in structure X permits
any expression on the right-hand side of a letrec, but the target syntax
in structure C permits only a lambda. Internal function closure already
produces target syntax of the right type, but the natural argument is too
general. I resolved the incompatibility with a function that assumes a
lambda check is done in the parser:

fun unLambda (X.LAMBDA lambda) = lambda
| unLambda _ = Impossible.impossible "parser failed to insist on a lambda"

Confirm that your UFT builds.

(25) Test mutual recursion. To test mutual recursion, try the example below.

Classic slow test of parity using mutual recursion

(define parity (n)
(letrec ([odd? (lambda (m) (if (= m 0) #f (even? (- m 1))))]

[even? (lambda (m) (if (= m 0) #t (odd? (- m 1))))])
(if (odd? n) 'odd 'even)))

(check-expect (parity 0) 'even)
(check-expect (parity 1) 'odd)
(check-expect (parity 30) 'even)
(check-expect (parity 91) 'odd)
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What and how to submit
(26) On Monday, submit the homework. In the src/uft directory you’ll find a

file SUBMIT.10. That file needs to be edited to answer the same questions
you answer every week.

To submit, you’ll need to copy your working tree to the department servers.
We recommend using rsync, but scp also works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw10 src

or if you keep an additional tests directory,

provide cs106 hw10 src tests

(27) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection10 REFLECTION

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Names. You understand all the species of names and where they come
from.

2. Global and local names. You understand the different behaviors of local
and global names.

3. Embedding and projection. You understand how to embed closures into
vScheme.

4. Embedded code and VM code. You understand how the embedding relates
to SVM code.

5. Environments. You understand the relationship between two different en-
vironments: the body of a function vs the environment where the function
is defined.
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6. Closure conversion and code generation. You can predict what will happen
if a captured variable is overlooked.

7. Closure conversion and mutable data. You can say what would happen if
we allowed arbitrary mutation in source code.

8. Mutual recursion. You know how to build the shared environment used
by a nest of mutually recursive functions.

99. Bonus point: aliasing. If 𝑥 and 𝑦 are distinct local variables, mutating 𝑥
never changes the value of 𝑦.

Learning outcomes available for depth points:

9. More accurate mutation analysis [2 points]. Improve my mutability detec-
tor so it is OK if a single function both mutates a variable and allocates
a closure—as long as no mutated variable is captured. Demonstrate with
a test case.

10. Mutable variables on the heap [3 points]. You implement the Mutabil-
ity.moveToHeap pass, which migrates every mutated, captured variable into
a mutable reference cell that is allocated on the heap. The pointer to that
cell is not mutated so it can safely be shared among multiple closures.
I provide some hints.

Demonstrate with the random-number generator or the resettable counter
from chapter 2 of my book.

11. Mutable variables in closures [3 points]. Improve your UFT so that a
closure slot can be mutated, provided a static analysis shows that the slot
is the only location in which the variable is referred to. You’ll need to write
the static analysis as well as update other UFT passes. Demonstrate your
results with the random-number generator from chapter 2 of my book.

12. Faster recursion for global functions [1 point]. When a recursive function
calls itself, the semantics of vScheme require that it look up its value in
the global-variable table. But in the absence of mutation, it’s safe for it
instead to call itself using register 0. Implement this improvement in your
UFT, and demonstrate it on a long-running recursion. (Try either a very
long tail recursion or an ordinary recursion that makes an exponential
number of calls.)

13. Reduced dependence on global variables [2 points]. To prevent testing code
from being compromised by malicious student code, Will Mairs and I
developed a source-to-source translation we call “bulletproofing.” Bullet-
proofing transforms each val and define by introducing a let form that
binds every free global variable with a local name. This transformation
guarantees that the resulting code depends only on the values of the global
variables at the time the definition is evaluated—if the values of those vari-
ables are changed afterward, the code will be unaffected.
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Implement the bulletproofing transformation, either as a source-to-source
transformation or as a pass inside your UFT. Using a long-running recur-
sion, measure the performance improvement.

This transformation is routinely recommend to Lua programmers as a safe
and easy way for them to speed up their code.

14. Mutable variables and let bindings [1 point]. The operational semantics
of (let ([𝑥 𝑦]) 𝑒) require that a fresh location be allocated for 𝑦 and
that the current value of 𝑥 be copied into that location. But if neither
𝑥 nor 𝑦 is mutated, it is safe for 𝑥 and 𝑦 to share a single location (a VM
register). While preserving the semantics of functions that mutate local
variables, implement this code improvement in your K-normalizer.

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth one point, and the
points can be claimed as follows:

1. To claim this point, give an example definition that contains a lambda
whose body includes at least one name in each of these of these categories:
a primitive, a global name that does not refer to a primitive, a local
name, and a captured name. In your answer, identify one name from your
example in each category.

2. To claim this point, identify the lines of your code that determine what
variables are captured by a closures, and explain why these variables never
include a global variable—even though according to the proof system,
global variables are technically “free.”4

3. To claim this point, identify the lines of source code in your UFT where
closures and captured variables are embedded into ordinary vScheme.

4. To claim this point, identify the lines of code in your vmrun.c that corre-
spond to the CAPTURED-IN function that is predefined in vScheme.

5. To claim this point, identify the lines of code in your K-normalizer that
K-normalize a closure, and explain how the code keeps track of which
variable is in what register both where the closure is allocated and inside
the closure.

6. Suppose that something goes wrong in your closure conversion and that
not all captured variables are properly identified. (Perhaps there is a bug
in the free function and it overlooks a free variable.) To claim this point,
identify the line of code in your K-normalizer where the compiler would
fail, and explain how the failure would manifest.

7. Imagine that the detector in Mutability.detect doesn’t work—it always
returns Error.OK applied to its argument, regardless of whether there are

4Which is why the CS 105 “improved closures” problem must capture global variables.
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bad mutations in the source code. Assuming that there are bad mutations
in the source code, if the detector doesn’t work, the compiler will fail
downstream. To claim this point, identify the line in your source code
where the failure should occur.

8. To claim this point, identify the lines of code in your K-normalizer that
build the environment used to compile all the right-hand sides and the
body of a LETREC.

99. If your submission for module 9 did not alias variables, you have already
earned the bonus point. Otherwise, to claim the bonus point, correct any
unsafe aliasing that your K-normalizer may have done, and invent a new,
original test case that shows the difference.

Whether you have already earned the bonus point or not, you may wish
to consider depth point 14.
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