
Module 11: Garbage Collection

In this module you’ll recycle memory that is allocated on the VM heap, so that
vScheme programs can allocate far more memory than the SVM actually takes
from the operating system.

• What am I doing?

– Implement a garbage collector, which reuses old cons cells, closures,
and other objects that are no longer needed by the computation.
Your garbage collector will pack live objects densely into pages and
then recover entire pages for use in future allocation requests.

• Why am I doing it?

– Automatic memory management is an essential feature of almost ev-
ery programming language.1

– Dividing free space into large contiguous chunks (“pages”) enables
extremely fast allocation—the allocator never searches for a free block;
it just grabs a chunk from a page. Fast allocation is essential for
functional languages, which typically allocate new heap objects at
very high rates.

Free space is made contiguous by copying old objects out of the allo-
cation area. As a bonus, copying garbage collection is the simplest
algorithm out there.

• How?

– Before lab, you’ll read parts of a book chapter that explain copying
garbage collection, including tricolor marking. Or if you prefer, you
can watch videos. You’ll also get your VM state ready for garbage
collection.

– In lab, you’ll implement a scanner for your VM state, which will scan
all of the state’s components and will “forward” every pointer that
points to a payload allocated on the VM heap.

1Except for languages whose primary use case is implementing operating systems and
similar low-level tasks.

1

https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf

– At the end of the week, you’ll deliver a working VM that includes
a copying garbage collector. The collector will recover and reuse
memory and will manage the heap’s size in response to the program’s
demands for memory.

The module step by step
Before lab

(1) Download updates. Update your git repository in two steps:

A. Be sure all your own code is committed. Confirm using git status.

B. Update your working tree by running git pull (or you might possibly
need git pull origin main).

I’m not expecting any merge conflicts.

(2) Extend your VM state with a pending value. Add this new field to your
struct VMState:

Value awaiting_expect; // value passed to the pending `check`, if any

The check primitive has been updated to hold its value in this field, where
the value stays until the corresponding expect primitive runs. The update
is necessary in order to prevent the value from being garbage collected in
the interval between check and expect.

Confirm that your SVM compiles.

(3) Learn garbage-collection basics. For a gentle, limited introduction to the
basic ideas, you can watch my 5-minute video. To learn the terminology,
like “live data” and “tricolor marking,” I recommend using excerpts from
my book chapter. Start with the reading guide.

If you want more, I’ve also found three two outside videos, all of which
illustrate garbage collection with animated diagrams:

Redgate, .NET collection, 4 minutes, YouTube

Pros and cons:

• � Short
• � Very good job setting context
• � Not exactly our algorithm
• � Does not teach any of the jargon

Notes:

• .NET is a stack machine, not a register machine; their stack corre-
sponds to our registers.

• Their “statics” correspond to our literals.

2

../videos/index.html#gc
https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf
11Agcguide.html
https://www.youtube.com/watch?v=t4m_50YbrAQ

• Globals are the same.
• Their algorithm is mark/compact, sometimes called mark, “sliding”

compact. This algorithm copies live objects to the same memory they
already occupy; our algorithm copies live objects to fresh memory.
Ours is simpler.

Matthew Flatt (University of Utah), copying collection, 5 minutes,
YouTube

Pros and cons:

• � Short
• � Exactly our algorithm
• � Good-enough animation of garbage collection
• � No extraneous details
• � No details

Notes:

• The blue box on left is our current list.
• The blue box on right is our available list
• The purple paint is a non-NULL forwarded pointer.
• Matthew Flatt is the chief implementor of the Racket system;

he knows what he’s about.

Christoph Reichenbach (Goethe University of Frankfurt), copying collec-
tion, 15 minutes, Lund University Canvas

Pros and cons:

• � Motivates contiguous free space from fragmentation
• � Best diagram/animation of the algorithm
• � Good discussion of requirements circa 11:10 (slide 7/9)
• � Opening will make you think you forgot to study mark and sweep
• � Only approximately our algorithm
• � Disingenuous or uninformed analysis

Notes:

• Copying is a species of compaction.
• Uses Cheney’s algorithm: to-space also acts as a queue of gray objects

(scan and next implement the queue). We have just the next pointer!
What for Cheney is “between next and scan” for us is “on the gray
list”.

• Move is our forward_*. (And his move doesn’t copy the object! “That
is implicit.”)

• Criticism “twice the heap size” is disingenuous (or ill-informed). Also
doesn’t mention pause times or locality.

None of these videos is necessary for your understanding. But
they may be the easiest way to get started. If it were me, I’d spend

3

https://www.youtube.com/watch?v=jYt3uQtbLfE
https://lu.instructuremedia.com/embed/9661f730-a2f0-4020-baeb-7b4e32a37cc3

10 minutes on the first two videos and skip the third (except possibly to
look at the diagram/animation).

(4) Study tricolor marking and object scanning. Read about tricolor marking
in my book chapter on pages 255–266. In lab you’ll do the step “color all
the roots gray.” (As you’re reading the chapter, don’t overlook the reading
guide.)

To see how object scanning can be implemented in the SVM, look at func-
tion scan_value in file vmheap.c. This function, which is analogous to
function scanloc on page 282 of the book chapter, finds a gray object’s
white successors and colors them gray. You’ll be writing analogous func-
tions for your struct Activation and struct VMState.

To scan your VM state successfully, you’ll need to use forwarding functions.
Look at two functions in file vmheap.c:

• Function forward_string forwards the heap-allocated payload of a
VM string. (File vmheap.c includes four other functions that do the
same thing for payloads of other types: functions, closures, blocks,
and tables. Reading forward_string is enough.)

• Function forward_payload looks at a Value, and if the Value’s payload
is allocated on the heap, it forwards the payload. It also colors the
forwarded object gray (if the object’s payload might contain pointers
to other payloads) or black (if the object’s payload cannot possibly
contain a pointer to another payload).

(5) Write macros needed to save cached state to your struct VMState. As de-
scribed in “The garbage collector and the VM state”, some of your VM’s
state is likely kept in local variables of vmrun. And before a garbage col-
lection, some of this state may need to be flushed to the struct VMState
record that is allocated on the C heap. Any pointer to data allocated
on the VM heap might move and so has to be flushed to the cache.
In addition, you must flush other data of interest to the garbage collector,
like the position of the register window.

After each garbage collection, local variables of vmrun may need to be
updated, because the VM state that they represent may include locations
of objects that have moved. Local variables can be saved and then updated
by two macros VMSAVE and VMLOAD2

My own VMSAVE macro saves the currently running function and the current
register-window pointer. My VMLOAD macro restores the currently running
function and also a pointer to that function’s instructions, which is cached.
It doesn’t have to restore the register-window pointer because register
windows aren’t allocated on the VM heap, so they don’t move.

2When possible, I prefer static inline functions over macros, but because VMSAVE and VMLOAD
need access to vmrun’s local variables, they can’t be defined as static inline functions.

4

https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf
11Agcguide.html
11Agcguide.html
11Bdetails.html#vm-state

Define VMSAVE and VMLOAD macros that are consistent with your own data
structures.

(6) Get your VM state ready for garbage collection. Any payload that can be
reached by following pointers must be reachable from your struct VMState.
To make that possible, you may have to curate your code to establish the
following invariants:

• The VM state must not contain any pointers of type Instruction *.
Such pointers are examples of “interior pointers” and they complicate
garbage collection unreasonably. They are most likely to be found
on the call stack.

This invariant can be established by replacing every instruction
pointer with a combination of a struct VMFunction * and an integer
index. (It is OK to use Instruction * internally in vmrun, just not
in the VM state.)

• The VM state record must be capable of storing the currently running
function and its program counter. You may have to add fields to your
struct.

(7) Prepare to compile with Valgrind. File vmheap.c ships with macros that
tell Valgrind how we are using memory. This code should compile on
the department servers with no problems. If you are compiling on your
own machine, you’ll need to install a Valgrind package, usually called a
“developer” package. If you can’t get that to work, alter the GNUmakefile
to include -DNOVALGRIND in the CFLAGS used to compile vmheap.c.

(8) Familiarize yourself with the rest of the heap implementation. The pre-
vious steps are essential to your progress in lab. This next step will just
make it easier: Using the guide to vmheap.c, page through file vmheap.c to
familiarize yourself with what’s there.

Lab
(9) Scan an activation record. In file vmheap.c, implement function

scan_activation. Ideally an activation contains exactly one reference to
a heap-allocated payload, which should be a reference to the function
whose activation it is. That reference needs to be forwarded. If you
encounter anything else, check with a member of the course staff.

(10) Scan the SVM state for roots. Guided by the generic description of roots
on page 265 of the book chapter, as well as the comments in file vmheap.c,
implement function scan_vmstate in file vmheap.c.

Function scan_vmstate shouldn’t scan all the registers, activations, globals,
or literals that are allocated in the state record. It should scan only the
ones that are in use—that is, the ones whose values might affect future
computations. That includes

5

11Cvmheap.html
https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf

• The registers used by the currently active function, and all lower-
numbered registers

• The activations that hold suspended computations, i.e., the ones that
are actually on the call stack

• The slots that have actually been allocated to hold globals or literals3

Scanning registers and activations that are not actually used will result in
memory leaks that Valgrind can’t detect.

After lab
After lab, your work will alternate between your garbage collector and your
mutator. (In the perverse jargon of garbage collection, the “mutator” is the
part of your program that’s doing useful work—but the collector sees it only as
an annoying distraction that comes in and mutates its carefully managed heap.)

Be alert to a memory-management pitfall

(11) Check your loader for allocations. Check your file loader.c for any code
that might allocate space for a function. If you allocate that space
with malloc, there may be trouble ahead. A struct VMFunction *
points to the payload of a Value with the VMFunction take, and when
the garbage collector sees the value, it’s going to think that it owns the
memory allocated to the payload. I don’t think havoc will ensue, but if
you violate the heap invariants, I can’t warrant the results.

Change the allocation to use VMNEW as described below.

(12) Check for other calls to malloc. Search the code you’ve written for other
calls to malloc, calloc, and realloc. Unless you’re looking at allocation
of the VM state record or one of its components, these calls might need
to be replaced with allocation operations from the VM heap.

To distinguish your code from mine, you might find it useful to use git
blame. Start a bash instance, and try

for i in *.c; do git blame $i; done | egrep -w 'malloc|realloc|calloc' | grep -
v 'Norman Ramsey'

Expect to see the allocation of the VM state record and its components,
but nothing else.

Prepare your mutator

(13) Correct direct calls to vmalloc_raw. The invariants of the garbage collec-
tor require that each heap-allocated object include a forwarding pointer

3For depth points, you can avoid scanning the literals in this step and can garbage-collect
unused literals.

6

and that the forwarding pointer of a newly allocated object be initialized
to NULL. You must either initialize the pointer yourself or use macro VMNEW.
This macro takes a type, a variable name, and a number of bytes, and
it both declares and initializes the variable. Here is an example from my
function loader:

VMNEW(struct VMFunction *, fun, vmsize_fun(count + 1));

I recommend using the macro because then you can use grep as an oracle
to know if you’ve gotten things right. Searching for vmalloc_raw should
produce two hits in vmheap.c and two in vtable.c, and that is all:

$ grep vmalloc_raw *.c
vmheap.c:void *vmalloc_raw(size_t n) {
vmheap.c: void *block = vmalloc_raw(num * size);
vtable.c: p = vmalloc_raw(sizeof(*p));
vtable.c: struct binding *copy = vmalloc_raw(sizeof(*p));

These four hits don’t need to be changed. If you find any other uses of
vmalloc_raw, change them.

(14) Get right with valgrind. Using your existing test codes, run your SVM
with valgrind and confirm that memory is used correctly and it is all
recovered.

vscheme -predef | uft ho-vo > predef.vo
uft ho-vo scheme105.scm | valgrind --leak-check=full svm predef.vo -

Depending on the nature of your tests, you may get an assertion failure
complaining about “large-object allocator not implemented.” If that hap-
pens, go into file vmheap.c where PAGESIZE is defined to be 600. Double
that size, and keep doubling it until your code will run.

You want the output to look something like this:

==13551== HEAP SUMMARY:
==13551== in use at exit: 0 bytes in 0 blocks
==13551== total heap usage: 18,839 allocs, 14,297 frees, 1,818,564 bytes allocated
==13551==
==13551== All heap blocks were freed -- no leaks are possible

If you do find leaks, one possible source is that you might be using malloc
to allocate things like closures, cons cells, or functions. Use the VMNEW
macro instead. There should be no calls to malloc in vmrun.c and only
one in loader.c; confirm by

fgrep -w malloc vmrun.c loader.c

Note: This step is here because Valgrind can be a great tool to help you
find bugs in your garbage collector—but only if it isn’t distracted by bugs
somewhere else. If you find yourself stuck (or slow) on this step, get help.

7

Build your collector

(15) Familiarize yourself with the heap implementation. If you skipped step (8),
or if you just want to refresh your memory, use the guide to vmheap.c to
familiarize yourself with what’s there.

(16) Implement the garbage collector. Using your scan_vmstate from step (10),
implement the gc function in file vmheap.c. The main part of the algorithm
looks roughly like this:

• Grab all the allocated pages (including the current pages) and keep
a pointer to them (in a local variable). These are your from-space
pages. Your to-space pages are in available.

• Color all the roots gray. By design, it suffices to scan your struct VM-
State.

• As long as there is a gray object, remove it from the gray stack and
scan it. If it has any white successors, the scan_value function will
make them gray (or black). (The interface in file vstack.h will be
helpful here.)

• Call function VMString_drop_dead_strings(). This function removes
dead strings from a persistent data structure.

• Using function make_available, move the from-space pages to the
available list. This is the “flip” described in the book.

As functions scan_vmstate and scan_value copy objects, the allocator will
migrate to-space pages from the available list into the current list. This
is OK.

In addition to the main part of the algorithm, the gc function does a few
other things:

• Before starting to scan and copy objects, it sets flag gc_in_progress.
This flag ensures that all copy operations are counted as copies, not
as allocation requests. When the collection is complete, function gc
must clear the flag.

• Before returning control to the mutator, gc looks at the
count.current.pages, the number of pages in use. This counter
measures the amount of live data. In case the heap needs to be
enlarged, gc calls function growheap with a value obtained from
target_gamma.

Get your SVM ready to find bugs

Copying garbage collection uses simple algorithms and data structures. But the
engineering requires a lot of attention to detail, and overlooking an important

8

11Cvmheap.html

pointer is all too easy. To armor yourself against such oversights, I recommend
altering your SVM.

(17) Add a GC instruction and primitive (optional). I recommend defining a
new instruction with opcode gc whose only action is to run the garbage
collector. To make it useful, you’ll also have to add gc to your UFT
in file primitives.sml: a side-effecting primitive with arity zero. Using
this primitive, you’ll be able to trigger a garbage collection whenever you
want—perhaps before every cons, as in this example:

(let ([cons (lambda (x xs) (begin (gc) (cons x xs)))]) ...)

Implement the gc SVM instruction and vScheme primitive.

(18) Add instrumentation to vmrun.c. If your code accidentally refers to an
old version of an object, the old version’s forwarding pointer will be non-
NULL. A reference might be caught by valgrind, but such references can
also be checked by using the GCVALIDATE macro defined in file gcmeta.h.
This macro wraps a reference to a heap-allocated payload by adding an
assertion. The reference is duplicated, so use it only with a named variable
or a reference to a field of a named Value.4

The GCVALIDATE macro is used automatically whenever you use a macro
like AS_CONS_CELL or AS_VMSTRING. But your implementations of call and
tailcall might refer to a struct VMFunction pointer directly, and wrapping
these references in GCVALIDATE is a good idea.

Ensure that every reference to a heap-allocated payload is wrapped in the
GCVALIDATE macro.

Run and test your collector

(19) Enable garbage collection in vmrun. The need for a garbage collec-
tion is established by function newpage (called from alloc_small via
take_available_page) when the number of pages on the available list
drops below gc_when_available_at_most. This event occurs far away from
vmrun, where it isn’t yet known that space has run out. So newpage cannot
safely call gc directly. Instead, it sets the flag gc_needed, which signals to
vmrun that it should initiate a garbage collection when it is safe to do so.
In this step, we teach vmrun to respond to the signal.

Initiation of a garbage collection is complicated by a desire for efficiency.
We don’t want to pay the cost of checking gc_needed on every garbage col-
lection. Fortunately such frequent checks are not necessary. It is sufficient
to check at every call and at every backward branch. Because every loop
must be interrupted by a call or a backward branch, checking at these
places ensures that the mutator demands only a small, finite amount of
space before initiating a collection.

4It’s a macro, not an inline function, because it’s meant to simulate polymorphism.

9

Update your vmrun function so that on every ordinary call, every tail call,
and every backward branch,5 it checks gc_needed. If gc_needed is set, vmrun
should save its local state to the VM state record, call gc with that record,
and finally restored its local state from the VM state record. To perform
this operation, I’ve defined this macro:

#define GC() (VMSAVE(), gc(vm), VMLOAD())

If you’ve defined a gc instruction in step (17), be sure to use GC() (or
VMSAVE and VMLOAD) there as well.

(20) Preliminary tests of your collector. Try out your collector with a couple
of simple codes that allocate cons cells and very little else.

Allocate and discard a thousand cons cells

; file alloc.scm
(define allocate (N)
(let ([x #f])

(begin
(while (> N 0)

(begin
(set x (cons 'a 'b))
(set N (- N 1))))

x)))

(check-expect (allocate 1000) (cons 'a 'b))

Allocate a half-million cons cells

Only 1,000 cons cells are live at any one time:

; file grow.scm
(define iota (N)
(let ([ns '()])

(begin
(while (> N 0)

(begin
(set ns (cons N ns))
(set N (- N 1))))

ns)))

(check-expect (iota 8) '(1 2 3 4 5 6 7 8))

(define allocate (N)
(let ([x #f])

5If, as I recommend, you’ve implemented PC-relative branches, you can identify a backward
branch by its negative offset. If your goto uses absolute offsets, you will have to compare the
target offset with the current program counter.

10

(begin
(while (> N 0)

(begin
(set x (iota N))
(set N (- N 1))))

x)))

(check-expect (allocate 1000) '(1))

Using my collector, some sample runs look like this:

$ uft ho-vo alloc.scm | env SVMDEBUG=gcstats svm
The only test passed.
Requested 49,056 bytes in 1,013 allocations
10 garbage collections copied 9,552 bytes
The collector copied 0.19 bytes for every byte requested
At exit, heap contained 1 used pages and 2 available pages
Total heap size is 18,000 bytes held in 3 pages

$ uft ho-vo grow.scm | env SVMDEBUG=gcstats svm
All 3 tests passed.
Requested 24,028,976 bytes in 500,591 allocations
546 garbage collections copied 27,293,520 bytes
The collector copied 1.14 bytes for every byte requested
At exit, heap contained 11 used pages and 23 available pages
Total heap size is 204,000 bytes held in 34 pages

Until you implement step (22), your results may look different.

(21) Test with Valgrind. Run the same tests with valgrind --leak-check=full.

Now go to vmheap.c and enlarge the PAGESIZE from 600 bytes to 6000 bytes.

Recompile, then run your scheme105.scm test from module 9, again with
valgrind --leak-check=full.

Manage the size of the heap

(22) Implement the heap-growth policy. If a program starts to run short of
memory, it can start to spend all its time trying to garbage-collect what
little memory it has left. Our page-based allocator militates against this
problem, but to prevent it completely we need a policy: when memory
runs short, grow the heap.

I recommend a simple heap-growth policy with one parameter called 𝛾
(“gamma”). The parameter measures the ratio of the heap size to the
amount of live data. The heap-growth policy sets a minimum accept-
able 𝛾, which is obtainable by calling function target_gamma defined in file
vmheap.c.

11

The policy parameter is taken from vScheme global variable &gamma. When
that variable is not a number, a default is used. Useful values range
between, say, 2 and 10. (If &gamma is over 100, target_gamma interprets it
as a percentage, so if you try setting &gamma to 500, that’s a heap 5 times
the size of live data.)

In file vmheap.c, alter function growheap to implement the policy: if the
total heap size is not at least live data times target_gamma, add pages until
it is. When the heap grows, announce it:

if (grew && svmdebug_value("growheap"))
fprintf(stderr, "Grew heap to %d pages\n",

count.current.pages + count.available.pages);

(23) Final tests before submission. In addition to the tests from step (20), run
some tests that allocate and discard a lot of memory. Good candidates
include Quicksort and merge sort on large lists. (Insertion sort is good
only if the list is not already sorted or nearly sorted.) Try them and be
sure the heap grows as you expect.

What and how to submit
(24) On Monday, submit the homework. In the src/svm directory you’ll find a

file SUBMIT.11. That file needs to be edited to answer the same questions
you answer every week. To submit, you’ll need to copy your working
tree to the department servers. We recommend using rsync, but scp also
works.

Now log into a department server, change to your working tree, and submit
your entire src directory:

provide cs106 hw11 src

or if you keep an additional tests directory,

provide cs106 hw11 src tests

(25) On Tuesday, submit your reflection. Create a plain text file REFLECTION,
which will hold your claims for project points and depth points.

For each project point you claim, write the number of the point, plus
whatever is called for in the section “How to claim the project points”—
usually a few sentences.

Now copy your REFLECTION file to a department server and submit it using
provide:

provide cs106 reflection11 REFLECTION

12

Learning outcomes
Outcomes available for points
You can claim a project point for each of the learning outcomes listed here.
Instructions about how to claim each point are found below.

1. Applications. You understand applications of garbage collection.

2. Memory management. You can write a C program with no memory errors
and no leaks.

3. Roots. You understand roots.

4. Forwarding-pointer invariants. You can show where forwarding-pointer
invariants are established for new objects.

5. Color invariants. You can explain the roles of color invariants.

6. Cached state. You understand what cached state is flushed at garbage-
collection time, and why.

7. Forwarding, part 1. You understand what information is needed to forward
a payload pointer.

8. Forwarding, part 2. You understand why we check a forwarding pointer
before copying an object.

9. Heap-growth policy. You understand how the heap-growth policy parame-
ter affects space-time tradeoffs.

10. Structure of the heap graph. You can explain how copying collection pre-
serves linked pointer structures.

You can claim depth points for improving your SVM:

11. Denser cons cells [2 points]. Using a struct VMBlock to represent a cons
cell has its advantages, but the machine word spent on nslots is wasted.
Define a new type of payload that carries just two values, car and cdr,
plus GC metadata. Make your system use that payload for cons cells.

Measure the improvements in heap size and bytes requested.

12. Densest cons cells [2 points]. The previous depth opportunity reduces
the size of a cons cell from 48 bytes to 40 bytes. But the 8 bytes spend
on a forwarding pointer are used only during garbage collection, and are
otherwise wasted. Moreover, once the cons cell has been forwarded, the
car is no longer needed. Alter the representation of cons cells so that the
forwarding pointer and the car share space. (An anonymous union will
be helpful here.) This will reduce the size of a cons cell to its absolute
minimum of two values (32 bytes).

Measure the improvements in heap size and bytes requested.

13

13. Large objects [3 points]. Implement a large-object allocator. A large object
should be allocated with malloc, not on a page, and should never be copied.
Here are some tricks:

• You can identify a live large object by setting its forwarded pointer
to point to itself.

• You can link large objects on a list, much as pages are linked on a
list or interned strings are linked on a list.

• After a collection, you can reclaim dead large objects by traversing
the list after the manner of function VMString_drop_dead_strings.

To test your allocator, you’ll want to allocate large objects and let them
die. Try loading large functions into global variables, then set those global
variables to nil, allowing the large functions to die.

14. Interior pointers [4 points]. Make it possible to keep a function alive (and
copy it to a new location) even if the only reference to the function is an
interior pointer to its instruction stream (of type Instruction *). And
also to correctly forward such interior pointers.

The key operation here is to be able to take a pointer to an arbitrary
location in an instruction stream and somehow to find the function to
which that instruction stream belongs. Perhaps the operation can be
implemented via some clever doctoring of the instruction stream.

This little project might turn out to be more than 4 points worth of work,
but it’s less than 4 points worth of interest, so I’m just going to keep it at
4 points. Nobody loves interior pointers.

15. Zero fewer registers [2 points]. At each VM call, update a high-water mark
that records the highest-numbered register ever used. At each garbage
collection, zero registers only to the high-water mark, then reset the high-
water mark. Using a memory-intensive benchmark, measure the difference
in both run time and number of hardware instructions executed.

16. Garbage-collect registers based on liveness analysis [5 points]. Either in the
UFT or the SVM, do a static analysis at each GC safe point to determine
which VM registers are actually live. At GC time, consult the results of
the analysis to know exactly which registers to scan.

How to claim the project points
Each of the numbered learning outcomes 1 to 10 is worth one point, and the
points can be claimed as follows:

1. It is convenient to be able to use new without delete or malloc without
free. But it is even more convenient to write code without thinking about
allocation at all. To claim this point, give an example from a language not
in the Scheme family, where the implementation of a feature just allocates

14

behind the scenes, and the garbage collector takes care of the rest. To earn
the point, it must be a feature that a programmer can use without being
forced to think, “I am allocating memory here.”

2. To claim this point, get your SVM into shape where you can run it on a
program and Valgrind reports no errors and no leaks. (You are welcome
to do this in step (14), before you start your garbage collector.) Commit
the code and tag it with

git tag valgrind-clean

Submit the output from valgrind running your SVM on the program of
your choice.

3. To claim this point, identify the lines in your scan_vmstate function that
scan registers and literals, and explain how you know which registers and
literals to scan.

4. To claim this point, look at the lines in your source code that initialize the
payload for a ConsCell, and identify the line that initializes the payload’s
forwarded pointer to NULL.

5. If a value that is gray or black were accidentally put on the gray list a
second time, this would violate one of the color invariants. To claim this
point, explain what bad thing could happen if this invariant is violated.

6. In step (19), I observe that my VMSAVE macro flushes the current register-
window pointer. But my VMLOAD does not reload it. To claim this point,
explain why I would bother to save this value if I’m not reloading it.

7. To claim this point, explain why it’s not possible to forward a pointer of
type Instruction *.

8. Function forward_string copies a payload only if the forwarding pointer
is NULL. To claim this point, suppose instead that forward_string copies
a payload unconditionally every time it is called, and explain what could
go wrong.

9. To claim this point, say how you would set the heap-growth policy parame-
ter to do less work by using a lot of space. Then say how you would change
the policy to use less space at the cost of doing more work. If possible,
support your answer with evidence of gcstats output from your collector.
If not, explain why it is not possible.

10. In file value.c, function eqvalue compares two String values as equal only
if they point to the same payload—if two Values point to different payloads
they are considered different strings, even if the payloads contain the same
characters.

Suppose that a string value appears in two different VM registers, so both
registers point to the same payload. But then the garbage collector copies
every register’s payload to a new location. To claim this point, explain

15

how the collection manages to preserve pointer relationships so that after
the collection, the registers are still considered to hold equal strings.

16

	The module step by step
	Before lab
	Lab
	After lab
	Be alert to a memory-management pitfall
	Prepare your mutator
	Build your collector
	Get your SVM ready to find bugs
	Run and test your collector
	Manage the size of the heap

	What and how to submit

	Learning outcomes
	Outcomes available for points
	How to claim the project points

