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Introduction
This week you’ll finish your UFT by translating pure,
higher-order Scheme into first-order Scheme.

• What am I doing?

– Implement lambda by adding closure conversion to
your UFT. You’ll implement a limited form that
does not support mutation of variables captured
in closures.

• Why am I doing it?

– You’ll learn how first-class, nested functions are
implemented—and you may be surprised how sim-
ple they can be. And you’ll learn a realistic tech-
nique that scales to industrial compilers.

– You’ll skip mutation because putting mutable
data in closures rarely makes sense. Mutable data
can be dealt with through a variety of techniques,
but the easy one is to implement an additional
pass that does a little static analysis, then moves
captured mutable variables to the heap. Such a
pass can be implemented for depth points.

– Closure conversion illustrates every possible step
in adding a new feature to a virtual-machine
system: new syntax (lambda), new VM sup-
port (a closure type and three supporting in-

structions), a new compiler pass (closure conver-
sion), small updates to existing compiler passes
(K-normalization and code generation), and new
VM instructions.

• How?

– Before lab, you’ll read about how closures work:
each lambda is turned into a record allocation.
And you’ll see how closure records can be sim-
ulated in vScheme by embedding them as lists.

– In lab you’ll closure-convert a couple of lambdas
by hand, and you’ll implement the embedding you
read about before lab.

– After lab you’ll build the closure-conversion pass
and the necessary extensions throughout the UFT
and SVM system. Not too challenging, but you’ll
touch a lot of code.

– At the end of the week, you’ll submit a translator
that includes pass ho-cl (for debugging) as well as
ho-kn, ho-vs, and ho-vo (to run the code). Your
system (translator plus VM) will be able to run
any mutation-free Scheme code from CS 105.

The module step by step
Before lab: New code, free variables, and
closures
(1) If necessary, refresh your memory on free variables.

I recommend section 5.6 from Programming Languages:
Build, Prove, and Compare, pages 315–317. Before
lab, have a look at the first three paragraphs and the
examples of free variables.

If you’ve done the “Improving closures” problem in
CS 105, you might find that worth reviewing as well.
It will help you understand the ideas, but there’s noth-
ing specific there that you need to review before lab.

If you already understand and remember the ideas of
free variables, you can skip this step.

(2) Read about closure conversion. Read the handout How
Closures Work. Before lab, the key sections are the
introduction, how it works, and embedding.)

This the key step.
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(3) Download updates. Update your git repository in two
steps:

A. Be sure all your own code is committed. Confirm
using git status.

B. Update your working tree by running git pull (or
you might possibly need git pull origin main).
I hope to avoid merge conflicts.

Verify that your UFT builds with the new code.

If you don’t get to this step, you’ll be able to complete
the first part of the lab but not the second part.

Lab: Closure-conversion highlights
This lab will give you the highlights of closure conversion,
as well as all of the ideas you need to complete the module.
A lot of details will follow, but if you have a productive lab,
the details won’t give you trouble.

The idea of closure conversion is to turn lambda into a
data structure. (A data structure is something we already
know how to implement.) In lab, we’ll work with the two
lambdas in this version of Quicksort:1

(define o (f g) (lambda (x) (f (g x))))

(define qsort (xs)
(if (null? xs)

'()
(let* ([pivot (car xs)]

[rest (cdr xs)]
[right? (lambda (n) (> n pivot))]
[left? (o not right?)])

(append (qsort (filter left? rest))
(cons pivot (qsort (filter right? rest)))))))

You’ll closure-convert this code by hand. To run the con-
verted code, you’ll need a test case.

[Click for a test case]

(define iota^ (n)
; return reversed list of natural numbers 1..n
(if (= n 0) '() (cons n (iota^ (- n 1)))))

(check-expect
(qsort '(65 15 87 42 62 45 6 81 53 34 33 82 79 7 17 39 71 18 98 92 77 41 51 16 86 30 49 10 4 68 35 52 69 12 85 36 47 5 1 61 74 64 31 80 25 29 93 78 72 24 99 48 76 19 66 70 3 56 23 32 84 100 91 58 20 60 26 37 97 54 46 13 21 63 28 14 59 67 38 88 57 40 55 94 11 95 22 44 27 9 83 50 43 8 90 73 75 96 89 2 ))
(reverse (iota^ 100)))

Let’s get started!

(4) Confirm that vscheme behaves as expected. Compile
the vscheme interpreter by running make mosml in your
src/vscheme directory.

1Quicksort is used for demonstration purposes only. Quicksort is
great for sorting a mutable array. An immutable list, not so much.

Capture qsort and its test case from the web browser
and put them in file qsort.scm.

Confirm that the test passes:

$ vscheme < qsort.scm
The only test passes.

Make a copy of qsort.scm in file qsort-orig.scm.

(5) Closure-convert Quicksort by hand. The closure hand-
out describes three species of variables: global, local,
and free. Start by identifying these species in the two
lambda expressions in file qsort.scm.

A. The lambda in the o function contains names f, g,
and x. Classify each of these names as global, free,
or local.

B. The lambda in the qsort function contains names
>, n, and pivot. Classify each of these names as
global, free, or local.

C. Now rewrite each of these lambda expressions to
closure-convert the code by hand:

• Each lambda becomes a closure record, which
contains revised code and the values of free
variables.

• In the vScheme embedding (which is what
you are writing), the closure record is created
by calling mkclosure with two arguments:
(1) the revised code and (2) a list containing
the values of the captured variables.

• The revised code is derived from the original
lambda. It is also a lambda, but it acquires
a new, first parameter $closure. And inter-
nally, every reference to a free variable is re-
placed by code that extracts the variable’s
value from its slot in the $closure record.

The extraction should be implemented using
the predefined vScheme function CAPTURED-IN.
When r is a list that represents the embed-
ding of a closure record, (CAPTURED-IN i r)
returns the value stored in slot number i of
the closure. Slots are numbered from 0.

If you’re not certain what the embedded code is
supposed to look like, have another look at the
embedding of flip in the closures handout.

D. Run your edited qsort.scm with the vscheme in-
terpreter and confirm that the test still passes:

$ vscheme < qsort.scm
The only test passes.

(6) Embed closure-converted code. Now shift your atten-
tion the UFT. This part of lab will solidify your under-
standing of closure representation.
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In file clscheme.sml, write the embedding for the
C.CLOSURE and C.CAPTURED forms. This is the embed-
ding you just did by hand. The C.CLOSURE form carries
a pair that holds the revised code and the free variables.
The C.CAPTURED form contains only a slot number; it
always refers to a slot in the current function’s closure.

To generate Scheme code, generate APPLY nodes that
call predefined vScheme functions like mkclosure or
CAPTURED-IN.

Verify that your UFT builds.

After lab
The rest of the module should proceed in an orderly, me-
thodical way. You’ll touch a lot of different files, so pace
yourself. If you wait until Monday, you’ll have a rough
time.

You’ll proceed downward in stages:

• Implement the closure conversion you’ve done by hand.
• K‑normalize closures and references to captured vari-

ables.
• Generate code for those K‑normal forms.
• Implement new instructions to support the run-time

representation of closures.

I recommend doing the instructions before the code
generator—that way you’ll know exactly what you’re tar-
geting.

In the last part of the module, you’ll visit the entire stack
again, this time to add mutual recursion via letrec.

Closure-converting non-recursive lambdas

Closure conversion is small compared to the infrastructure
needed to support it. That’s typical; new features often
require a lot of infrastructure.

(7) Change the type of your K‑normalizer. Your
K‑normalizer will eventually have to deal with two new
forms; that’s step (14). For now, go to file knormal-
ize.sml and make the following changes:

• Globally search for FirstOrderScheme and replace
it with ClosedScheme.

• Extend your K‑normalizer function exp with three
new pattern matches: F.CLOSURE (lambda, cap-
tured), F.CAPTURED i, and F.LETREC (bind-
ings, body). For now, each right-hand side should
call Impossible.exercise ``CLOSURE'' or some-
thing similar.

(8) Complete the UFT driver. Confirm that your git pull
has given you three new materializers in file uft.sml:
HOX_of, HO_of, and CL_of. Then make these changes:

• Change your function KN_reg_of to use the CL_of
materializer instead of your old FO_of material-
izer.

• Add these cases to your translate function:

| CL => CL_of inLang >>> ! (emitCL outfile)
| HO => HO_of inLang >>> ! (emitHO outfile)
| HOX => HOX_of inLang >>> ! (emitHO outfile)

Because HO and HOX have the same internal repre-
sentation, they share an emitter.

• Remove the wildcard case from your translate
function.

Confirm that your UFT compiles.

(9) Identify free variables. In file closure-
convert.sml, define function free of type
X.exp ‑> X.name S.set. (You can confirm the
type by putting val _ = free : X.exp ‑> X.name S.set
after the definition of free.) The S is an abbreviation
for the Set module defined in file set.sml, which
includes such operations as set union, set difference,
and so on.

The free variables of an expression are defined by proof
rules that appear in section 5.6 from Programming Lan-
guages: Build, Prove, and Compare (pages 315–317).
Those proof rules are expressed in terms of set mem-
bership, and what you need is a set of names. So the
rules require translation:

• If there is a single way to prove membership, as
in the X.LOCAL case, that’s going to translate to a
singleton set.

• If there are multiple ways to prove member-
ship, as in the cases for X.IF, X.BEGIN, X.FUNCALL,
X.PRIMCALL, and several others, that’s going to
translate using function S.union'.

• If there’s a premise that says 𝑦 ∉ 𝐴, for some
set 𝐴, that’s going to translate using function
S.diff.

The tricky cases are X.LET and X.LETREC. And
X.GLOBAL—in the jargon of closure conversion, a global
variable is not a free variable.

(10) Implement the core cases of closure conversion. In
file closure-convert.sml, build out internal functions
closure and exp.

Begin with exp. This function will be a lot like the
disambiguator you wrote in module 5: most cases are
structural, and the real action is limited to just a few
key forms. In closure conversion, those key forms are
lambdas and references to local variables.
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• When you get to the X.LAMBDA case, call internal
function closure. Leave closure unimplemented
until you get the other code to typecheck.

• An attempt to read a local variable either stays as
is or gets turned into CAPTURE. An attempt to write
a local variable either stays as is or triggers an
assertion failure (Impossible.impossible): if code
tries to write a captured variable, there is a bug
elsewhere in the UFT.

• In the X.LETX case, match only the X.LET form.
Postpone X.LETREC until step (24). For now, use
Impossible.exercise.

The disambiguation pass you implemented in mod-
ule 5 distinguishes global variables from other species
of variables, but it does not distinguish local variables
from free variables—both are represented using the
value constructor X.LOCAL. To distinguish local vari-
ables from free variables, you’ll have to use the pa-
rameters passed to function closeExp.

Confirm that your UFT builds—that is, your code
typechecks.

Next implement function closure. This function con-
verts a higher-order lambda into a closure. The envi-
ronments require careful attention:

• The names that are captured by the new closure
are the free names of the lambda—or if you pre-
fer, the names that are free in the body but are
not formal parameters. Set functions S.elems and
S.ofList may be useful here.

The names that are captured are not necessar-
ily related to the captured list passed to close-
Exp. The body of the lambda is closed with respect
to these names, not with respect to the captured
names passed to closeExp.

• If a name on the free list is itself captured in the
outer context—that is, if it does appear on the
captured list passed to closeExp—then it has to go
into the closure using the C.CAPTURED form, not as
a local variable. That’s why in Closed Scheme the
captured variables in a closure are represented as
an exp list, not a name list. The easiest way to
manage this conversion is to get closeExp cap-
tured to do it for you recursively.

Verify that your UFT builds.

(11) Closure-convert definitions. Implement function close
in file closure-convert.sml. The definition forms get
closed in the same way as expression forms, except
that a definition never occurs inside a let or a lambda,
so it does not capture any variables. Your conversion
should preserve structure (val to val, define to define,

and so on). The heavy lifting will be done by calling
closeExp with an empty list of captured variables.

Verify that your UFT builds.

(12) Test closure conversion. Try out your closure conver-
sion on the copy of Quicksort you made in step (4):

uft ho-cl qsort-orig.scm | less

The results may be a little hard to read, but look for
CAPTURED-IN—you should be able to spot the uses and
decide if they are OK.

If things look good, confirm that you can run the
closure-converted, re-embedded code:

$ uft ho-cl qsort-orig.scm | vscheme
The only test passed.

Ripples downstream: K‑normalization

You have now completed the main intellectual work of the
module. The rest of the module requires you to propagate
the CAPTURED and CLOSURE forms downstream—and eventu-
ally to deal with recursion.

(13) Add capture and closure forms to K‑normal form. In
your knf.sml file, define syntactic forms for a cap-
tured variable and a closure.

• A captured variable has exactly the same form as
in Closed Scheme: it’s defined by a small integer
slot number that is known at compile time.

• A closure is represented almost as it is in Closed
Scheme, except the value of every captured vari-
able must be in a register. My code uses ML’s
withtype modifier to define a type synonym:

withtype 'a closure = ('a list * 'a exp) * 'a list
(* (funcode, registers holding values of captured variables) *)

I also define

type 'a funcode = 'a list * 'a exp (* lambda with no free names *)

Add these forms to your embedding in file em-
bedkn.sml. You can clone and modify the embedding
you defined in clscheme.sml. And add them to your
renamer in file knrename.sml.

To get this code to compile, you will have to extend
your code generator with two new cases. For now, leave
them as calls to Impossible.exercise.

Verify that your UFT builds.

(14) K‑normalize captured and closure forms. Extend your
K‑normalization function to handle the two new cases.

• The CAPTURED case has no subexpressions, so it
requires almost no thought.
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• In a CLOSURE, if the list of captured variables is
empty, then the closure can be K‑normalized just
as a funcode without any free names. This little
optimization is worth doing because it makes the
code both faster and easier to read.

If the list of captured variables is not empty, then
the captured variables have to be put in registers,
after which a K‑normal form closure can be built
by K‑normalizing the funcode part.

To put the captured variables in registers, use
nbRegsWith (exp rho) from the K‑normalization
module. The continuation allocates the closure.

Functions have to be K-normalized in both of the cases
above, and they will be K-normalized in a third place
when you K-normalize LETREC. So it’s worth defining a
helper function. Mine is

val funcode : F.funcode ‑> reg K.funcode

This function does almost the same thing as the code
you have written that K‑normalizes the F.DEFINE form:
the formal parameters go into an environment, and
every nonzero register that is not used to hold a for-
mal parameter is available. The only difference from
F.DEFINE is that in a lambda expression, the function
has no name, so the environment does not bind a func-
tion name to register 0.

Note: In a funcode closure, the formal parameters of
the funcode are referred to by name, but captured vari-
ables are not. During the closure-conversion process,
every reference to a captured variable is replaced by
an expression of the form F.CAPTURED 𝑖.

(15) Test K‑normalization. For an eyeball test, I would try
to K‑normalize the predefined functions o and curry.

echo '(lambda (f g) (lambda (x) (f (g x))))' | uft ho-
kn
echo '(lambda (f) (lambda (x) (lambda (y) (f x y))))' | uft ho-
kn

For a full test, you should be able to K‑normalize
qsort-orig.scm and then run the embedded code in
the vscheme interpreter:

$ uft ho-kn qsort-orig.scm | vscheme
The only test passed.

Ripples downstream: Code generation and VM in-
structions

The SVM already has the data structures you need to finish
the module. In particular, it has the struct VMClosure de-
scribed in the closures handout. It remains only for you to
define, implement, and generate the relevant instructions.

(16) Implement new VM instructions. To create and use
closures, you’ll need three new VM instructions:

• You’ll need an instruction that allocates a new clo-
sure. This instruction should take three operands:
the register in which to place the new closure, the
function that should go in the f field, and a literal
saying how many slots to allocate for captured
variables. This instruction will resemble the in-
struction for cons.

I’ve called mine mkclosure, and I unparse it using
the template "rX := closure[rY,Z]".

• You’ll need an instruction that loads the value
of a captured variable from a slot. This instruc-
tion should take three operands: the register into
which the value should be loaded, the register
holding the closure, and the literal index of the
slot from which the value should be loaded. This
instruction will resemble the instruction for car
or cdr, except the slot index will be a field of the
instruction, not hard-coded into vmrun.2

I’ve called mine getclslot, and I unparse it using
the template "rX := rY.Z".

• You’ll need an instruction that stores the value
of a captured variable in a slot. This instruction
should take three operands: the register holding
the closure, the register holding the value, and
the literal index of the slot into which the value
should be stored.

I’ve called mine setclslot, and I unparse it using
the template "rX.Z := rY".

Implement these instructions by updating opcodes.h,
instructions.c, and vmrun.c.

(17) Modify call instructions so they understand closures.
In vmrun, update your implementations of call and
tailcall so that the thing called can be a function or
a closure. The only difference is that instead of getting
a struct VMFunction straight out of a register, you put
the value of funreg in a C variable of type Value, then
check the tag of that value.

• Supposing the variable is named callee, then if
callee.tag shows that callee is a function, you’ll
call callee.f.

• If callee is a closure, you’ll instead call
callee.hof‑>f.

• And if callee is neither a function nor a closure,
that’s a checked run-time error.

2And you could consider bounds-checking the index against the
nslots field of the closure.
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(18) Write utilities to generate the new instructions. In
file asmutil.sml, extend the signature of the AsmGen
structure with these declarations:

val mkclosure : reg ‑> reg ‑> int ‑> instruction
(* x := new closure with k slots; x‑>f := y; *)

val setclslot : reg ‑> int ‑> reg ‑> instruction
(* x.k := y *)

val getclslot : reg ‑> reg ‑> int ‑> instruction
(* x := y.k *)

val captured : reg ‑> int ‑> instruction

Implement the first three by using A.OBJECT_CODE with
the O.REGINT form of object code. Implement captured
by using getclslot with the closure in register 0.

(19) Unparse the new instructions. In file asmparse.sml,
add patterns that match the new instructions and that
unparse them according to the templates you chose in
file instructions.c in step (16).

(20) Generate code for closures. By now you know the data
structure used to represent a closure, you have the in-
structions needed to manipulate it, and you have the
utility functions that emit the instructions. It’s time to
go back and finish the code-generator cases that I told
you to put off in step (13).

• To fetch the value of a captured variable, fetch it
out of its slot in its closure, which is in register 0.
Use A.captured or A.getclslot.

• To generate code that places a CLOSURE form into
a register 𝑟,

a. Load the closure’s funcode into register 𝑟.
b. Using A.mkclosure, allocate the closure into

that register.
c. Initialize the slots by emitting a sequence of

instructions created using A.setclslot.

Since a closure has to be translated in both toReg'
and toReturn', it may be worth creating a helper
function. (If a CLOSURE form is evaluated for side
effect, it is simply discarded.)

During this step, the SML Basis Library function
List.mapi could be useful, but it is missing from
Moscow ML. It’s defined as follows:

(* mapi : (int * 'a ‑> 'b) ‑> 'a list ‑> 'b list *)
fun mapi f xs = (* missing from mosml *)

let fun go k [] = []
| go k (x::xs) = f (k, x) :: go (k + 1) xs

in go 0 xs
end

(21) Test code generation. Eyeball your code generator by
checking out results for o and curry:

echo '(define o (f g) (lambda (x) (f (g x))))' | uft ho-
vs
echo '(define curry (f) (lambda (x) (lambda (y) (f x y))))' | uft ho-
vs

You can compare your results with mine:

My assembly code for o

r0 := function (2 arguments) {
r0 := function (1 arguments) {

r2 := r0⟨1⟩
r3 := r0⟨0⟩
r4 := r1
r3 := call r3 (r4)
tailcall r2 (r3)

}
r0 := closure[r0,2]
r0⟨0⟩ := r2
r0⟨1⟩ := r1
return r0

}
global "o" := r0

My assembly code for curry

r0 := function (1 arguments) {
r0 := function (1 arguments) {

r3 := r0⟨0⟩
r0 := function (1 arguments) {

r2 := r0⟨1⟩
r3 := r0⟨0⟩
r4 := r1
tailcall r2 (r3, r4)

}
r0 := closure[r0,2]
r0⟨0⟩ := r1
r0⟨1⟩ := r3
return r0

}
r0 := closure[r0,1]
r0⟨0⟩ := r1
return r0

}
global "curry" := r0

Once these outputs look good, you can try Quicksort.
I provide a script run-ho-with-predef:

$ run-ho-with-predef qsort-orig.scm
The only test passed.

Recursive and mutually recursive lambdas

Every functional language provides a mechanism that en-
ables internal recursion and mutual recursion. In Scheme,
it’s letrec. The ideas are the same ideas you’ve already
implemented, but the details can be fiddly. The key no-
tion is that both the right-hand side lambdas and the body
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of the letrec are translated in the same environment with
the same available registers: one in which each lambda cor-
responds to a closure that is stored in a known register.
The rest is detail.

We’ll implement the letrec from vScheme or �Scheme, both
of which require that all the right-hand sides be lambdas.
The general form of letrec that is specified by the full
Scheme standard can be translated into our simplified form
(Waddell, Sarkar, and Dybvig 2005).

You’ll build letrec from the bottom up. Everything in the
SVM is already in place, so you’ll start with K‑normal form
and code generation.

(22) Add LETREC to K‑normal form, and translate it. In
both Closed Scheme and K‑normal form, a LETREC re-
cursively names closures, then evaluates an expression
in the body. Only the representation of closures has
changed.

The LETREC should leverage the representation of clo-
sures that you already have. Here’s what mine looks
like in K‑normal form; compare it with the definition
in file clscheme.sml:

datatype 'a exp
= ...
| LETREC of ('a * 'a closure) list * 'a exp

The translation of a single closure allocates the closure
and initializes the slots. The translation of the closures
in LETREC is the same, with one proviso: all of the clo-
sures are allocated before any are initialized. If every
binding has the form (fᵢ, cᵢ), with a list of captured
variables of length kᵢ, then the translation is roughly
like this:

let f₁ = mkclosure c₁ k₁ in
let f₂ = mkclosure c₂ k₂ in

let fₙ = mkclosure cₙ kₙ in
( set slots of f₁
; set slots of f₂

; set slots of fₙ
; e
)

where e is the translation of the body of the letrec.

What makes it mutually recursive is that the list of
captured variables in each closure may include some
of the fᵢ registers, even though those registers haven’t
been initialized yet. That’s OK, because the when the
K‑normalizer emits the LETREC in step (23), it knows
that the code generator will initialize all the f_i regis-
ters before storing them in the closure slots (this step).

Complete this step in three parts:

A. Add LETREC to your K‑normal form in file knf.sml.

B. Add cases to files embedkn.sml and knrename.sml.
(Your compiler should complain that the relevant
cases are missing)

C. Extend your code generator to translate LETREC
using a sequence of allocations and assignments.

Because the body of a LETREC can have any of the three
destinies (to be returned, to be put in a register, or to
be evaluated for effect), you’ll want to implement the
translation using a higher-order helper function that is
mutually recursive with toReturn', toReg', and forEf-
fect'. A useful template might look like this:

fun letrec gen (bindings, body) =
let val _ = letrec : (reg K.exp ‑> instruction hughes_list)

‑> (reg * reg K.closure) list * reg K.exp
‑> instruction hughes_list

(* one helper function to allocate and another to initialize *)
fun alloc (f_i, closure as (funcode as (formals, body), captures)) = ...
fun init (f_i, closure as (funcode as (formals, body), captures)) = ...

in hconcat (map alloc bindings) o hconcat (map init bindings) o gen body
end

and toReg' ...
and forEffect' ...
and toReturn' ...

Each of the other functions toReg', forEffect', and
toReturn' will call letrec while passing itself as the
gen parameter.3

(23) K‑normalize LETREC. A LETREC is K‑normalized using
ideas and techniques you’ve already mastered. But a
warning: I was not very successful reusing the code.
My LETREC translation is a full 20 lines of ML, which
is a lot. The code breaks down into these steps:

D. Allocate a fresh register for each closure.

Because the closures must all be allocated before
any can be initialized, we can’t use bindAnyReg or
nbRegsWith for this step. I wound up writing a
helper function that takes one fresh register for
each binding in the LETREC. My list of fresh regis-
ters is called ts.

E. Create a new available-register set A': start with
the currently available set and remove every reg-
ister in ts.

If you like accumulating parameters, you could
combine this step with the previous step. Or you
could do it using an inscrutable fold.

F. Create a new environment rho' in which to
K‑normalize the right-hand sides and the body.

3In the case of toReg', “passing itself” means passing toReg' dest
where dest is the current destination register.
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The environment extends the current environ-
ment with a new binding for each name in the
original letrec to the corresponding register from
the list ts. I used ListPair.foldrEq with E.bind.

G. Using the new available-register set A' and the
new environment rho', define a helper func-
tion that K‑normalizes a single closure (in
continuation-passing style).

Mine is called closure, and it has type

val closure : F.closure ‑> (reg K.closure ‑> exp) ‑> exp

It uses nbRegsWith (exp rho') to put all the cap-
tured variables into registers.

H. Produce the K‑normal LETREC by using the
continuation-passing map' from module 9 with
function closure o snd, where snd is defined by

fun snd (_, c) = c

This one gets a continuation that receives a list
of K‑normal closures cs and returns a K.LETREC
whose bindings zip together ts and cs and whose
body is K‑normalized using rho' and A'.

(24) Closure-convert LETREC. You’ll finish by completing the
closure-conversion function you started in step (10): in
file closure-convert.sml, complete the case for X.LET
with the X.LETREC keyword. Now that you know what’s
going on, it’s simple: you closure-convert each right-
hand side and the body.

There’s just one subtle point: The source syntax in
structure X permits any expression on the right-hand
side of a letrec, but the target syntax in structure C
permits only a lambda. Internal function closure al-
ready produces target syntax of the right type, but
the natural argument is too general. I resolved the in-
compatibility with a function that assumes a lambda
check is done in the parser:

fun unLambda (X.LAMBDA lambda) = lambda
| unLambda _ = Impossible.impossible "parser failed to insist on a lambda"

Confirm that your UFT builds.

(25) Test mutual recursion. To test mutual recursion, try
the example below.

Classic slow test of parity using mutual recursion

(define parity (n)
(letrec ([odd? (lambda (m) (if (= m 0) #f (even? (-

m 1))))]
[even? (lambda (m) (if (= m 0) #t (odd? (-

m 1))))])
(if (odd? n) 'odd 'even)))

(check-expect (parity 0) 'even)

(check-expect (parity 1) 'odd)
(check-expect (parity 30) 'even)
(check-expect (parity 91) 'odd)

What and how to submit
(26) On Monday, submit the homework. In the src/uft di-

rectory you’ll find a file SUBMIT.10. That file needs
to be edited to answer the same questions you answer
every week.

To submit, you’ll need to copy your working tree to
the department servers. We recommend using rsync,
but scp also works.

Now log into a department server, change to your work-
ing tree, and submit your entire src directory:

provide cs106 hw10 src

or if you keep an additional tests directory,

provide cs106 hw10 src tests

(27) On Tuesday, submit your reflection. Create a plain text
file REFLECTION, which will hold your claims for project
points and depth points.

For each project point you claim, write the number
of the point, plus whatever is called for in the section
“How to claim the project points”—usually a few sen-
tences.

Now copy your REFLECTION file to a department server
and submit it using provide:

provide cs106 reflection10 REFLECTION

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Names. You understand all the species of names and
where they come from.

2. Global and local names. You understand the different
behaviors of local and global names.

3. Embedding and projection. You understand how to
embed closures into vScheme.

4. Embedded code and VM code. You understand how the
embedding relates to SVM code.

5. Environments. You understand the relationship be-
tween two different environments: the body of a func-
tion vs the environment where the function is defined.

6. Closure conversion and code generation. You can pre-
dict what will happen if a captured variable is over-
looked.

8

09knormalize.html#cps-map
09knormalize.html#cps-map


7. Closure conversion and mutable data. You can say
what would happen if we allowed arbitrary mutation
in source code.

8. Mutual recursion. You know how to build the shared
environment used by a nest of mutually recursive func-
tions.

99. Bonus point: aliasing. If 𝑥 and 𝑦 are distinct local
variables, mutating 𝑥 never changes the value of 𝑦.

Learning outcomes available for depth points:

9. More accurate mutation analysis [2 points]. Improve
my mutability detector so it is OK if a single function
both mutates a variable and allocates a closure—as
long as no mutated variable is captured. Demonstrate
with a test case.

10. Mutable variables on the heap [3 points]. You imple-
ment the Mutability.moveToHeap pass, which migrates
every mutated, captured variable into a mutable refer-
ence cell that is allocated on the heap. The pointer
to that cell is not mutated so it can safely be shared
among multiple closures. I provide some hints.

Demonstrate with the random-number generator or
the resettable counter from chapter 2 of my book.

11. Mutable variables in closures [3 points]. Improve your
UFT so that a closure slot can be mutated, provided a
static analysis shows that the slot is the only location
in which the variable is referred to. You’ll need to
write the static analysis as well as update other UFT
passes. Demonstrate your results with the random-
number generator from chapter 2 of my book.

12. Faster recursion for global functions [1 point]. When a
recursive function calls itself, the semantics of vScheme
require that it look up its value in the global-variable
table. But in the absence of mutation, it’s safe for
it instead to call itself using register 0. Implement
this improvement in your UFT, and demonstrate it
on a long-running recursion. (Try either a very long
tail recursion or an ordinary recursion that makes an
exponential number of calls.)

13. Reduced dependence on global variables [2 points].
To prevent testing code from being compromised by
malicious student code, Will Mairs and I developed
a source-to-source translation we call “bulletproofing.”
Bulletproofing transforms each val and define by in-
troducing a let form that binds every free global vari-
able with a local name. This transformation guaran-
tees that the resulting code depends only on the val-
ues of the global variables at the time the definition is
evaluated—if the values of those variables are changed
afterward, the code will be unaffected.

Implement the bulletproofing transformation, either as
a source-to-source transformation or as a pass inside
your UFT. Using a long-running recursion, measure
the performance improvement.

This transformation is routinely recommend to Lua
programmers as a safe and easy way for them to speed
up their code.

14. Mutable variables and let bindings [1 point]. The op-
erational semantics of (let ([𝑥 𝑦]) 𝑒) require that a
fresh location be allocated for 𝑦 and that the current
value of 𝑥 be copied into that location. But if neither
𝑥 nor 𝑦 is mutated, it is safe for 𝑥 and 𝑦 to share a
single location (a VM register). While preserving the
semantics of functions that mutate local variables, im-
plement this code improvement in your K-normalizer.

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth
one point, and the points can be claimed as follows:

1. To claim this point, give an example definition that
contains a lambda whose body includes at least one
name in each of these of these categories: a primitive,
a global name that does not refer to a primitive, a local
name, and a captured name. In your answer, identify
one name from your example in each category.

2. To claim this point, identify the lines of your code that
determine what variables are captured by a closures,
and explain why these variables never include a global
variable—even though according to the proof system,
global variables are technically “free.”4

3. To claim this point, identify the lines of source code in
your UFT where closures and captured variables are
embedded into ordinary vScheme.

4. To claim this point, identify the lines of code in your
vmrun.c that correspond to the CAPTURED-IN function
that is predefined in vScheme.

5. To claim this point, identify the lines of code in your
K-normalizer that K-normalize a closure, and explain
how the code keeps track of which variable is in what
register both where the closure is allocated and inside
the closure.

6. Suppose that something goes wrong in your closure
conversion and that not all captured variables are prop-
erly identified. (Perhaps there is a bug in the free func-
tion and it overlooks a free variable.) To claim this
point, identify the line of code in your K-normalizer
where the compiler would fail, and explain how the
failure would manifest.

4Which is why the CS 105 “improved closures” problem must cap-
ture global variables.
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7. Imagine that the detector in Mutability.detect
doesn’t work—it always returns Error.OK applied to
its argument, regardless of whether there are bad muta-
tions in the source code. Assuming that there are bad
mutations in the source code, if the detector doesn’t
work, the compiler will fail downstream. To claim this
point, identify the line in your source code where the
failure should occur.

8. To claim this point, identify the lines of code in your K-
normalizer that build the environment used to compile
all the right-hand sides and the body of a LETREC.

99. If your submission for module 9 did not alias variables,
you have already earned the bonus point. Otherwise,
to claim the bonus point, correct any unsafe aliasing
that your K-normalizer may have done, and invent a
new, original test case that shows the difference.

Whether you have already earned the bonus point or
not, you may wish to consider depth point 14.
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