
Module 11: Garbage Collection

Contents
The module step by step 1

Before lab . 1
Lab . 3
After lab . 3

Be alert to a memory-management pitfall . 3
Prepare your mutator 4
Build your collector 4
Get your SVM ready to find bugs 5
Run and test your collector 5
Manage the size of the heap 6

What and how to submit 6

Learning outcomes 6
Outcomes available for points 6
How to claim the project points 7

In this module you’ll recycle memory that is allocated on
the VM heap, so that vScheme programs can allocate far
more memory than the SVM actually takes from the oper-
ating system.

• What am I doing?

– Implement a garbage collector, which reuses old
cons cells, closures, and other objects that are no
longer needed by the computation. Your garbage
collector will pack live objects densely into pages
and then recover entire pages for use in future
allocation requests.

• Why am I doing it?

– Automatic memory management is an essential
feature of almost every programming language.1

– Dividing free space into large contiguous chunks
(“pages”) enables extremely fast allocation—the
allocator never searches for a free block; it just
grabs a chunk from a page. Fast allocation is
essential for functional languages, which typically
allocate new heap objects at very high rates.

Free space is made contiguous by copying old ob-
jects out of the allocation area. As a bonus, copy-
ing garbage collection is the simplest algorithm
out there.

1Except for languages whose primary use case is implementing op-
erating systems and similar low-level tasks.

• How?

– Before lab, you’ll read parts of a book chapter
that explain copying garbage collection, including
tricolor marking. Or if you prefer, you can watch
videos. You’ll also get your VM state ready for
garbage collection.

– In lab, you’ll implement a scanner for your VM
state, which will scan all of the state’s components
and will “forward” every pointer that points to a
payload allocated on the VM heap.

– At the end of the week, you’ll deliver a work-
ing VM that includes a copying garbage collec-
tor. The collector will recover and reuse memory
and will manage the heap’s size in response to the
program’s demands for memory.

The module step by step
Before lab
(1) Download updates. Update your git repository in two

steps:

A. Be sure all your own code is committed. Confirm
using git status.

B. Update your working tree by running git pull (or
you might possibly need git pull origin main).

I’m not expecting any merge conflicts.

(2) Extend your VM state with a pending value. Add this
new field to your struct VMState:

Value awaiting_expect; // value passed to the pending `check`, if any

The check primitive has been updated to hold its value
in this field, where the value stays until the correspond-
ing expect primitive runs. The update is necessary in
order to prevent the value from being garbage collected
in the interval between check and expect.

Confirm that your SVM compiles.

(3) Learn garbage-collection basics. For a gentle, limited
introduction to the basic ideas, you can watch my 5-
minute video. To learn the terminology, like “live data”
and “tricolor marking,” I recommend using excerpts
from my book chapter. Start with the reading guide.

1

https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf
../videos/index.html#gc
../videos/index.html#gc
https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf
11Agcguide.html

If you want more, I’ve also found three two outside
videos, all of which illustrate garbage collection with
animated diagrams:

Redgate, .NET collection, 4 minutes, YouTube

Pros and cons:

• � Short
• � Very good job setting context
• � Not exactly our algorithm
• � Does not teach any of the jargon

Notes:

• .NET is a stack machine, not a register machine;
their stack corresponds to our registers.

• Their “statics” correspond to our literals.
• Globals are the same.
• Their algorithm is mark/compact, sometimes

called mark, “sliding” compact. This algorithm
copies live objects to the same memory they al-
ready occupy; our algorithm copies live objects to
fresh memory. Ours is simpler.

Matthew Flatt (University of Utah), copying collec-
tion, 5 minutes, YouTube

Pros and cons:

• � Short
• � Exactly our algorithm
• � Good-enough animation of garbage collection
• � No extraneous details
• � No details

Notes:

• The blue box on left is our current list.
• The blue box on right is our available list
• The purple paint is a non-NULL forwarded

pointer.
• Matthew Flatt is the chief implementor of the

Racket system; he knows what he’s about.

Christoph Reichenbach (Goethe University of Frank-
furt), copying collection, 15 minutes, Lund University
Canvas

Pros and cons:

• � Motivates contiguous free space from fragmen-
tation

• � Best diagram/animation of the algorithm
• � Good discussion of requirements circa 11:10

(slide 7/9)
• � Opening will make you think you forgot to study

mark and sweep
• � Only approximately our algorithm
• � Disingenuous or uninformed analysis

Notes:

• Copying is a species of compaction.
• Uses Cheney’s algorithm: to-space also acts as a

queue of gray objects (scan and next implement
the queue). We have just the next pointer! What
for Cheney is “between next and scan” for us is
“on the gray list”.

• Move is our forward_*. (And his move doesn’t
copy the object! “That is implicit.”)

• Criticism “twice the heap size” is disingenuous (or
ill-informed). Also doesn’t mention pause times
or locality.

None of these videos is necessary for your un-
derstanding. But they may be the easiest way to get
started. If it were me, I’d spend 10 minutes on the first
two videos and skip the third (except possibly to look
at the diagram/animation).

(4) Study tricolor marking and object scanning. Read
about tricolor marking in my book chapter on pages
255–266. In lab you’ll do the step “color all the roots
gray.” (As you’re reading the chapter, don’t overlook
the reading guide.)

To see how object scanning can be implemented in
the SVM, look at function scan_value in file vmheap.c.
This function, which is analogous to function scanloc
on page 282 of the book chapter, finds a gray object’s
white successors and colors them gray. You’ll be writ-
ing analogous functions for your struct Activation and
struct VMState.

To scan your VM state successfully, you’ll need to use
forwarding functions. Look at two functions in file
vmheap.c:

• Function forward_string forwards the heap-
allocated payload of a VM string. (File vmheap.c
includes four other functions that do the same
thing for payloads of other types: functions,
closures, blocks, and tables. Reading for-
ward_string is enough.)

• Function forward_payload looks at a Value, and if
the Value’s payload is allocated on the heap, it for-
wards the payload. It also colors the forwarded
object gray (if the object’s payload might contain
pointers to other payloads) or black (if the ob-
ject’s payload cannot possibly contain a pointer
to another payload).

(5) Write macros needed to save cached state to your
struct VMState. As described in “The garbage col-
lector and the VM state”, some of your VM’s state is
likely kept in local variables of vmrun. And before a
garbage collection, some of this state may need to be
flushed to the struct VMState record that is allocated
on the C heap. Any pointer to data allocated on
the VM heap might move and so has to be flushed

2

https://www.youtube.com/watch?v=t4m_50YbrAQ
https://www.youtube.com/watch?v=jYt3uQtbLfE
https://lu.instructuremedia.com/embed/9661f730-a2f0-4020-baeb-7b4e32a37cc3
https://lu.instructuremedia.com/embed/9661f730-a2f0-4020-baeb-7b4e32a37cc3
https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf
11Agcguide.html
11Bdetails.html#vm-state
11Bdetails.html#vm-state

to the cache. In addition, you must flush other data
of interest to the garbage collector, like the position of
the register window.

After each garbage collection, local variables of vmrun
may need to be updated, because the VM state that
they represent may include locations of objects that
have moved. Local variables can be saved and then
updated by two macros VMSAVE and VMLOAD2

My own VMSAVE macro saves the currently running func-
tion and the current register-window pointer. My VM-
LOAD macro restores the currently running function and
also a pointer to that function’s instructions, which is
cached. It doesn’t have to restore the register-window
pointer because register windows aren’t allocated on
the VM heap, so they don’t move.

Define VMSAVE and VMLOAD macros that are consistent
with your own data structures.

(6) Get your VM state ready for garbage collection. Any
payload that can be reached by following pointers must
be reachable from your struct VMState. To make that
possible, you may have to curate your code to establish
the following invariants:

• The VM state must not contain any pointers of
type Instruction *. Such pointers are examples
of “interior pointers” and they complicate garbage
collection unreasonably. They are most likely to
be found on the call stack.

This invariant can be established by replacing ev-
ery instruction pointer with a combination of a
struct VMFunction * and an integer index. (It is
OK to use Instruction * internally in vmrun, just
not in the VM state.)

• The VM state record must be capable of storing
the currently running function and its program
counter. You may have to add fields to your
struct.

(7) Prepare to compile with Valgrind. File vmheap.c ships
with macros that tell Valgrind how we are using mem-
ory. This code should compile on the department
servers with no problems. If you are compiling on
your own machine, you’ll need to install a Valgrind
package, usually called a “developer” package. If you
can’t get that to work, alter the GNUmakefile to include
-DNOVALGRIND in the CFLAGS used to compile vmheap.c.

(8) Familiarize yourself with the rest of the heap imple-
mentation. The previous steps are essential to your
progress in lab. This next step will just make it easier:

2When possible, I prefer static inline functions over macros, but
because VMSAVE and VMLOAD need access to vmrun’s local variables, they
can’t be defined as static inline functions.

Using the guide to vmheap.c, page through file vmheap.c
to familiarize yourself with what’s there.

Lab
(9) Scan an activation record. In file vmheap.c, implement

function scan_activation. Ideally an activation con-
tains exactly one reference to a heap-allocated payload,
which should be a reference to the function whose ac-
tivation it is. That reference needs to be forwarded.
If you encounter anything else, check with a member
of the course staff.

(10) Scan the SVM state for roots. Guided by the generic
description of roots on page 265 of the book chapter,
as well as the comments in file vmheap.c, implement
function scan_vmstate in file vmheap.c.

Function scan_vmstate shouldn’t scan all the registers,
activations, globals, or literals that are allocated in
the state record. It should scan only the ones that
are in use—that is, the ones whose values might affect
future computations. That includes

• The registers used by the currently active func-
tion, and all lower-numbered registers

• The activations that hold suspended computa-
tions, i.e., the ones that are actually on the call
stack

• The slots that have actually been allocated to
hold globals or literals3

Scanning registers and activations that are not actually
used will result in memory leaks that Valgrind can’t
detect.

After lab
After lab, your work will alternate between your garbage
collector and your mutator. (In the perverse jargon of
garbage collection, the “mutator” is the part of your pro-
gram that’s doing useful work—but the collector sees it only
as an annoying distraction that comes in and mutates its
carefully managed heap.)

Be alert to a memory-management pitfall

(11) Check your loader for allocations. Check your file
loader.c for any code that might allocate space for
a function. If you allocate that space with malloc,
there may be trouble ahead. A struct VMFunc-
tion * points to the payload of a Value with the VM-
Function take, and when the garbage collector sees the
value, it’s going to think that it owns the memory al-
located to the payload. I don’t think havoc will ensue,

3For depth points, you can avoid scanning the literals in this step
and can garbage-collect unused literals.

3

11Cvmheap.html
https://cs106spring2023.slack.com/files/U04HVCKH5K4/F052WSFFSHW/gc.pdf

but if you violate the heap invariants, I can’t warrant
the results.

Change the allocation to use VMNEW as described be-
low.

(12) Check for other calls to malloc. Search the code you’ve
written for other calls to malloc, calloc, and real-
loc. Unless you’re looking at allocation of the VM
state record or one of its components, these calls might
need to be replaced with allocation operations from the
VM heap.

To distinguish your code from mine, you might find it
useful to use git blame. Start a bash instance, and try

for i in *.c; do git blame $i; done | egrep -
w 'malloc|realloc|calloc' | grep -v 'Norman Ramsey'

Expect to see the allocation of the VM state record
and its components, but nothing else.

Prepare your mutator

(13) Correct direct calls to vmalloc_raw. The invariants of
the garbage collector require that each heap-allocated
object include a forwarding pointer and that the for-
warding pointer of a newly allocated object be initial-
ized to NULL. You must either initialize the pointer your-
self or use macro VMNEW. This macro takes a type, a vari-
able name, and a number of bytes, and it both declares
and initializes the variable. Here is an example from
my function loader:

VMNEW(struct VMFunction *, fun, vmsize_fun(count + 1));

I recommend using the macro because then you can
use grep as an oracle to know if you’ve gotten things
right. Searching for vmalloc_raw should produce two
hits in vmheap.c and two in vtable.c, and that is all:

$ grep vmalloc_raw *.c
vmheap.c:void *vmalloc_raw(size_t n) {
vmheap.c: void *block = vmalloc_raw(num * size);
vtable.c: p = vmalloc_raw(sizeof(*p));
vtable.c: struct binding *copy = vmalloc_raw(sizeof(*p));

These four hits don’t need to be changed. If you find
any other uses of vmalloc_raw, change them.

(14) Get right with valgrind. Using your existing test codes,
run your SVM with valgrind and confirm that memory
is used correctly and it is all recovered.

vscheme -predef | uft ho-vo > predef.vo
uft ho-vo scheme105.scm | valgrind --leak-
check=full svm predef.vo -

Depending on the nature of your tests, you may get an
assertion failure complaining about “large-object allo-
cator not implemented.” If that happens, go into file

vmheap.c where PAGESIZE is defined to be 600. Double
that size, and keep doubling it until your code will run.

You want the output to look something like this:

==13551== HEAP SUMMARY:
==13551== in use at exit: 0 bytes in 0 blocks
==13551== total heap usage: 18,839 allocs, 14,297 frees, 1,818,564 bytes allocated
==13551==
==13551== All heap blocks were freed --
no leaks are possible

If you do find leaks, one possible source is that you
might be using malloc to allocate things like closures,
cons cells, or functions. Use the VMNEW macro instead.
There should be no calls to malloc in vmrun.c and only
one in loader.c; confirm by

fgrep -w malloc vmrun.c loader.c

Note: This step is here because Valgrind can be
a great tool to help you find bugs in your garbage
collector—but only if it isn’t distracted by bugs some-
where else. If you find yourself stuck (or slow) on this
step, get help.

Build your collector

(15) Familiarize yourself with the heap implementation.
If you skipped step (8), or if you just want to refresh
your memory, use the guide to vmheap.c to familiarize
yourself with what’s there.

(16) Implement the garbage collector. Using your
scan_vmstate from step (10), implement the gc func-
tion in file vmheap.c. The main part of the algorithm
looks roughly like this:

• Grab all the allocated pages (including the cur-
rent pages) and keep a pointer to them (in a local
variable). These are your from-space pages. Your
to-space pages are in available.

• Color all the roots gray. By design, it suffices to
scan your struct VMState.

• As long as there is a gray object, remove it from
the gray stack and scan it. If it has any white suc-
cessors, the scan_value function will make them
gray (or black). (The interface in file vstack.h
will be helpful here.)

• Call function VMString_drop_dead_strings().
This function removes dead strings from a
persistent data structure.

• Using function make_available, move the from-
space pages to the available list. This is the “flip”
described in the book.

4

11Cvmheap.html

As functions scan_vmstate and scan_value copy ob-
jects, the allocator will migrate to-space pages from
the available list into the current list. This is OK.

In addition to the main part of the algorithm, the gc
function does a few other things:

• Before starting to scan and copy objects, it sets
flag gc_in_progress. This flag ensures that all
copy operations are counted as copies, not as allo-
cation requests. When the collection is complete,
function gc must clear the flag.

• Before returning control to the mutator, gc looks
at the count.current.pages, the number of pages
in use. This counter measures the amount of live
data. In case the heap needs to be enlarged, gc
calls function growheap with a value obtained from
target_gamma.

Get your SVM ready to find bugs

Copying garbage collection uses simple algorithms and data
structures. But the engineering requires a lot of attention to
detail, and overlooking an important pointer is all too easy.
To armor yourself against such oversights, I recommend
altering your SVM.

(17) Add a GC instruction and primitive (optional). I rec-
ommend defining a new instruction with opcode gc
whose only action is to run the garbage collector.
To make it useful, you’ll also have to add gc to your
UFT in file primitives.sml: a side-effecting primitive
with arity zero. Using this primitive, you’ll be able
to trigger a garbage collection whenever you want—
perhaps before every cons, as in this example:

(let ([cons (lambda (x xs) (begin (gc) (cons x xs)))]) ...)

Implement the gc SVM instruction and vScheme prim-
itive.

(18) Add instrumentation to vmrun.c. If your code acci-
dentally refers to an old version of an object, the old
version’s forwarding pointer will be non-NULL. A refer-
ence might be caught by valgrind, but such references
can also be checked by using the GCVALIDATE macro de-
fined in file gcmeta.h. This macro wraps a reference
to a heap-allocated payload by adding an assertion.
The reference is duplicated, so use it only with a named
variable or a reference to a field of a named Value.4

The GCVALIDATE macro is used automatically whenever
you use a macro like AS_CONS_CELL or AS_VMSTRING. But
your implementations of call and tailcall might refer
to a struct VMFunction pointer directly, and wrapping
these references in GCVALIDATE is a good idea.

4It’s a macro, not an inline function, because it’s meant to simulate
polymorphism.

Ensure that every reference to a heap-allocated pay-
load is wrapped in the GCVALIDATE macro.

Run and test your collector

(19) Enable garbage collection in vmrun. The need for a
garbage collection is established by function newpage
(called from alloc_small via take_available_page)
when the number of pages on the available list drops
below gc_when_available_at_most. This event occurs
far away from vmrun, where it isn’t yet known that
space has run out. So newpage cannot safely call gc
directly. Instead, it sets the flag gc_needed, which sig-
nals to vmrun that it should initiate a garbage collection
when it is safe to do so. In this step, we teach vmrun
to respond to the signal.

Initiation of a garbage collection is complicated by a
desire for efficiency. We don’t want to pay the cost of
checking gc_needed on every garbage collection. For-
tunately such frequent checks are not necessary. It is
sufficient to check at every call and at every backward
branch. Because every loop must be interrupted by
a call or a backward branch, checking at these places
ensures that the mutator demands only a small, finite
amount of space before initiating a collection.

Update your vmrun function so that on every ordinary
call, every tail call, and every backward branch,5 it
checks gc_needed. If gc_needed is set, vmrun should
save its local state to the VM state record, call gc with
that record, and finally restored its local state from
the VM state record. To perform this operation, I’ve
defined this macro:

#define GC() (VMSAVE(), gc(vm), VMLOAD())

If you’ve defined a gc instruction in step (17), be sure
to use GC() (or VMSAVE and VMLOAD) there as well.

(20) Preliminary tests of your collector. Try out your col-
lector with a couple of simple codes that allocate cons
cells and very little else.

Allocate and discard a thousand cons cells

; file alloc.scm
(define allocate (N)

(let ([x #f])
(begin

(while (> N 0)
(begin

(set x (cons 'a 'b))
(set N (- N 1))))

x)))

5If, as I recommend, you’ve implemented PC-relative branches, you
can identify a backward branch by its negative offset. If your goto uses
absolute offsets, you will have to compare the target offset with the
current program counter.

5

(check-expect (allocate 1000) (cons 'a 'b))

Allocate a half-million cons cells

Only 1,000 cons cells are live at any one time:

; file grow.scm
(define iota (N)

(let ([ns '()])
(begin

(while (> N 0)
(begin

(set ns (cons N ns))
(set N (- N 1))))

ns)))

(check-expect (iota 8) '(1 2 3 4 5 6 7 8))

(define allocate (N)
(let ([x #f])
(begin

(while (> N 0)
(begin
(set x (iota N))
(set N (- N 1))))

x)))

(check-expect (allocate 1000) '(1))

Using my collector, some sample runs look like this:

$ uft ho-vo alloc.scm | env SVMDEBUG=gcstats svm
The only test passed.
Requested 49,056 bytes in 1,013 allocations
10 garbage collections copied 9,552 bytes
The collector copied 0.19 bytes for every byte requested
At exit, heap contained 1 used pages and 2 available pages
Total heap size is 18,000 bytes held in 3 pages

$ uft ho-vo grow.scm | env SVMDEBUG=gcstats svm
All 3 tests passed.
Requested 24,028,976 bytes in 500,591 allocations
546 garbage collections copied 27,293,520 bytes
The collector copied 1.14 bytes for every byte requested
At exit, heap contained 11 used pages and 23 available pages
Total heap size is 204,000 bytes held in 34 pages

Until you implement step (22), your results may
look different.

(21) Test with Valgrind. Run the same tests with valgrind
--leak-check=full.

Now go to vmheap.c and enlarge the PAGESIZE from
600 bytes to 6000 bytes.

Recompile, then run your scheme105.scm test from
module 9, again with valgrind --leak-check=full.

Manage the size of the heap

(22) Implement the heap-growth policy. If a program starts
to run short of memory, it can start to spend all its
time trying to garbage-collect what little memory it
has left. Our page-based allocator militates against
this problem, but to prevent it completely we need a
policy: when memory runs short, grow the heap.

I recommend a simple heap-growth policy with one pa-
rameter called 𝛾 (“gamma”). The parameter measures
the ratio of the heap size to the amount of live data.
The heap-growth policy sets a minimum acceptable 𝛾,
which is obtainable by calling function target_gamma
defined in file vmheap.c.

The policy parameter is taken from vScheme global
variable &gamma. When that variable is not a number,
a default is used. Useful values range between, say,
2 and 10. (If &gamma is over 100, target_gamma inter-
prets it as a percentage, so if you try setting &gamma
to 500, that’s a heap 5 times the size of live data.)

In file vmheap.c, alter function growheap to implement
the policy: if the total heap size is not at least live
data times target_gamma, add pages until it is. When
the heap grows, announce it:

if (grew && svmdebug_value("growheap"))
fprintf(stderr, "Grew heap to %d pages\n",

count.current.pages + count.available.pages);

(23) Final tests before submission. In addition to the tests
from step (20), run some tests that allocate and discard
a lot of memory. Good candidates include Quicksort
and merge sort on large lists. (Insertion sort is good
only if the list is not already sorted or nearly sorted.)
Try them and be sure the heap grows as you expect.

What and how to submit
(24) On Monday, submit the homework. In the src/svm di-

rectory you’ll find a file SUBMIT.11. That file needs to
be edited to answer the same questions you answer ev-
ery week. To submit, you’ll need to copy your working
tree to the department servers. We recommend using
rsync, but scp also works.

Now log into a department server, change to your work-
ing tree, and submit your entire src directory:

provide cs106 hw11 src

or if you keep an additional tests directory,

provide cs106 hw11 src tests

(25) On Tuesday, submit your reflection. Create a plain text
file REFLECTION, which will hold your claims for project
points and depth points.

6

For each project point you claim, write the number
of the point, plus whatever is called for in the section
“How to claim the project points”—usually a few sen-
tences.

Now copy your REFLECTION file to a department server
and submit it using provide:

provide cs106 reflection11 REFLECTION

Learning outcomes
Outcomes available for points
You can claim a project point for each of the learning out-
comes listed here. Instructions about how to claim each
point are found below.

1. Applications. You understand applications of garbage
collection.

2. Memory management. You can write a C program
with no memory errors and no leaks.

3. Roots. You understand roots.

4. Forwarding-pointer invariants. You can show where
forwarding-pointer invariants are established for new
objects.

5. Color invariants. You can explain the roles of color
invariants.

6. Cached state. You understand what cached state is
flushed at garbage-collection time, and why.

7. Forwarding, part 1. You understand what information
is needed to forward a payload pointer.

8. Forwarding, part 2. You understand why we check a
forwarding pointer before copying an object.

9. Heap-growth policy. You understand how the heap-
growth policy parameter affects space-time tradeoffs.

10. Structure of the heap graph. You can explain how copy-
ing collection preserves linked pointer structures.

You can claim depth points for improving your SVM:

11. Denser cons cells [2 points]. Using a struct VMBlock
to represent a cons cell has its advantages, but the
machine word spent on nslots is wasted. Define a new
type of payload that carries just two values, car and
cdr, plus GC metadata. Make your system use that
payload for cons cells.

Measure the improvements in heap size and bytes re-
quested.

12. Densest cons cells [2 points]. The previous depth op-
portunity reduces the size of a cons cell from 48 bytes
to 40 bytes. But the 8 bytes spend on a forwarding

pointer are used only during garbage collection, and
are otherwise wasted. Moreover, once the cons cell has
been forwarded, the car is no longer needed. Alter
the representation of cons cells so that the forwarding
pointer and the car share space. (An anonymous union
will be helpful here.) This will reduce the size of a cons
cell to its absolute minimum of two values (32 bytes).

Measure the improvements in heap size and bytes re-
quested.

13. Large objects [3 points]. Implement a large-object allo-
cator. A large object should be allocated with malloc,
not on a page, and should never be copied. Here are
some tricks:

• You can identify a live large object by setting its
forwarded pointer to point to itself.

• You can link large objects on a list, much as pages
are linked on a list or interned strings are linked
on a list.

• After a collection, you can reclaim dead large ob-
jects by traversing the list after the manner of
function VMString_drop_dead_strings.

To test your allocator, you’ll want to allocate large
objects and let them die. Try loading large functions
into global variables, then set those global variables to
nil, allowing the large functions to die.

14. Interior pointers [4 points]. Make it possible to keep a
function alive (and copy it to a new location) even if
the only reference to the function is an interior pointer
to its instruction stream (of type Instruction *). And
also to correctly forward such interior pointers.

The key operation here is to be able to take a pointer
to an arbitrary location in an instruction stream and
somehow to find the function to which that instruction
stream belongs. Perhaps the operation can be imple-
mented via some clever doctoring of the instruction
stream.

This little project might turn out to be more than
4 points worth of work, but it’s less than 4 points worth
of interest, so I’m just going to keep it at 4 points. No-
body loves interior pointers.

15. Zero fewer registers [2 points]. At each VM call,
update a high-water mark that records the highest-
numbered register ever used. At each garbage collec-
tion, zero registers only to the high-water mark, then
reset the high-water mark. Using a memory-intensive
benchmark, measure the difference in both run time
and number of hardware instructions executed.

16. Garbage-collect registers based on liveness analysis
[5 points]. Either in the UFT or the SVM, do a static
analysis at each GC safe point to determine which VM

7

registers are actually live. At GC time, consult the
results of the analysis to know exactly which registers
to scan.

How to claim the project points
Each of the numbered learning outcomes 1 to 10 is worth
one point, and the points can be claimed as follows:

1. It is convenient to be able to use new without delete or
malloc without free. But it is even more convenient
to write code without thinking about allocation at all.
To claim this point, give an example from a language
not in the Scheme family, where the implementation
of a feature just allocates behind the scenes, and the
garbage collector takes care of the rest. To earn the
point, it must be a feature that a programmer can use
without being forced to think, “I am allocating memory
here.”

2. To claim this point, get your SVM into shape where
you can run it on a program and Valgrind reports
no errors and no leaks. (You are welcome to do this
in step (14), before you start your garbage collector.)
Commit the code and tag it with

git tag valgrind-clean

Submit the output from valgrind running your SVM
on the program of your choice.

3. To claim this point, identify the lines in your
scan_vmstate function that scan registers and literals,
and explain how you know which registers and literals
to scan.

4. To claim this point, look at the lines in your source
code that initialize the payload for a ConsCell, and
identify the line that initializes the payload’s forwarded
pointer to NULL.

5. If a value that is gray or black were accidentally put on
the gray list a second time, this would violate one of
the color invariants. To claim this point, explain what
bad thing could happen if this invariant is violated.

6. In step (19), I observe that my VMSAVE macro flushes the
current register-window pointer. But my VMLOAD does
not reload it. To claim this point, explain why I would
bother to save this value if I’m not reloading it.

7. To claim this point, explain why it’s not possible to
forward a pointer of type Instruction *.

8. Function forward_string copies a payload only if the
forwarding pointer is NULL. To claim this point, suppose
instead that forward_string copies a payload uncondi-
tionally every time it is called, and explain what could
go wrong.

9. To claim this point, say how you would set the heap-
growth policy parameter to do less work by using a lot
of space. Then say how you would change the policy to
use less space at the cost of doing more work. If pos-
sible, support your answer with evidence of gcstats
output from your collector. If not, explain why it is
not possible.

10. In file value.c, function eqvalue compares two String
values as equal only if they point to the same payload—
if two Values point to different payloads they are con-
sidered different strings, even if the payloads contain
the same characters.

Suppose that a string value appears in two different
VM registers, so both registers point to the same pay-
load. But then the garbage collector copies every reg-
ister’s payload to a new location. To claim this point,
explain how the collection manages to preserve pointer
relationships so that after the collection, the registers
are still considered to hold equal strings.

8

	The module step by step
	Before lab
	Lab
	After lab
	Be alert to a memory-management pitfall
	Prepare your mutator
	Build your collector
	Get your SVM ready to find bugs
	Run and test your collector
	Manage the size of the heap

	What and how to submit

	Learning outcomes
	Outcomes available for points
	How to claim the project points

