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Introduction
This week you’ll translate pattern matching into efficient
decision trees.

• What am I doing?

– Implement case expressions by compiling each
case expression to a decision tree. Each internal
node of the decision tree will execute in almost
constant time.1

• Why am I doing it?

– Pattern matching one of the most prized features
of the ML family of languages. You’ll learn a
simple algorithm that produces very efficient code
in almost all cases.

• How?

– Before lab, you’ll do a ton of reading. You’ll also
resolve merge conflicts and add two new syntactic
forms to your KNF.

1A constant number of VM instructions.

– In lab, you’ll implement two key computations:
a function that accounts for knowledge discovered
during pattern matching, and a function that gen-
erates K-normal form from a decision tree.

– After lab, you’ll write the rest of the match com-
piler, and you’ll implement the SVM instructions
needed to run pattern matching.

– At the end of the week, you’ll submit a translator
that includes pass es-vo. Your system (translator
plus VM) should be able to run �ML code as de-
scribed in Chapter 8 of Programming Languages:
Build, Prove, and Compare.

• What should I expect?

– This module has not been debugged. There may
be rough spots.

– Like lambda, the case feature touches almost every
aspect of the code. And match compilation is
a bit more involved than closure conversion, so
I expect the module might take a bit more effort
than module 10. But unlike closure conversion,
the algorithms aren’t mind-blowing. That may
help.

To help you manage the many parts of the
code that must be touched, I have broken things
down into small steps. The core steps are
steps (8), (9), (18), and maybe (27). The other steps
are subsidiary.

The module step by step

Before lab: Constructed data and match
compilation
(1) Case expressions and pattern matching in �ML. Look

through the opening of Chapter 8 of Programming Lan-
guages: Build, Prove, and Compare, through the mid-
dle of page 465 end of section 8.1 (9 pages). The con-
cepts are familiar and the section is mostly examples,
so you need not read in depth—instead, read to pick
up the terminology and to get comfortable with the
concrete syntax.
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Also read section 8.2.2 (pages 469 and 470), which ex-
plains how value constructors are written. Value con-
structors in eScheme use the same rules.

(2) Semantics of pattern matching. In the same book, read
section 8.2.1 (pages 468 and 469), which describe the
semantics of pattern matching, informally. (A formal
semantics is shown in section 8.8.1, but that semantics
describes an algorithm so different from ours that the
section is probably not useful.)

(3) Constructed data. Read the first three sections of the
handout on constructed data. Stop when you finish
the section on constructed data at run time; you won’t
need to read about VM instructions before lab.

(4) Get new code and repair your UFT. Use git pull to
update your UFT. Expect merge conflicts. Possi-
bilities include:

• In opcode.h, new opcodes GotoVcon and IfVcon-
Match may conflict.

• New functions in asmutil.sml may conflict.

• A new primitive in primitives.sml may conflict.

• New cases in disambiguate.sml may conflict, es-
pecially for APPLY.

• In uft.sml a new language ES may conflict.

In order to be able to compile code during lab, you’ll
have to patch your UFT:

• File asm.sml defines a new form of assembly lan-
guage: GOTO_VCON. That form has to be handled.
For now, it can be handled by code that calls Im-
possible.exercise.

– In file assembler.sml, handle the GOTO_VCON
form in your fold function and in your la-
belElim function. Call Impossible.exercise.
If you used ML’s case, this code might be
useful:

| A.GOTO_VCON _ => Impossible.exercise "GOTO_VCON"

– In file asmparse.sml, handle the GOTO_VCON
form in your unparser. Also call Impossi-
ble.exercise.

• Extend your K-normalizer (knormalize.sml) to
recognize patterns C.CONSTRUCTED _ and C.CASE _
and to respond to them with calls to Impossi-
ble.exercise.

| C.CONSTRUCTED _ => Impossible.exercise "K-
normalize data construction"
| C.CASE _ => Impossible.exercise "K-
normalize case expression"

• In closure-convert.sml, update your free-
variable analysis to handle the CONSTRUCTED and
CASE forms. The analyses are provide in file
case.sml, so you need only pass in your existing
function:

| free (X.CASE c) = Case.free free c
| free (X.CONSTRUCTED c) = Constructed.free free c

• Also in closure-convert.sml, extend your closure
conversion to convert CONSTRUCTED and CASE forms.
The conversion is entirely structural; my exten-
sions look like this:

| exp (X.CASE c) = C.CASE (Case.map exp c)
| exp (X.CONSTRUCTED c) = C.CONSTRUCTED (Constructed.map exp c)

• Add these definitions to the top of your KNormal-
ize structure:

structure MC = MatchCompiler(type register = int
fun regString r = "$r" ^ Int.toString r

)

structure MV = MatchViz(structure Tree = MC)
val vizTree = MV.viz (WppScheme.expString o CSUtil.embedExp)

Ensure that your UFT compiles.

(5) Extend K-normal form. Dive into your knf.sml and
extend your K-normal form with two new syntactic
forms. Each form has an operational semantics that is
described informally in a comment.

| BLOCK of 'a list
(* allocate a block and initialize each slot with the

corresponding register *)

| SWITCH_VCON of 'a * ((Pattern.vcon * int) * 'a exp) list * 'a exp
(* given SWITCH_VCON (r, choices, other), if the value in register

r matches any (vcon, k) pair, then evaluate the corresponding
expression, otherwise evaluate the other expression *)

Update your KNF embedding (knembed.sml) to handle
each of these forms with a call to Impossible.exercise.

| exp (K.BLOCK _) = Impossible.exercise "embed K.BLOCK"
| exp (K.SWITCH_VCON _) = Impossible.exercise "embed K.SWITCH_VCON"

And update your code generator (codegen.sml) to
handle each of these forms with a call to Impossi-
ble.exercise.

| K.BLOCK _ => Impossible.exercise "codegen K.BLOCK"
| K.SWITCH_VCON _ => Impossible.exercise "codegen K.SWITCH_VCON"

And finally update knrename.sml to rename the two
forms. With luck you may be able to use this code:

| K.BLOCK xs => K.BLOCK <$> errorList (map f xs)
| K.SWITCH_VCON (x, choices, fallthru) =>

let fun choice (pat, e) = pair pat <$> mapx f e
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in curry3 K.SWITCH_VCON <$> f x
<*> Error.mapList choice choices

<*> mapx f fallthru
end

Ensure that your UFT compiles.

(6) Match-compilation reading. Pick up the handout on
match compilation and the match-compilation paper
by Kevin Scott and Norman Ramsey. Read enough
so you have an idea what is going on with the tree
type and with Figure 8. One of the core operations
of Figure 8—refining constraints of the form (𝜋, 𝑝)—is
the first half of lab.

Lab: Refinement and K-normalization
(7) Refine constraints. In file match-compiler.sml, imple-

ment function refineConstraint. Its type is

val refineConstraint :
register -> labeled_constructor -> constraint -

> constraint list compatibility

Aim for a clean function that type checks.

There is a full explanation in the match-compilation
handout, but to refine a given constraint (𝜋′, 𝑝′) using
labeled constructor 𝐶/𝑛 at path 𝜋, you can use these
guidelines:

• If the pair (𝜋′, 𝑝′) is unrelated to what’s
happening at path 𝜋, it If 𝜋′ ≠ 𝜋 then 𝜋′ and 𝜋
refer to different locations. So the knowledge that
𝐶/𝑛 is seen at 𝜋 doesn’t affect constraint (𝜋′, 𝑝′);
(𝜋′, 𝑝′) just gets refined into the compatible, single-
ton list [(𝜋′, 𝑝′)].

• If 𝜋′ = 𝜋 and the constructor’s name and
arity match, that is, if the pair (𝜋′, 𝑝′) is
(𝜋, 𝐶(𝑝1, … , 𝑝𝑛)), then it gets replaced by the list
of compatible pairs [(𝜋.1, 𝑝1), … , (𝜋.𝑛, 𝑝𝑛)].2

• If 𝜋′ = 𝜋 and 𝑝′ is any other constructor appli-
cation, then constraint (𝜋′, 𝑝′) is not compatible
with seeing 𝐶/𝑛 at path 𝜋, and refineConstraint
returns INCOMPATIBLE.

Plan on spending about half the lab the whole lab on
refineConstraint and refineFrontier here. When you
finish, either continue with function refineFrontier or
move on to step (8).

After lab
K-normalization of case expressions

(8) K-normalize case expressions using decision trees. Re-
turn to your K-normalizer, and replace the call to

2The paper writes paths backwards, as 1.𝜋 and so on. We must
have been insane.

Impossible.exercise with the following template (the
template calls the match compiler and uses the result-
ing decision tree to generate K-normal form):

| F.CASE (e, choices) =>
(... normalize e into a register, using the following continuation ...) (fn t =>
let fun treeGen = Impossible.exercise "treeGen"

val _ = treeGen : regset -> F.exp MC.tree -
> reg K.exp

val A' = ... available registers minus t ...
in treeGen A' (vizTree (MC.decisionTree (t, choices)))
end)

The CASE form is defined in structure Case in file
case.sml; variable e has type F.exp and variable choices
has type (Pattern.pattern * F.exp) list.

Function vizTree acts like an identity function, except
it may also write a visualiation to disk.

Define function treeGen.

Match compilation

(9) Match compilation: Refinement. Return to the match-
compilation handout and the paper by Scott and Ram-
sey. In match-compiler.sml, if you did not finish func-
tions refineConstraint and refineFrontier in lab, fin-
ish them now.

Now implement function decisionTree. The TEST and
MATCH nodes are described in the paper. When your
match compiler produces a node of the form LET_CHILD
((𝑟, 𝑖), 𝑘), you define continuation 𝑘. The continua-
tion expects a new, temporary register, and it updates
all the frontiers, substituting the new register for the
old path CHILD (𝑟, 𝑖). Perform the substitution using
function forPath.

Ensure that your UFT compiles.

(10) If working locally, install Graphviz. If you work on
your own local machine, install the Graphviz package
with its dot command. If you are on Halligan, dot is
already installed in /usr/sup/bin.

(11) Visualize results of match compilation. The example
in Figure 6 of the paper can reproduced using this eS-
cheme code:

(define figure-6 (arg)
(case arg

[(C1 C2 C3) 'one]
[(C1 x C4) 'two]
[(C1 x C5) 'three]
[_ 'four]))

(check-expect (figure-6 (C1 3 C4)) 'two)

Place the code in file fig6.scm, and run
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$ case-viz fig6.scm

Your UFT should crash with an uncaught Impossi-
ble exception, but before it does, it should write a
visualization to file fig6.dot. The case-viz script
should process the visualization into PDF and then
open the PDF.

Notice that several leaves are duplicates. This dupli-
cation can be eliminated during code generation (for
depth points).

K-normalization and embedding

(12) K-normalization of constructed data. K-normalize the
F.CONSTRUCTED form. In the general case, the value con-
structor is turned into a string literal, and the whole
lot go into a K.BLOCK form. But in order to continue
using your legacy SVM representations of lists and
Booleans, your K-normalizer should implement these
special cases:

| F.CONSTRUCTED ("#t", []) => ... literal (BOOL true) ...
| F.CONSTRUCTED ("#f", []) => ... literal (BOOL false) ...
| F.CONSTRUCTED ("cons", [x, y]) => ... application of P.cons ...
| F.CONSTRUCTED ("'()", []) => ... literal EMPTYLIST ...

(13) Embed the SWITCH_VCON and BLOCK forms. In file knem-
bed.sml, update your K-normal form embedding to
handle the new syntactic forms. Feel free to adapt
my code:

| embed (K.BLOCK xs) = S.APPLY (S.VAR "block", map S.VAR xs)
| embed (K.SWITCH_VCON (x, choices, e)) =

let val lastQa = [(S.LITERAL (S.BOOLV true), embed e)]
fun isCon (vcon, arity) =

S.APPLY (S.VAR "matches-vcon-arity?",
[S.VAR x, S.LITERAL (S.SYM vcon), (S.LITERAL o S.INT) arity])

fun qa (c, e) = (isCon c, embed e)
in S.COND (map qa choices @ lastQa)
end

(14) Test your match compiler using the embedding. Com-
pile your UFT, then test the match compiler and em-
bedding:

$ uft es-kn fig6.scm | vscheme

Fix a bug in closures and blocks.

(15) Correct a bug that applies to CLOSURE and BLOCK forms.

Assuming n is a local variable with value 99, the fol-
lowing code should set n to (C1 99 100) but instead it
sets the second slot of n to point to n itself:3

(set n (C1 n 100)))

3A value like this sends my printer into a tizzy. I might try to fix
it later in the week.

The same bug manifests with closures. Your UFT has
the bug if it fails this test:

(define id (x) x)
(define simplify (x)

(lambda ()
(id (lambda () x))))

(check-expect (((simplify 99))) 99)

In both cases the difficulty is the same: the K-
normalizer thinks that BLOCK and CLOSURE can be im-
plemented in a single, atomic VM instruction, which
implies that a BLOCK or CLOSURE value can be placed in
a register that is also one of its arguments—just like
an add instruction.

We can solve this problem during K-normalization by
allocating a fresh register and assigning the BLOCK or
CLOSURE form to it, which is done by the K-normal
form x := e, where e is the normal form of the BLOCK
or CLOSURE. The K-normalizer needs to allocate reg-
ister x; I recommend this function, which does it in
continuation-passing style:

val inLocalVar : regset -> (reg -> exp) -> exp =
fn rs => fn k => let val t = smallest rs in K.SETLOCAL (t, k t) end

My new code for K-normalizing a closure now looks
something like this:

| F.CLOSURE (lambda, captured) =>
if null captured then

K.FUNCODE (funcode lambda)
else

inLocalVar rs (fn t =>
nbRegs bindAnyReg (rs -- t) captured (fn ys =>

K.CLOSURE (funcode lambda, ys)))

Something similar needs to be done for the general case
of K-normalizing CONSTRUCTED into BLOCK.

Code generation

(16) Generate code for the BLOCK form. In codegen.sml, the
K.BLOCK form has to be handled only in function toReg.
The code should be very similar to the code you gen-
erate for the K.CLOSURE form. In forEffect, a K.BLOCK
generates no code, just like a K.CLOSURE. And toReturn
can delegate to toReg.

(17) Determine representations for value constructors in
case expressions, including legacy value constructors.
In step (12) you wrote special-case code for the in-
troduction form of constructed data. The special-case
code enables your SVM to continue to use its special-
case, efficient representations of constructed Booleans
and lists. You also need to enable the Scheme case
expression (the elimination form) to recognize these
special-case representations.

4



To eliminate Boolean and list values using special-case
code, you will use a trick that also allows integer liter-
als to act like constructed data in patterns. The trick
is to convert each labeled constructor to an appropri-
ate literal value that can represent the constructor in
assembly code and object code. The conversion can be
done by this function:

val conLiteral : labeled_constructor -> A.literal

When value constructors #t and #f are used with ar-
ity 0, they should be converted to Boolean literals.
Value constructor '(), when used with arity 0, should
be converted to an empty-list literal. And when a con-
structor used with arity 0 has a name made entirely of
digits, it should be converted to an integer literal. Ev-
ery other constructor should be converted to a string
literal.

Pitfall: Function Int.fromString can’t be trusted:
it works even if only a prefix of the string given is an in-
teger. Validate the name using the predicate CharVec-
tor.all Char.isDigit.

In file codegen.sml, implement function conLiteral.4

(18) Generate code for SWITCH_VCON. Like the IFX form, the
SWITCH_VCON form has subexpressions whose code gen-
eration depends on context:

• If a SWITCH_VCON form puts its result in a register,
each subexpression puts its result in that same
register.

• If a SWITCH_VCON is executed for side effect, each
subexpression is executed for side effect.

• And if a SWITCH_VCON is in tail position (returned),
each subexpression is in tail position.

To avoid writing three copies of the same code, I de-
fined an auxiliary function:

switchVcon : (exp -> code)
-> code

-
> reg * (labeled_constructor * exp) list * exp

-> code

where exp is KNF and code is a Hughes list of assembly
instructions.

Calling switchVcon gen finish (r, choices, fallthru)
generates code as follows:

• Each subexpression is translated using gen, and
its translation is followed by (a copy of) finish.

• Every subexpression except fallthru is preceded
by the definition of a fresh label.

4Although the elimination form is handled in codegen.sml, the intro-
duction form is handled in knormalize.sml. This structure just about
kills me, but I don’t have time to fix it.

• The code returned by switchVcon starts with an
AssemblyCode.GOTO_VCON form, which contains a
jump table. That form is followed by the transla-
tion of fallthru. And that translation is followed
by the translations of all the other expressions in
any order, each of which is preceded by the defi-
nition of its corresponding label.

During the construction of the jump table. each
labeled_constructor is converted to an Object-
Code.literal and an arity. To compute the literal, use
the function conLiteral that you defined in step (17).

Implement switchVcon and use it in toReg, forEffect,
and toReturn. In the first two cases, the finish param-
eter should contain an unconditional jump to an exit
label. For toReturn, the finish parameter should be
empty.

Assembly and disassembly

(19) Unparse the GOTO_VCON form. In file asmparse.sml, up-
date your unparser to handle the GOTO_VCON form. Like
LOADFUNC, GOTO_VCON should unparse to multiple lines.
That’s important for preserving indentation.

My code might help; it probably won’t compile in your
UFT, but it can probably be adapted:

| unparse (A.GOTO_VCON (r, choices) :: instructions) =
let fun choice (v, arity, lbl) =

spaceSep [" case", lit v, "(" ^ int arity ^ "):", "goto", lbl]
in spaceSep ["switch", reg r, "{"] :: map choice choices @ "}" ::

unparse instructions
end

(20) Test code generation. Using your new unparser, check
on the results of your code generator from step (18).
For example, when I run mine on fig6.scm, I get these
results:

$ uft es-vs fig6.scm
r0 := function (1 arguments) {

switch r1 {
case "C1" (2): goto L1

}
r0 := "four"
return r0
L1:
r2 := block r1⟨1⟩
switch r2 {

case "C2" (0): goto L2
}
r3 := block r1⟨2⟩
switch r3 {

case "C5" (0): goto L3
case "C4" (0): goto L4

}
r0 := "four"

5



return r0
L3:
r0 := "three"
return r0
... more where this came from ...

(21) Assemble the GOTO_VCON form. In file assembler.sml,
update your fold function to account for the number
of instructions emitted for a GOTO_VCON form: it is one
plus twice the number of choices.

Update your labelElim function to assemble the
GOTO_VCON form. It should generate a GOTO_VCON instruc-
tion from the ObjectCode module, followed by a pair of
instructions for each choice: one REGSLIT instruction
with the if-vcon-match opcode, and one GOTO instruc-
tion.

This code offers ample opportunity for off-by-one er-
rors.

(22) Prepare to disassemble the new instructions in svm-dis.
In your SVM directory, add new instructions to file
instructions.c. You are welcome to copy my entries:

{ "mkblock", MkBlock, parseR2U8, "rX := block[rY,Z]" },
{ "getblockslot", GetBlockSlot, parseR2U8, "rX := block rY.Z" },
{ "setblockslot", SetBlockSlot, parseR2U8, "block rX.Z := rY" },
{ "goto-vcon", GotoVcon, parseR1U8, "goto-
vcon rX [Y slots]" },
{ "if-vcon-match", IfVconMatch, parseU8LIT, "if vcon == LIT/X then" },

Add opcodes MkBlock, GetBlockSlot, SetBlockSlot, Go-
toVcon, and IfVconMatch to your opcode.h file.

Run make, which should rebuild both svm and svm-dis.

(23) Inspect object code. Run your object code through the
disassembler and confirm that it looks as you expect.
Pay special attention to PC-relative branches. My ob-
ject code for fig6.scm, which I believe now respects the
operational semantics,5 disassembles like this:

$ uft es-vo fig6.scm | svm-dis -pc
0: r0 := function 0x564793125d00
1: global `figure-6` := r0

...
------------------------------------
; function at literal 15

0: goto-vcon r1 [1 slots]
1: if vcon == "C1"/2 then
2: goto $PC + 2
3: r0 := "four"
4: return r0
5: r2 := block r1.1
6: goto-vcon r2 [1 slots]
7: if vcon == "C2"/0 then
8: goto $PC + 12

5The branch is relative to the address following the goto instruc-
tion.

9: r3 := block r1.2
10: goto-vcon r3 [2 slots]
11: if vcon == "C5"/0 then
12: goto $PC + 4
13: if vcon == "C4"/0 then
14: goto $PC + 4
15: r0 := "four"
16: return r0
17: r0 := "three"
18: return r0
19: r0 := "two"
20: return r0
21: r3 := block r1.2
22: goto-vcon r3 [3 slots]
23: if vcon == "C5"/0 then
24: goto $PC + 6
25: if vcon == "C4"/0 then
26: goto $PC + 6
27: if vcon == "C3"/0 then
28: goto $PC + 6
29: r0 := "four"
30: return r0
31: r0 := "three"
32: return r0
33: r0 := "two"
34: return r0
35: r0 := "one"
36: return r0
37: halt

New SVM instructions

(24) Put symbol cons where your vmrun can access it quickly.
To keep working with legacy representations of lists,
your vmrun function needs access to the literal symbol
cons. I made my life easy by adding this symbol’s
location to the VM state. I add the symbol in my
newstate function:

vm->cons_sym_slot = literal_slot(vm, mkStringValue(Vmstring_newc("cons")));

My vmrun then places the symbol in a local variable:

Value cons_symbol = vm->literals[vm-
>cons_sym_slot]; // restore me after GC

(25) Implement the block instructions. In vmrun.c, im-
plement instructions mkblock, getblockslot, and set-
blockslot. Functions mkblock and setblockslot can
be modeled on existing closure instructions. But get-
blockslot needs to handle both blocks and cons cells.
Mine makes a cons cell masquerade as a block with
three slots:

case GetBlockSlot: {
struct VMBlock *block = RY.block;
if (RY.tag == ConsCell) {

switch (Z) {
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case 0: RX = cons_symbol; break;
case 1: case 2: RX = block->slots[Z -

1]; break;
default: runerror("A cons cell does not have a slot %d", Z);

}
} else {

assert(RY.tag == Block);
RX = getrecord(vm, block->slots, block-

>nslots, Z);
}
break;
}

This embarrassing masquerade can be eliminated for
depth points.

(26) Add a debugging flag. At the top of your vmrun function,
add this definition:

const char *dump_case = svmdebug_value("case");

(27) Implement computed goto. The GotoVcon instruction
must first compute a labeled constructor from the value
of the scrutinee, then search the jump table for a cor-
responding entry. The labeled constructor comprises
a constructor value and an arity. It is computed by
these rules:

• If the value of the scrutinee is a block 𝑏, then the
constructor’s value is 𝑏->slots[0] and its arity is
𝑏->nslots - 1.

• If the value of the scrutinee is a cons cell, then
the constructor’s value is the string cons and its
arity is 2.

• If the value of the scrutinee is any other value 𝑣,
then the constructor’s value is 𝑣 and its arity is
zero.

Given the labeled constructor’s value and arity, the
GotoVcon instruction searches for a jump-table entry
with a matching value and arity. Since each jump-
table entry is coded as a pair of VM instructions, you
can extract the expected arity in the X field of the first
instruction. The value is found in the literal table at
index YZ of that same instruction.

The next instruction specifies the address to which to
transfer control if the value and arity match. That next
instruction is a Goto, and it codes for the target address
in the usual way (the 24-bit signed offset in the XYZ
field, relative to the address immediately following the
Goto).

Implement GotoVcon.

If dump_case is not NULL, show the value of the scrutinee,
and show the constructor and arity you have computed
for that value. Also, for each IfVconMatch instruction

that is checked for a match, show the constructor and
arity that are being checked.

Caution: Off-by-one errors can bite you here. If you
run into trouble, try printing out target addresses when
variable dump_case is not NULL. If you continue to have
trouble, you could consider instead interpreting each
IfVconMatch opcode as an independent instruction, as
specified in the operational semantics. Once that’s
working, you can move the logic into GotoVcon, which
will eliminate the extra interpretive overhead.

Testing

(28) Recommendations for testing. The eScheme parser un-
derstands �ML code, and I’ve added predefined �ML
functions to file predefs.es in the src/vscheme direc-
tory. You can read more about �ML in chapter 8 of
Programming Languages: Build, Prove, and Compare.

Alert: Because the �ML interpreter has types, it can
and does eta-expand every bare value constructor. But
eScheme does not expand any bare value construc-
tors; heedless of possible type definitions, eScheme
will cheerfully use any value constructor at arity 0.

For testing, I recommend three phases:

1. As an initial test, the split function below does
not depend on any predefined functions. It splits
a list into two parts of equal size. (It’s part of a
merge sort.)

(define split (xs half other-half)
(case xs

['() (PAIR half other-half)]
[(cons y ys)

(split ys other-
half (cons y half))]))

(check-expect (split '(1 2) '() '()) (PAIR '(1) '(2)))
(check-expect (split '(1 2 3 4) '() '()) (PAIR '(3 1) '(4 2)))

You can run code with script run-es-with-predef.
Or more likely,

env SVMDEBUG=decode,case run-es-with-
predef split.es

2. Next, look over the predefined functions. Quite
a few are defined using case forms. Use some
of these functions to Write some simple check-
expect tests.

3. As an integration test, try the 2D-tree code de-
scribed in the Supplement to Build, Prove, and
Compare in section E.2, which starts on page S125.
This code implements an elegant geometric al-
gorithm which searches a map for the known
point that is nearest to an arbitrary query point.
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To provide a test case, I’ve translated the gis.uml
file to gis.es, which required only eta-expanding
a few value constructors. I also provide the file
ne-city-halls.es, which includes a check-expect
test for the query shown on page S134. That code
exercises value constructors and case expressions
on non-list, non-Boolean data.

What and how to submit
(29) On Monday, submit the homework. In the src/uft di-

rectory you’ll find a file SUBMIT.12. That file needs
to be edited to answer the same questions you answer
every week.

To submit, you’ll need to copy your working tree to
the department servers. We recommend using rsync,
but scp also works.

Now log into a department server, change to your work-
ing tree, and submit your entire src directory:

provide cs106 hw12 src

or if you keep an additional tests directory,

provide cs106 hw12 src tests

(30) On Tuesday, submit your reflection. Create a plain text
file REFLECTION, which will hold your claims for project
points and depth points.

For each project point you claim, write the number
of the point, plus whatever is called for in the section
“How to claim the project points”—usually a few sen-
tences.

Now copy your REFLECTION file to a department server
and submit it using provide:

provide cs106 reflection12 REFLECTION

Reading in depth
Occasionally I’ll suggest reading that may enrich your view
of programming-language implementation.

• A decision tree with jump tables at the leaves is used
not only for efficient matching of constructed data,
but even for switch statements that operate on inte-
gers. John Hennessy and Noah Mendelsohn (1982) de-
scribe an algorithm that is used in many compilers for
C and C++. Yes, that Noah Mendelsohn.

• Robert Bernstein (1985) describes code generation for
case statements in a production compiler. He pays
significant attention to machine instructions, including
a now-famous trick for implementing a signed range
test with a single conditional branch.

• Luc Maranget has published a whole series of papers
on pattern matching. He really nailed the decision-tree
approach in a 2008 paper on producing good decision
trees. In my opinion that paper is definitive.

Learning outcomes
Outcomes available for points
Learning outcomes available for project points:

1. Craft. You can extend both UFT and SVM with a new
feature.

2. Nested patterns. You understand the capabilities of
nested patterns.

3. Pattern visualization. You can use visualizations to an-
alyze the result of compiling different case expressions.

4. Inexhaustive pattern matches. Your match compiler
grasps the possibility that in any given case expression,
there may be no match.

5. Static types and pattern matching. You understand the
consequences of match compilation in a world where
there are no static types.

6. Representations of constructed data, part I. You un-
derstand the run-time consequences of using a uniform
representation for constructed data.

7. Representations of constructed data, part II. You un-
derstand the compile-time consequences of using a uni-
form representation for constructed data.

8. Address computation. Your assembler accurately com-
putes the target of every branch in a computed goto.

9. Efficient computed goto. Your SVM interprets GotoV-
con and its jump table together as one big instruction.

Learning outcomes available for depth points:

10. Static types [2 points]. Suppose your UFT had static
types, so any time it saw a list it would know the
only possibilities were empty or nonempty. How would
you exploit this knowledge to improve run-time perfor-
mance?

• What would you change about SVM instructions?

• How would you change the code generated by the
UFT?

11. Code generation using a directed acyclic graph (DAG)
[4 points]. In general, the match compiler produces a
decision tree whose leaves contain multiple copies of
values of type 'a. Our simple K-normalizer and code
generator will likely turn multiple copies of source ex-
pressions into multiple copies of assembly-code frag-
ments. But by the time we reach assembly lan-
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guage, the GOTO_VCON form branches to a label—there
is no need to copy the code. To earn these depth
points, refactor your UFT so that it copies only labels,
not code.

This challenge could be approached in several ways:

• Define a new KNF form that can represent a
DAG using (scoped) labels. Match-compile with
a unique label for each choice. If two leaves of the
decision tree use the same label with the same
environment, they can share code.

• Define a decision-tree form in KNF. During code
generation, use the standard algorithm to convert
the tree to a DAG.

• Leave the data structures exactly as they are. But
during code generation, recover the decision tree
from a nest of SWITCH_VCON and LET nodes, then
use the standard algorithm to convert the tree to
a DAG.

12. Alternate run-time representations [7 points]. On an al-
ternate Git branch, change your SVM to eliminate the
Boolean, Emptylist, and ConsCell tags from value.h.
Also eliminate all the code associated with these tags,
and every related SVM instruction except if. In eS-
cheme, reimplement car, cdr, pair?, and null? using
case expressions. Then report on your experience:

• How does this change simplify the SVM? In your
answer, include measurements of the code savings.
(Lines of code will be sufficient.)

• How does this change affect run time? Devise a
suitable benchmark that uses lists and Booleans,
and quantify the cost (or savings).

13. Native list operations [2 points]. In the SVM, I find
it vaguely embarrassing that my GetBlockSlot instruc-
tion has to enable a cons cell to masquerade as a block.
Eliminate the masquerade:

• Extend the path type in the match compiler to
include two new forms CAR of register and CDR
of register.

• Change the LET_CHILD form to take a path instead
of a register * int, and change the code genera-
tor so it can emit car and cdr primitives for those
paths. You’ll need equations like this one:

�𝑟⟦LET_CHILD (CAR 𝑟, 𝑘)⟧ = let 𝑡 =
car(𝑟) in 𝑘 𝑡,

• Remove the special case from the implementation
of GetBlockSlot in vmrun.c.

How to claim the project points
1. To claim this point, submit a source tree in which make

successfully builds a UFT and an SVM, when run in
directories src/uft and src/svm respectively.

2. To claim this point, take two useful case expressions
with nested patterns, either from your UFT or your
105 homework. In a file nested.scm, define functions
f and g that contain eScheme case expressions that
use the same patterns in the same order. Then define
equivalent functions f-unnested and g-unnested, each
of which performs the computation using nested case
expressions—not nested patterns. Do not use if.

The equivalence I wish to see is observational equiva-
lence: two functions are equivalent if no program can
tell the difference.

3. To claim this point, use the case-viz script to visual-
ize functions f and f-unnested from the previous point.
The visualization of f-unnested will contain two or
more decision trees. Splice them together either by
drawing pictures or by doctoring the nested.dot file.
Compare the trees for the two files:

• Do you expect nested case expressions to amount
to the same decision tree as one case expression
with nested patterns? Or just an equivalent deci-
sion tree? Why or why not?

• Explain whether the trees produced by your
match compiler do or do not meet your expec-
tations.

4. To claim this point, submit a file nomatch.scm which
evaluates a case expression in which no choice matches.
Your submission earns the point if the code compiles
and runs with your UFT and SVM, producing a suit-
able run-time error message.

5. In ML, the type of each scrutinee is known, and that
type is associated with a finite, known set of value con-
structors. Explain the consequences for match compi-
lation. Illustrate your explanation with the standard
map function: how would it be compiled for eScheme,
and how would it be compiled for ML? What is the
key difference?

6. In steps (12) and (17), I’ve encouraged you to special-
case representations of Booleans and lists. But in the
�ML interpreter, Booleans and lists are predefined, not
primitive, and they use the same representations as all
other constructed data. To claim this point, suppose
you wished to implement the same plan in your own
system. Identify the code that would have to change
in vmrun.c, value.h, and value.c.

7. In steps (12) and (17), I’ve encouraged you to special-
case representations of Booleans and lists. But in the
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�ML interpreter, Booleans and lists are predefined, not
primitive, and they use the same representations as all
other constructed data. To claim this point, suppose
you wished to implement the same plan in your own
system. Identify the code that would have to change
in your K-normalizer, your code generator, and your
disambiguator.

8. To claim this point, copy fig6.scm into file fig6-
extended.scm, and add check-expect tests that call
function figure-6 expecting results 'one, 'three, and
'four. Your system earns the point if the code com-
piles and all the tests pass.

9. To claim this point, submit an implementation of Go-
toVcon that searches the jump table and chooses a tar-
get address, without returning to the main interpreter
loop.
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