
Module 5: Disambiguation and K-Normal Form

Contents
Introduction 1

The big picture 1

The module step by step 2
Before lab: Understand the big picture, especially names. 2
Lab: Disambiguate names 3
After lab: K-normal form 3

Defining K-normal form 3
Embedding K-normal form into Scheme 3
Projecting Scheme into K-normal form 4
Adding a pass to the Universal Forward Translator . 5
Testing . 5

What and how to submit 6

Reading in depth 6

Learning outcomes 7
Outcomes available for points 7
How to claim the project points 7

Introduction
This week you’ll start your journey from a machine-level language
to a high-level language. You’ll implement a language called K-
normal form, which is nearly a subset of Scheme. Then next week,
you’ll generate assembly code from K-normal form, and you’ll be
able to run your first high-level-language code.

• What am I doing?

– Understand the three different roles names can play in
Scheme code, andwrite a compiler pass that uses special-
purpose syntax to identify what role each occurrence of
each name is playing.

– Define an ML datatype to represent expressions in K-
normal form, which is a low-level subset of Scheme.

– Define an embedding/projection pair that relates K-
normal form to vScheme syntax.

– Extend the UFT driver with support for K-normal form.

• Why am I doing it?

– Translating names is one of the deepest parts of any com-
piler, because it can be done only within some kind
of context or environment that says what each name

stands for. Moving the contextual information into syn-
tax makes all the subsequent compiler passes much,
much easier.

– K-normal form is the next step in our long-term plan of
lifting machine-level code up to something nice. It is
the lowest-level intermediate code that resembles a high-
level language more than an assembly language—and
“making machine code look like a high-level language”
is a useful tactic in almost any compiler.

– Embedding and projection make it possible to debug. To
get K-normal form out of your translator, just embed it
into vScheme and use my prettyprinter for vScheme. To
get K-normal form into your translator, write vScheme
and project it into K-normal form.

• How?

– Before lab you’ll study the roles of names, and you’ll
learn two related representations of vScheme: VScheme,
in which a name’s role has to be learned by look-
ing up the name in the environment; and Unambigu-
ousVScheme, in which the name’s role is made explicit
in the abstract syntax.

– In lab you’ll complete the disambiguation pass that looks
up each name in the environment and selects the correct
syntax for each occurrence. I’ve done the boring parts;
you’ll do the interesting parts.

– After lab you’ll study the grammar of K-normal form and
its relationship to Scheme. Then you’ll define its repre-
sentation, an embedding into VScheme, and a projection
from UnambiguousVScheme.

– Finally you’ll add support to the Universal Forward
Translator so it can read and write K-normal form. At
the end of the week, you’ll deliver a working Universal
Forward Translator that includes a kn-kn pass. This pass
reads vScheme, disambiguates it, projects it to K-normal
form, embeds the result back into vScheme, and pret-
typrints it.

You’ll also deliver test cases: one that exercises every syn-
tactic form in KNF, and one each for every possible way
that projection can fail.

Detailed instructions are below.

1

The big picture
K-normal form is about two things: language paradigm and nam-
ing.

• Target paradigm (assembly language): imperative code, com-
mands, assignment, resembles a subset of C

• Source paradigm (K-normal form): applicative code, function
calls, let bindings, is a subset of Scheme

Once we have K-normal form, we’ll add features until eventually
we’ll be compiling full Scheme.

Ideas about naming are deeper. The key idea is this: in syntax,
all names look alike, but at run time, different names behave
differently. And those differences can be discovered by inspecting
a compile-time environment:

• At run time, a global name refers to a location in the VM state’s
globals table.

• At run time, a local name (one that is bound by let and
lambda) refers to a VM register.

• The name of an ordinary function (like map or foldr) codes
for an ordinary function call.

• The name of a primitive function (like cons or +) codes for a
VM instruction.

In Scheme source code, all these names are written using the same
syntax. In K-normal form, each species of name and each species of
call is written using explicitly different syntax—the syntax instantly
identifies which variables are global vs local and which calls are or-
dinary vs VM instructions. These syntactic distinctions are inde-
pendent of K-normal form; are also made in a high-level language
called “unambiguous vScheme”. Transforming original vScheme
into unambiguous vScheme, a translation I call disambiguation, is
the subject of this week’s lab.

Aside from the explicit distinctions of names and calls, K-normal
form adds two key invariants to unambiguous Scheme:

• The value of every intermediate expression has a name.

• Function definitions do not nest. (That is, no function may
refer to parameters or variables of an enclosing function.)

These two invariants are common to many low-level intermediate
languages for many different kinds of compilers.

Here’s a snapshot from the video, cleaned up and with this week’s
parts highlighted:

The module step by step

Before lab: Understand the big picture, especially
names.
(1) Download updates. Update your git repository in two steps:

Figure 1: UFT/SVM system with highlights

A. Be sure all your own code is committed. Confirm using
git status.

B. Update your working tree by running git pull (or you
might possibly need git pull origin main). You
should not have any merge conflicts.

(2) Verify your build. Verify that you can build the uft binary with
make, and that it recognizes the translation ho-ho. Any expres-
sion with a name or a function application should exit with an
uncaught exception, but expressions without names and appli-
cations should go through:

> echo '(+ 2 2)' | uft ho-ho
Uncaught exception:
LeftAsExercise: disambiguate APPLY

> echo '(if #t 1 0)' | uft ho-ho
(if #t 1 0)

(3) Understand the big picture. The overview video about the high-
level languages of the UFT, including all the transformations
we will implement presents the big picture of the Universal
Forward Translator. Watch it before lab.

(4) Understand the three meanings of names. Read the first part
of the handout on Unambiguous vScheme. Follow up by read-
ing the referent type and referent function defined at the
beginning of file disambiguate.sml.

(5) Study vScheme. Look over the handout on vScheme, and study
the definition inmodule VScheme in file vscheme.sml. Be sure
you understand the forms VAR, SET, and APPLY; these are the
forms you will be disambiguating in lab.

(6) Study Unambiguous vScheme. Complete the handout on Un-
ambiguous vScheme, and study the definition in module Un-
ambiguousVScheme in file vscheme.sml. Be sure you under-
stand the forms LOCAL, GLOBAL, SETLOCAL, SETGLOBAL, FUN-
CALL, and PRIMCALL; these are the forms that replace the am-
biguous forms in step (6).

2

05Bvschemex.html
../videos/index.html#highlanguages
../videos/index.html#highlanguages
../videos/index.html#highlanguages
../videos/index.html#highlanguages
05Bvschemex.html#referents-of-names
00vscheme.html
05Bvschemex.html
05Bvschemex.html

K-normal form object language embeds in 𝜇Scheme using metalanguage
v LITERAL
x VAR
getglobal(STRING s) VAR
setglobal(x, STRING s) SET
@(x₁, …, xₙ) APPLY
@(x₁, …, xₙ, v) APPLY
x(x₁, …, xₙ) APPLY
if x then e₁ else e₂ IF
let x = e in e' LET
(e₁; e₂) BEGIN
x := e SET
while x := e do e' WHILE and LET
funcode (x₁, …, xₙ) => e LAMBDA

Weembed directly into (ambiguous) VScheme because our goal
is to reuse the prettyprinter for VScheme, and it’s actually easier
than embedding unto UnambiguousVScheme.

Implement these functions.

• The value function is actually a projection, not an em-
bedding: the VM code supports floating-point values,
string values and nil, neither of which can be writ-
ten as vScheme literals. Nonetheless, we’re going to
treat it as if it were an embedding—we’re going to cheat.

– Embed a real value as its nearest integer, using
function Real.round.

– Embed a string value as a symbol (lame, but the best
we can do).

– Embed nil as the Boolean false.

• The definition embedding uses only one definition form,
VScheme.EXP. Internally, themain embedding should be

val exp : VScheme.name KNormalForm.exp -
> VScheme.exp

The embedding is described by equations for 𝓔 in
the KNF handout. To implement those equations in
ML code, you will use these value constructors:

Constructing vScheme LET forms is a bit of a nuisance,
so take advantage of the let' helper function that I have
provided for you.

The embedding has a few tricky cases:

• The @(x₁, ..., xₙ, v) form has two special cases, where @
is either getglobal and setglobal. Unfortunately, because
@ has an abstract type (for good reasons), you cannot pattern
match on it. Instead you have to pattern match on the result
of calling function P.name.

• The funcode form should embed as lambda even though they
don’t have identical semantics.

One note: my prettyprinter condenses nested let expressions
into Scheme’s let* form, so if you see a let* in your output,
it is expected.

Projecting Scheme into K-normal form

(14) Project unambiguous vScheme expressions into K-normal form.
In file knproject.sml, you will find a template for two func-
tions, value and def, with these types:

val value : UnambiguousVScheme.value -
> KNormalForm.literal
val def : UnambiguousVScheme.def -
> string KNormalForm.exp Error.error

Internally you will also define

val exp : UnambiguousVScheme.exp -
> string KNormalForm.exp Error.error

The projection will enable us to read K-normal form code
from disk, using the Scheme lexer and parser, plus the dis-
ambiguator you wrote in step (10). We project from Unam-
biguousVScheme because it is easier than going direct from
VScheme.

The projection of expressions is described by equations for 𝓟
in the KNF handout. The left-hand sides that look ambiguous
in those equations are exactly the ones that you disambiguated
in step (10).

The equations don’t specify a projection of values. But ev-
ery vScheme value can be represented as a K-normal form lit-
eral. And in fact, the value direction is actually an embedding,
as suggested by its type. A vScheme symbol embeds as a K-
normal form string, and the other forms of value embed one
for one.

Important: The projection functions simply change the rep-
resentation of vScheme code that is already in K-normal form.
You won’t translate general Scheme to K-normal form until
module 9. For this module, if Scheme code is not already in
K-normal form, the projection should fail for one of two rea-
sons: either a form is outright unacceptable, or the form has
a non-variable in a position where a variable is expected. The
forms that are outright unacceptable are as follows:

• Any while loop whose condition does not have the form

(let ([x e]) y)

• Any while loop whose condition has the form

(let ([x e]) y)

but in which x is different from y

• Any begin not of the form (begin e₁ e₂)

• Any let with more than one binding

• Any letrec form

3

05Aknf.html#equations-of-embedding-and-projection
05Aknf.html#equations-of-embedding-and-projection
05Aknf.html#equations-of-embedding-and-projection
05Aknf.html#equations-of-embedding-and-projection

• Any lambda form except for the special case of a global
function definition, which should be handled by the def
function

In step (18) you’ll write a test for each of these forms, so if you
like, you can start writing those tests now.

Even a good form like if can be rejected if it doesn’t satisfy the
invariants of K-normal form. The key invariant is that many
forms are required to be names. One example is the condition
in an if expression: if the condition isn’t a name, then the if
expression isn’t in K-normal form. In this case the projection
should fail. It is useful to define a helper function that insists
on getting a name:

val asName : X.exp -> X.name Error.error
(* project into a name; used where KNF expects a name *)

= fn X.LOCAL x => succeed x
| e => error ("expected a local variable but instead got " ^ (X.whatIs e))

This function will be used to project FUNCALL and PRIMCALL,
which should be rejected unless every argument is a variable;
IFX, which should be rejected unless the condition is a vari-
able; and SETGLOBAL, which should be rejected unless the
right-hand side is a variable. (A FUNCALL will also be rejected
unless the function being called is a variable.)

Managing all the potential sources of error requires a lot of
plumbing, but we can hide the details by using the same ab-
straction we used in the lexer and parser: an “applicative func-
tor.” The code I give you includes suitable abbreviations:

infix 3 <*> val op <*> = Error.<*>
infixr 4 <$> val op <$> = Error.<$>
val succeed = Error.succeed
val error = Error.ERROR
val errorList = Error.list

Using these functions, the bureaucracy of error handling be-
comesmanageable. For example, here’smy code for projecting
if expressions:

fun exp (X.IFX (e1, e2, e3)) =
curry3 K.IF <$> asName e1 <*> exp e2 <*> exp e3

You are now ready to define the projection function for expres-
sions.

(15) Project unambiguous vScheme definitions into K-normal form.
The last step is to project definitions. This step is easier be-
cause the val, check-expect, and check-assert forms sim-
ply aren’t in K-normal form; the projection fails. There are
really only a couple of special cases, to do with functions.

• Themain case is X.EXP; you just pass the payload to your
internal exp function. This case will cover 90% of your
needs, and you can write it first.

• Although the general case is the one to write first, it has
to follow this special case: A top-level expression of the
form

(let ([t (lambda (xs) e)]) (set f t))

should be projected into the K-normal form

let t = funcode xs => e in setglobal("f", t)

where e stands for the projection of e (that is,
e = exp e).

One fine point: you have to match on

(let ([t (lambda (xs) e)]) (set f t'))

and then insist that t = t'.

To generate the K-normal form let expression,
I define an internal helper function fundef of type
string KNormalForm.exp -> string KNormalForm.exp.
It takes e as a parameter and returns a representation
of the K-normal form expression

let t = funcode xs => e in setglobal("f", t)

I then handle the lambda case with

fundef <$> exp e

• Strictly speaking, define isn’t in K-normal form, but it
can be handy to pretend. Try inventing a t, like say

val t = "$t1"

and then project

(define f (xs) e)

as

let t = funcode xs => e in setglobal("f", t)

You’re now ready to extend the UFT to handle your new func-
tions.

Adding a pass to the Universal Forward Translator

(16) Add a new pass to the UFT. Once you have defined your em-
bedding, disambiguation, and projection functions, you can
extend the UFT driver by adding support for K-normal form.

A. Begin with the handout on the UFT driver. It explains
how the UFT driver works and what code has to be writ-
ten to incorporate a new language.

B. Define reader function KN_of_file, which should work
by composing the reader schemexOfFile with the pro-
jection code you wrote in step (15). Its type should be

val KN_of_file : instream -
> string KNormalForm.exp list error

C. Definematerializer function KN_text_of, which should
materialize K-normal form. It should look almost ex-
actly like VS_of: read the code from a file or bleat that
there is no translation.

D. Define emitter function emitKN by composing
emitScheme with your embedding function.

4

05Cuft.html

bad.while.scm Condition in while isn’t the right let
bad.whilevars.scm In let in while condition, names don’t match
bad.begin.scm begin with wrong number of subexpressions
bad.let.scm let with wrong number of bindings
bad.letrec.scm Any letrec
bad.lambda.scm Any lambda that is not a global definition
. .
good.scm One each of every good KNF form (as embedded into Scheme)

E. Add a case to translate to handle the case when out-
Lang is KN.

Testing

(17) Preliminary testing. Your UFT should now be capable of run-
ning your embedding and projection. Test by running

uft kn-kn

Here are some cases for you to test:

(+ 2 2) ;; should be rejected

(let* ([$r0 2] [$r1 2]) (+ $r0 $r1)) ;; should be OK

(if (< n 0) #t #f) ;; reject

(let* ([$r0 n] [$r1 0] [r2 (< $r0 $r1)]) (if $r0 #f #t)) ;; accept

(18) Systematic testing.
Create a test file for each of the forms that should be rejected
by the projection function in step (14), plus one more file that
contains all the good forms.

The good.scm should contain Scheme versions of x, v,
@(x₁, ..., xₙ), x(x₁, ..., xₙ), if x then e₁ else
e₂ let x = e in e', (e₁; e₂), x := e, and while x :=
e do e' forms. It is ok if the “VM operation with literal” and
funcode/lambda forms are omitted.

18b. Round-trip testing

Testing success and failure in step (17) is likely sufficient.
But if youwant to test semantics, you can do it by compar-
ing round-trip results from your UFT/SVM combo with
result from the vscheme interpreter.

For example, if test.scm evaluates a begin, a couple of
let bindings, and a few primitives, it might look like this:

(begin
(let* ([tmp 2]

[tmp (+ tmp tmp)])
(check tmp 'two-plus-two))

(let ([tmp 4])
(expect tmp 'four)))

This code can be run through vschemewithout using em-
bedding and projection, and then again with embedding
and projection:

$ cat test.scm | vscheme
The only test passed.
$ cat test.scm | uft kn-kn | vscheme
The only test passed.

The call to uft kn-kn puts my code through embedding
and projection, which doesn’t change the test results.

What and how to submit
(19) On Monday, submit the homework. In the src/uft directory

you’ll find a file SUBMIT.05. That file needs to be edited to
answer the same questions you answer every week.

To submit, you’ll need to copy your working tree to the de-
partment servers. We recommend using rsync, but scp also
works.

Now log into a department server, change to yourworking tree,
and submit your entire src directory:

provide cs106 hw05 src

(20) On Tuesday, submit your reflection. Create a plain text file RE-
FLECTION, which will hold your claims for project points and
depth points.

For each project point you claim,write the number of the point,
plus whatever is called for in the section “How to claim the
project points”—usually a few sentences.

Now copy your REFLECTION file to a department server and
submit it using provide:

provide cs106 reflection05 REFLECTION

Reading in depth
Occasionally I’ll suggest reading that may enrich your view of
programming-language implementation.

• Normal forms. K-normal form is defined by Birkedal, Tofte,
and Veilstrup (1996), who use it to infer properties aboutmem-
ory use. It is based on the more famous A-normal form of
Flanagan et al. (1993), which is definitely worth reading.

• Prettyprinting. My prettyprinter uses an interface designed by
Wadler (1998), who pitches his design as an improved version
of the original by Hughes (1995). Both papers are well worth
reading.

My code uses only Wadler’s interface; my back end is a clean-
room implementation of an algorithm by Pugh and Sinofsky
(1987). If you like that sort of thing, it’s a nice application of
dynamic programming.

5

https://dl.acm.org/doi/10.1145/237721.237771
https://dl.acm.org/doi/10.1145/237721.237771
https://www.cs.tufts.edu/~nr/cs257/archive/cormac-flanagan/anormal.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf
http://www.cse.chalmers.se/~rjmh/Papers/pretty.html
https://ecommons.cornell.edu/bitstream/handle/1813/6648/87-808.pdf?sequence=1&isAllowed=y
https://ecommons.cornell.edu/bitstream/handle/1813/6648/87-808.pdf?sequence=1&isAllowed=y

Learning outcomes
Outcomes available for points
You can claim a project point for each of the learning outcomes
listed here. Instructions about how to claim each point are found
below.

1. Global and local names. You can create a term in which a sin-
gle name appears as both a global variable and a local variable.

2. K-normal form. You can write simple K-normal form by hand.

3. K-normal form embedding. You can, by hand, embed simple
K-normal form into Scheme.

4. Names in K-normal form. You can say which names in the
source code show up as what types in K-normal form.

5. Embedding, projection, and language design. You can justify
the fact that K-normal form has fewer expressions but more
literals than Scheme.

6. Eta-expansion. You can say which of the K-normal form in-
variants is satisfied by the body of an eta-expanded primitive.

7. UFT driver. Your uft builds and understands what kn-kn is
asking for.

8. Testing. You can explain the results of your tests.

9. Notation. You can use Oxford brackets to write translation
equations.

You can claim a depth point for floating let out of let, and two
more for improving the Scheme prettyprinter.

10. Let-floating transformation [1 point]. When variable y is cho-
sen so it is distinct from x and the same as x or not free in e₃,
the following expressions are equivalent:

let x = (let y = e₁ in e₂) in e₃

let y = e₁ in (let x = e₂ in e₃)

But the second expression results in code that is easier to read
and that runs faster on some platforms (Peyton Jones, Partain,
and Santos 1996). Implement let-floating on K-normal form.
See what sort of difference it makes to the generated VM code.

11. Prettyprinting [2 points]. The indentation and line breaks
for the vScheme prettyprinter are just barely tolerable. Im-
prove them.

How to claim the project points
Each of the numbered learning outcomes 1 to N is worth one point,
and the points can be claimed as follows:

1. To claim this point, write an expression in vScheme in which
x appears both as a GLOBAL variable and as a LOCAL variable.

2. To claim this point, write an expression, using theML-like syn-
tax of K-normal form from the handout on K-normal form,

that corresponds to the ML expression n + 1, where n is a
local variable.

3. To claim this point, embed the previous expression into valid
vScheme. That is, write an expression in vScheme that is the
embedding of an expression in K-normal form; the expression
that is embedded must correspond to the Scheme expression
(+ n 1), where n is a local variable.

4. You must understand all the relevant categories of the ways
names can be used in Scheme: formal parameter, local vari-
able, global variable, user-defined function, and primitive
function. And in your ML representation of K-normal form,
you must understand the use of each of these types:

• Type 'a
• Type vmop
• Type literal

To claim the point, for each of the three types listed, say what
categories of Scheme names are represented by values of that
type.

5. Observe that expressions in K-normal form are a subset of
vScheme expressions, but literals in K-normal form are a su-
perset of (Unambiguous) Scheme values. It seems strange to
have the relation point in opposite directions. To claim this
point, answer these two questions:

• In a system that is targeting the SVM but does not nec-
essarily want to be locked into translating Scheme, why
is it a good idea to have K-normal form expressions be a
subset of Scheme expressions?

• In a system that is targeting the SVM but does not neces-
sarily want to be locked into translating Scheme, why is
it a good idea to have K-normal form literals be a superset
of Scheme values?

6. To claim this point, analyze the eta-expansions produced by
function etaExpand in file disambiguate.sml. This function
returns a lambdawritten in Disambiguated vScheme. Analyze
the body of the lambda and say which of the K-normal-form
invariants it satisfies and why.

7. To claim this point, submit code that compiles and runs so
that uft kn-kn produces a sensible result, better than “I don’t
know how to translate.” This point is awarded for running the
translation; you get the point even if one or more of the func-
tions have bugs.

8. To claim this point, say in a few short sentenceswhat your tests
tell you about what parts of your code do and don’t work. This
point is awarded for understanding the results of your tests;
you get the point even if your UFT does not yet behave the
way you hope.

9. To demonstrate the Oxford brackets, you should be able to
specify a key element of a translation you already know well:
the translation from assembly language to object code that you

6

05Aknf.html#knf-invariants
05Aknf.html#knf-invariants
05Aknf.html#oxford-brackets
05Aknf.html#ml-like-form
05Aknf.html#ml-like-form
05Aknf.html#knf-invariants
05Aknf.html#knf-invariants

implemented you implemented in the previous module. This
translation is specified by a function

𝒜 : AssemblyCode.instr -> int -> (name
-> int) -> ObjectCode.instr

The parameter of type int is the position that the instruction
occupies in the instruction stream. The parameter of type
name -> int is the environment 𝜌; it is the mathematician’s
way of writing an environment of type int Env.env.

To demonstrate ability with Oxford brackets, it is sufficient to
write an equation that describes the translation of just one in-
struction: the GOTO instruction. When function 𝒜 is given
an assembly-language GOTO with a label, it turns an object-
language GOTO with a PC-relative offset. To claim the point,
use Oxford brackets to write an equation that describes just
the translation of the GOTO instruction. Notate the position pa-
rameter as 𝑘 and the environment parameter as 𝜌.

7

	Introduction
	The big picture
	The module step by step
	Before lab: Understand the big picture, especially names.
	Lab: Disambiguate names
	After lab: K-normal form
	Defining K-normal form
	Embedding K-normal form into Scheme
	Projecting Scheme into K-normal form
	Adding a pass to the Universal Forward Translator
	Testing

	What and how to submit

	Reading in depth
	Learning outcomes
	Outcomes available for points
	How to claim the project points

