Module 9: K-Normalization
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Introduction

This week you’ll finally translate a real high-level
language—and you’ll be able to run a vast quantity of
Scheme code.

e What am I doing?
— Translate first-order Scheme into K-normal form.
e Why am I doing it?

— You'll be running Scheme code! The UFT is al-
most done!

— You'll get an idea how a compiler manages ma-
chine registers.

— You'll capture a key compilation idea (“put this
result in a register”) using continuation-passing
style.

o How?

— Before lab you’ll extend the UFT driver with sup-
port for K-normalization, and you’ll read about
continuation-passing style for register binding.

— In lab you’ll build a simple representation of reg-
ister sets, and you’ll get K-normalization working
for two forms of expression: a literal, and a prim-
itive applied to one argument. These forms will
get you Scheme code that you can compile and
run.

— After lab, you’ll complete your K-normalizer,
starting with check-expect and working your way
through all the syntactic forms of First-Order
Scheme. When allocating multiple registers, as
for both call forms and the let form, you’ll use
a higher-order function to separate policy from
mechanism and to reuse code.

You’ll test your K-normalizer with at least one
new test per syntactic form, plus a test suite de-
rived from a CS 105 homework assignment.

— At the end of the week you’ll deliver a transla-
tor that translates first-order vScheme, including
passes fo-fo, fo-kn, fo-vs, and fo-vo. Your trans-
lator will pass an impressive set of tests.

The module step by step

Before lab
Getting your UFT code ready for lab

(1) Get new code. Using git pull, get the new code for
this module. I'm not expecting merge conflicts.

(2) Add a mew pass to the UFT. You'll integrate
K-normalization into the UFT by adding support for
First-Order Scheme. This step is just like what you
did in modules 5 and 6 to add support for K-normal
form and code generation.



This is a key step. Some other pre-lab steps can
perhaps be fudged, but if you skip this one, you're un-
likely to be able to use your lab time productively. The
step looks like it has a lot of moving parts, but most
of the parts are copy/paste/edit, so the step should go
quickly.

A. If you need to, review the handout on the UFT
driver.

B. Define reader function FO_of file, which should
work by composing the reader schemex0fFile with

the projection function FOUtil.project. Its type
should be

val FO of file instream -
> FirstOrderScheme.def list error

Function FO of file should look a lot like func-
tion KN _of file.

C. Define materializer function FO of, which should
materialize First-Order Scheme. If asked to ma-
terialize FO from FO, it should return FO_of file;
otherwise it should raise Backward (because as
we’ll see next week, nothing else translates
into FO).

D. Define emitter function emitFO by compos-
ing emitScheme with embedding function
FOUtil.embed. Function emitF0 should look
a lot like function emitKN.

E. Add a case to translate to handle the case when
outLang is FO. It should look a lot like the other
cases.

F. Update the function KN reg of that you wrote
in module 6. Your current version should have
a catchall case that raises NoTranslationTo KN.
Replace that case with a function that materi-
alizes FO and composes the result with List.map
KNormalize.def. The materializer can fail, but
K-normalization cannot fail, so you will have to
manage the error type. If you need help, consult
the handout on composing functions with error

types.

G. Update the KN_text of function you wrote in mod-
ule 5. The updated function should either read K-
normal form from a file or should return a result
from KN_reg of, with registers renamed to strings.
A suitable renaming will rename register 1 to string
"r1", and so on.

Getting your brain ready for lab

(3) Read about K-normalization and register allocation.
Read and understand the background handout K-
Normalization and Register Allocation. Only two sec-

tions are important for lab: the introduction and the
section “Our approach to register allocation.” You can
fudge the rest, but if you don’t grok those sections, you
may have a hard time being productive in lab.

(4) Review the source and target languages. Review the
abstract syntax of first-order vScheme in file fos-
cheme.sml. This language is a subset of the Unam-
biguous vScheme you worked with in module 5.

Review the abstract syntax of your K-normal form in
file knf.sml, also from module 5.

You can fudge this step.

(5) Look over the environment interface. In file env.sml
you'll find an environment interface. It’s the same
one used for disambiguation in module 5, but in mod-
ule 5 you didn’t have to pay much attention. In your
K-normalizer you’ll need not only to look up names in
an environment but also to build new environments.

The only environment you’ll use in lab is the empty en-
vironment Env.empty, so in practice you can postpone
this step until after lab.

Lab

In lab you will start building the following ML module,
which is templated for you in file knormalize.sml:

structure KNormalize :> sig

type reg = int (* register *)

type regset (* set of registers *)

val regname : reg -> string

val exp : reg Env.env -> regset -

> FirstOrderScheme.exp -> reg KNormalForm.exp

val def : FirstOrderScheme.def -
> reg KNormalForm.exp
end

The FirstOrderScheme structure is defined in source file fos-
cheme.sml; it is just like Disambiguated vScheme, except it
doesn’t have LETREC or LAMBDA. The KNormalForm structure
is the one you built in module 5.

Register sets

(6) Limited implementation of register sets. You can do
a full-blown implementation of sets, but because the
K-normalizer always picks the smallest available regis-
ter, I recommend a trick: represent only sets of con-
tiguous available registers. For example,

datatype regset = RS of int (* RS n = represents { r | r>=n_

A set of registers needs to support two main operations:

val smallest : regset -> reg
val -- : regset * reg -
> regset (* remove a register *)
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o If somebody asks to remove a register r that is not
the smallest in set rs, it is OK to remove additional
registers. Just return what’s left of rs after removing r
and everything smaller than r.

Implement smallest and --. You might like to declare

infix 6 --

Allocating registers in continuation-passing style

(7) Allocating registers with smart let bindings. The pri-
mary operation performed by the K-normalizer is “put
the value of this expression in a register.” This op-
eration will be implemented by function bindAnyReg,
which ensures that a target-language expression (type
exp) is in a register—allocating that register if need by.
Function bindAnyReg uses continuation-passing style;
the continuation has type reg -> exp.

type exp = reg KNormal.exp
val bindAnyReg : regset -> exp -> (reg -> exp) -> exp

As described in the background handout, bindAnyReg
has this contract: bindAnyReg A e k returns an expres-
sion e' that is roughly equivalent to

[tet t = e in $(k t)], where t € A
In detail,

o Evaluating e' may kill registers in A (and only in
A)

e The result of evaluating e' is equivalent to the
result of evaluating let t = e in e'' where t is
an element of set A and expression e' ' is produced
by applying continuation k to t.

o If e has the form of a name y, then e' equals k y.
That is, if e is already in a register, bindAnyReg
reuses that register; it does not allocate a new
one.

Less precisely, bindAnyReg binds the value of e into a
newly allocated register, unless e is in a register already.
It then continues with the identity of the register that
holds e.

Function bindAnyReg need not manage the set of
available registers. That will be the job of the calling
function, exp.

Implement bindAnyReg.

K-normalizing a primitive call

(8) Special-case primitives. Implement enough cases so
that you can K-normalize a call to print, like this:

$ echo "(println 'first-steps)" | uft fo-kn
(let ([$r0 'first-steps]) (println $r0))

You'll need these cases:

e A special case in exp that handles
F.PRIMCALL (p, [el)
e A case in exp that handles F.LITERAL v

e A case in def that handles F.EXP e

The source-language expression F.PRIMCALL (p,
[e]l) should be K-normalized by recursively
K-normalizing e, binding the result to a register,
and generating a primitive call in K-normal form.
(A very similar example can be found in a handout.)
In step (18) you will generalize this case to handle
multiple arguments to a primitive.

The F.LITERAL v case you can figure out.

The F.EXP e case means an expression at top level, so
that means K-normalizing e in a context where all reg-
isters are available and the environment is the empty
environment Env.empty.

After lab
Be alert to let*

You might be surprised by seeing let* in your debugging
output, when you haven’t done anything to support it.
As always, let* is syntactic sugar for a nested series of
let expressions. My parser desugars let* using function
letstar in file vscheme-parse.sml. And my prettprinter re-
sugars nested let forms into let* , using function nested-
Bindings in file wppscheme.sml. So internally there are only
let and letrec; let* is only syntactic sugar.

The desugaring and resugaring enables us to work with
more readable code.

Unit tests

Next you’ll build unit tests. They make testing everything
else easier.

(9) Unit tests. Your source language is a subset
of Unambiguous vScheme, and the F.CHECK EXPECT
form includes strings representing both expressions.
To K-normalize F.CHECK EXPECT, all you need to do is
generate a sequence of the form (e1; e2) where e calls
primitive check and e: calls primitive expect. Each
primitive call will have the form @(t, v), where @ is
P.check or P.expect, t is a register holding the value
of an expression and v is the literal string describing
the source code of the expression. Because such a call
is a primitive call taking exactly one register, the code
will closely resemble your K-normalization of print in
step (8). You may want to write a helper function.

The F.CHECK ASSERT form is similar.
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In your def function, write cases that K-normalize the
F.CHECK EXPECT and F.CHECK ASSERT forms. You will
use primitives P.check, P.expect, and P.check assert.
And since these forms are executed at top level, all
registers are available. You’ll test this code in the next
step.

Start a test file. Test your work so far by creating file
kntest.scm. This file should contain first-order Scheme
that your system can successfully K-normalize, gener-
ate code for, assemble, and run. Start with these three
tests:

;3 F.LITERAL, F.CHECK EXPECT, F.CHECK ASSERT
(check-expect (number? 3) #t)

(check-expect (number? 'really?) #f)
(check-assert (symbol? 'really?))

Confirm that everything works:

> uft fo-vo kntest.scm | svm
All 3 tests passed.

Easy cases

First-Order Scheme has a bunch of forms that neither al-
locate registers nor manipulate environments. These forms
are relatively easy to K-normalize—every subexpression uses
the same set of available registers as its parent expression

(11)

(12)

Local wvariables. Using the environment passed to
exp as a parameter, K-normalize the F.LOCAL and
F.SETLOCAL forms. Neither of these forms has to al-
locate a register.!

You won’t be able to test local variables un-
til you can create some local variables—for ex-
ample, using let or lambda. But once you've done
step (20), come back and add test cases to kntest.scm,
and document them with comments ;; F.LOCAL and
;+ F.SETLOCAL.

Global variables. Using the environment passed to
exp as a parameter, K-normalize the F.GLOBAL and
F.SETGLOBAL forms.

e The F.GLOBAL form translates into a call to primi-
tive function P.getglobal.

e The F.SETGLOBAL form, like print, takes a pa-
rameter that has to be allocated into a register.
And its translation is nuanced: in Scheme source
code, F.SETGLOBAL is executed both for value and
for side effect. But in K-normal form, primitive
P.setglobal is executed only for side effect. So

IThe disambiguator guarantees that every local variable is defined.
It is up to the K-normalizer to build the environment correctly so

that the lookup always succeeds.

If your environment lookup fails,

either there is a bug in your disambiguator or there is a bug in your
K-normalizer.

(13)

(14)

the F.SETGLOBAL form has to be translated into
a let expression whose body has the form (set-
global(localname, globalname); localname).

K-normalize these two forms. Add test cases to kn-
test.scm and document them with comments like those
in step (11).

Now K-normalize the F.VAL definition form. It desug-
ars into a F.SETGLOBAL.

Sequence. The Scheme begin form sequences the
evaluation of a list of expressions: none, one, or
many. No registers have to be allocated or preserved.
An empty begin must evaluate to #f; a nonempty be-
gin must evaluate to the result of its last expression.
To implement this semantics, it will be useful to define
a recursive helper function.

K-normalize form F.BEGIN, add test cases to kn-
test.scm, and document the test cases.

Control flow. K-normalize the F.IFX and F.WHILEX
forms. Both forms include a condition that must be
stored in a register.

e The F.IFX form is K-normalized by evaluating
the condition, binding the result to a temporary
register t, and using t in the K-normal form if.
This transformation works because the condition
is evaluated only once.

Also, once the condition has been evaluated, the
decision is made, so register t is dead. That
means register t is available to be reused in both
branches.

e The F.WHILEX form is K-normalized by allocat-
ing an available register t that does mot bind
the result of the expression. Instead that
register is used in the K-normal form as in
while t := e do e', where the condition is evalu-
ated multiple times. Register t is assigned to on
every trip through the while loop.

As in the if, register t is available to be used in
both e and e'.

K-normalize F.IFX and F.WHILEX, add test cases to kn-
test.scm, and document the test cases.

Environment manipulation: Function definitions

The define form K-normalizes into an assignment to a
global variable. The right-hand side of the assignment is
FUNCODE, and the key is to get the right names and environ-
ments:

Formal parameters arrive in registers 1 through n,
where n is the number of formal parameters.



e The body should be K-normalized in an environment
where the function’s name stands for register 0 and the
name of each formal parameter stands for the corre-
sponding register. The environment can be built using
foldl or a recursive function.

When the body is K-normalized, registers 0 to n are
unavailable; the first available register is register n + 1.

To set the global variable, you need to put the FUNCODE in
a register. At top level, register 0 is always available.

(15) Function definition. In your def function, K-normalize
the F.DEFINE form.

Add a simple test case to your kntest.scm and docu-
ment it. (Until you can call the function, about all you
can do is apply a type predicate like function?.)

Expressions that allocate multiple registers: Calls

Calls are the first form for which your K-normalizer has to
manage the set of available registers. For example, if you are
K-normalizing (append e:1 e:), the register that holds the nor-
mal form of e: is not available while ez is being normalized.
And the computation of the available-register set depends on
the form of the call: A primitive call may use any available reg-
isters; a function call must use consecutive available registers.
Each form therefore requires a different register-allocation pol-
icy. But they are otherwise K-normalized using the same algo-
rithm. You will implement this algorithm using a higher-order
function that takes the register-allocation policy as a parame-
ter.

The core of the algorithm, which implements both calls, is
to bind a list of actual parameters to a nest of let-bound
names. Compared with bindAnyReg, there are two compli-
cations:

e The actual parameters can’t be K-normalized indepen-
dently: register allocation for later parameters must
be affected by the registers chosen for earlier param-
eters. For example, if I am K-normalizing a call like
(cons e: e:), and if the value of e. is bound to regis-
ter t1, then t: is not available to be used in the compu-
tation of e.. This dynamic can be seen in the example
K-normalization of (+ 2 3).

o Primitive calls and function calls are governed by differ-
ent register-allocation policies: a primitive can take its
arguments in any registers, but a function must have
its arguments in consecutive registers. For example, a
call like (append xs ys) might be K-normalized into
code like this:

let r7 = append in let r8 = xs in let r9 = ys in call r7 (r8,

This call would kill (that is, potentially overwrite) reg-
isters numbered r7 and up.

(16) Warmup: Normalize a primitive with two argu-
ments. Add another special case in exp that handles
F.PRIMCALL (p, [el,e2]). This case should create a
continuation that removes a temporary register from
the available set.

Test your code as follows:

$ echo "(println (car (cons 'second-
step '())))" | uft fo-vo | svm

second-step

There are too many cases to deal with them all by hand. In-
stead, you will define a higher-order function that handles ev-
ery first-order form that takes multiple arguments. This func-
tion will be parameterized by a register-allocation policy. The
type of a policy is the same as the type of bindAnyReg:

type policy = regset -> exp -> (reg -> exp) -> exp

A policy looks at the exp and regset and chooses a reg to
be passed to the continuation (which has type reg -> exp).

You will define a function nbRegsWith, which takes a normal-
izer and a policy and returns a register-allocation function
for lists of items.

type 'a normalizer = regset -> 'a -> exp
val nbRegsWith : 'a normalizer -> policy ->
regset -> 'a list -> (reg list -> exp) -> exp

)

The name is short for “K-normalize and bind to registers.
With the help of a suitable parameter of type 'a normalizer,
this function can K-normalize any list, but in this module,
you will use it only to normalize lists of first-order Scheme
expressions.

By contract, nbRegsWith normalize p A es k returns a
nested let expression that

o Sequentially K-normalizes each expression in es (using
normalize)

e Sequentially binds each K-normalized expression to a
register in A according to policy p

e Marks registers bound to earlier expressions as “not
available” for the K-normalization of later expressions.

e Finishes with expression k ts, where ts is the list of
registers to which expressions in es are bound

What is the continuation k of type reg list -> exp? It’s a
function that takes the list of registers that hold the values
of expressions es. When you get a list of registers, most
likely you are going to use it to make a primitive form like
@(X1,.,xn) or a function-call form like x(x1,.,xn). If the
continuation has a form like fn ts => [Je'[], then the result
Feturns by nbRegsWith will be morally equivalent to this:

let t1 = e1 in = let tn = en in e'

The moving parts all cooperate:
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Policy p finds registers ti to ta in A

Function normalize puts each expression e: through en
into K-normal form.

Continuation k builds e

Function nbRegsWith orchestrates it all.

If your continuation-passing skills are rusty, have a look at
the example of map in continuation-passing style.

You will implement nbRegsWith and use it to K-normalize
both forms of call.

(17) Implement function nbRegsWith.

Define function
nbRegsWith. The key ideas are as follows:

o Function nbRegsWith is an ordinary recursive func-
tion that consumes a list, and it deals with just
two cases: the input list is either [] or e: :es.

e When the input list is [], the result is just k [].

¢ When the input list is e::es, nbRegsWith must
K-normalize e, bind the result to a register accord-
ing to policy p, then continue by recursively bind-
ing the remaining es. The binding to e may use
any of the available registers in A. The recursive
bindings to es may also use any of those available
registers except the register to which e is bound.

Each of these bindings requires a continuation:
the call to p needs a continuation that expects the
single temporary to which e is bound. And the
recursive call needs a continuation that expects
the list or temporaries to which the remaining es
are bound.

The key to getting the code right is constructing the
right continuations to pass to both the policy and the
recursive call. These are new continuations that you
will have to synthesize using fn. (You might wish to re-
view the synthesis of new continuations in the Boolean-
formula solver from CS 105.) If your continuations
have the right types and they remove the register that
binds e, you are probably in good shape.

List processing in continuation-passing style:
An example

If your continuation skills are rusty, check out this ex-
ample where I transform an ordinary recursive map into
a CPS map'. The standard (“direct style”) map looks
like this:

val map : ('a -> 'b) -> 'a list -> 'b list
fun map f = []
| map f (x :: xs) =
let valy = f x
val ys = map f xs
in y ::ys
end

(18)

(19)

The intermediate results are let-bound to names
y and ys for this reason: in the continuation-passing
version, those names become lambda-bound names (pa-
rameters to a continuation written with fn). And
the function parameter is also in continuation-passing
style:

val map' ('a -> ('b -> 'answer) -> 'answer)
-> 'a list
-> ('b list -> 'answer)
-> 'answer

fun map' f' []1 k = k []

| map' f' (x :: xs) k =
f'x (fny =>map' f' xs (fnys =>Kk (y :: ys)))

Function map' synthesizes two continuations: one
passed to f' which receives y, and one passed to the
recursive call, which receives ys. These two continua-
tions cooperate to build the list y :: ys which is then
passed to the original continuation k.

Your function nbRegsWith will be structured along sim-
ilar lines. In the role of function f', you will provide a
policy, and the 'answer type will be exp. And you will
synthesize two continuations: one that takes a single
temporary register, and one that takes the rest of the
temporary registers.

Confirm that nbRegsWith has the right type by placing
the following lines after the definition of nbRegsWith:

val nbRegsWith : 'a normalizer -> policy -> regset -
> 'a list -> (reg list -> exp) -> exp
= nbRegsWith

Implement primitives. Retire your special-case primi-
tive code from step (8). Replace it with general-case
code that K-normalizes F.PRIMCALL (p, es), where list
es may contain any number of expressions.

The template I provide you for the exp function in-
cludes an internal definition of nbRegs, which normal-
izes and binds expressions in the current environment
rho. Your case for F.PRIMCALL should use nbRegsWith
with bindAnyReg as the policy.

Add suitable test cases to kntest.scm and document
them.

Define a consecutive-register policy. Define a function

val bindSmallest :
> exp

regset -> exp -> (reg -> exp) -

that behaves just like bindAnyReg, except it doesn’t op-
timize for the case of an expression already in a register.
That is, bindSmallest e A k returns let t = e in e""'
where t is the smallest register in set A and expression
e'' is k t. When used sequentially, bindSmallest will
produce consecutive registers.



(20)

Expressions

If you like, you can refactor bindAnyReg so that it and
bindSmallest share some code.

Implement function calls. K-normalize the F.FUNCALL
form. You will need to use bindSmallest to put
the function in the smallest available register, then
K-normalize the arguments using nbRegs with bindS-
mallest as the policy. When K-normalizing the ar-
guments, do not overwrite the register that holds the
function.

Like the helper function nbRegsWith itself, this one is
all about finding the right continuations.

Test function calls. Add simple test cases to kn-
test.scm and document them.

e Tests for function calls and function definitions
o Tests for local variables that you put off in
step (11)

For a more ambitious test, try un-nesting calls, as in
this example from a functional Quicksort:

(append (gsort (filter left? rest))
(cons pivot (qgsort (filter right? rest))))

K-normalizes to

(let* ([$r0 append]

[$r1l gsort]

[$r2 filter]

[$r3 left?]

[$rd rest]

[$r2 ($r2 $r3 $rd)]
[$r1 ($rl1 $r2)]

[$r2 pivot]
[$r3 gsort]
[$rd4 filter]
[$r5 right?]
[$r6 rest]
[$rd ($rd $r5 $r6)]
[$r3 ($r3 $rd)]
[$r2 (cons $r2 $r3)])

($r0 $rl1 $r2))

that allocate multiple registers:

Scheme’s let

Like a call, a let binds a sequence of expressions to a list of
registers. What’s interesting is the K-normalization of the
body: The body needs to be normalized in an environment
that knows in what register each let-bound name is placed.
And in the body, none of those registers are available.

(22) Review the difference between let and let*. The dif-

ference is entirely in the environments. In a let form,

no bound names are visible on any right-hand side.
All right-hand sides are evaluated in the same environ-
ment. In a let* form, names bound in earlier bindings
are visible on the right-hand sides of later bindings.
Every right-hand side is evaluated in a different envi-
ronment.

Optional: Grab the Scheme interpreter from Chapter 5
of Programming Languages: Build, Prove, and Com-
pare (page 310), and compare how environments are
manipulated in the interpretation of let and let*.

Create test cases in first-order Scheme that shows the
difference between let and let* with the same bind-
ings. Be sure that at least one test case includes some-
thing of the form (let ([x yl [y x1) ..), where both
x and y are local names. (Function parameters will do.)
Confirm your understanding by making sure your tests
pass the vscheme interpreter.

Implement let bindings. K-normalize the F.LET form.
I encourage you to use nbRegs; you can figure out an ap-
propriate policy. The continuation will have to remove
all the bound registers from the available set. You can
implement this operation in a special-purpose recursive
function, or you can use a fold with a “flipped” version
of function - -.2

Some functions in the [ListPair].meta interface are use-
ful here.

Although F.LET bindings “feel” parallel, in K-normal
form all the names are bound sequentially. The parallel
feel comes entirely from the fact that all the right-hand
sides are K-normalized in the same environment.

Run your code on the let binding from the test case
you wrote in step (22). If you choose the bindAnyReg
policy and if both x and y are already in registers, the
swap will generate no code at all. Your UFT will
simply K-normalize the body of the let using a dif-
ferent environment in which the names are swapped.
With the bindAnyReg policy, that’s expected behavior,
not a bug. If you have concerns about that behavior,
choose a different policy.

Add your tests to kntest.scm. Document them.

Integration test

(24)

Predefined functions. Use the vscheme interpreter to
extract the first-order predefined functions:

vscheme -predef | grep -vw lambda > fopredef.scm

Confirm that your system can compile and load all
these functions:

uft fo-vo fopredef.scm | svm

2Youw’ll have to define flip.



There should be no output: no test results, no com-
plaints.

If so, place your compiled functions in the build
directory by running

make predef
from the vscheme directory.

(25) End-to-end testing. Demonstrate the complete viabil-
ity of your system via end-to-end testing:

e If you are now taking or have taken CS 105 at
Tufts, create a file schemel05.scm that contains
your complete solution to the CS 105 scheme
homework (the third homework) of whatever ver-
sion you took. Update the source code as follows:

— If any check-error form takes more than one
line, remove it.

— If any definitions or tests depend on lambda
(likely if you did arg-max), remove those also.

Confirm that all the check-expect and check-
assert tests pass with both the uscheme and
vscheme interpreters.

o If you have not taken CS 105 at Tufts, implement
a recursive merge sort on a list of integers, not
higher-order. Write test cases. Put your results
in a file msort.scm. Confirm that the tests pass
with vscheme.

Confirm that your stuff compiles with your UFT and
that all tests pass with the SVM. In your bin directory
I have provided a shell script that compiles and runs
first-order code with the first-order predefined func-
tions:3

$ run-fo-with-predef schemel@5.scm

If anything goes wrong, take notes, which you will
use in a learning outcome.

(26) Congratulate yourself. Congratulations! You have
implemented a complete (if small) first-order lan-
guage that can run efficiently on commodity hardware.
We won’t stop now—we’ll be doing higher-order func-
tions next week—but this is a good time to recognize
just how far you’ve come.

What and how to submit

(27) On Monday, submit the homework. In the src/uft di-
rectory you’ll find a file SUBMIT.09. That file needs
to be edited to answer the same questions you answer
every week.

3This shell script has some sanity checks. For example, if your
compiled predefined functions are older than your UFT, it complains.

To submit, you’ll need to copy your working tree to
the department servers. We recommend using rsync,
but scp also works.

Now log into a department server, change to your work-
ing tree, and submit your entire src directory:

provide csl106 hw09 src
or if you keep an additional tests directory,
provide cs106 hw@9 src tests

(28) On Tuesday, submit your reflection. Create a plain text
file REFLECTION, which will hold your claims for project
points and depth points.

For each project point you claim, write the number
of the point, plus whatever is called for in the section
“How to claim the project points”—usually a few sen-
tences.

Now copy your REFLECTION file to a department server
and submit it using provide:

provide cs106 reflection09 REFLECTION

Overview of the code

Code you will write or edit

uft.sml The UFT driver, which you have edited before.
You'll be adding an new language and translation, just
as you did in modules 5 and 6.

knormalize.sml You'll define your K-normalizer here.

Code you will need to understand

env.sml A definition of environments. Your find calls
should always succeed, so you should not catch the
NotFound exception—if that exception is raised, it indi-
cates a bug in your UFT.

foscheme.sml Defines First-Order Scheme, which is a sub-
set of Unambiguous vScheme. The ASTs are identical,
except that First-Order Scheme lacks lambda and le-
trec.

New code that you don’t need to care about

foutil.sml Embedding and projection for First-Order
Scheme. This is the easiest embedding/projection pair
ever. Because the code is boring and repetitive, I've
written it for you.



Learning outcomes

Outcomes available for points

Learning outcomes available for project points:

1.
2.

Craft. You can add a new pass to the UFT driver.

Continuations and register allocation. You can define
a continuation that reserves an allocated register, pre-
venting its reuse.

Continuations and register reuse. You can define a
continuation that reuses an allocated register.

. Functional programming. You can use higher-order

functions to avoid near-duplicate code.

Calling conventions. You can implement a procedure
calling convention.

New calling conventions. You can identify implications
of changing calling conventions.

Syntactic-form testing. Your K-normalizer is compre-
hensively tested.

Integration testing. Your K-normalizer passes an inte-
gration test.

Functional languages and mutation. You can explain
how the possibility of mutation affects choices available
to the UFT.

Learning outcomes available for depth points:

10.

11.

Let-floating [3 points]. Use the equations of transla-
tion (the O function) from module 6 to show when the
following two expressions have the same translation:

o let y (let x = e1 in e2) in es
e let x = e1 in (let y = e2 in e3s)

Hint: it works when x is not free in es and in one other
special case.

Then deploy your insight in your K-normalizer to
rewrite the first form to the second form. You’ll know
you've got it right when your uft fo-kn produces no
nested let expressions—my prettyprinter will sugar ev-
erything into let*.

Hint: define a so-called “smart constructor” to use in
place of K.LET.

More powerful if instructions [3 points]. Extend your
SVM to include two-register if instructions that can
compute a Boolean expression and “skip next if false”,
all in a single VM instruction. For example, if rl1 < r2.
Similarly, extend your SVM to include a one-register
if instruction that uses the type predicate null? in
the condition.* Extend your K-normal form and your

4Other type predicates optional.

12.

13.

14.

15.

16.

17.

1.

K-normalizer to exploit these instructions. Demon-
strate your extensions and measure how much the ex-
tension can shrink your generated VM code.

Small-integer literals [8 points]. Extend your SVM to
include instructions in R2U8 or R2I8 format, so that ex-
pressions like x > 0 or n + 1 can be computed using
a single VM instruction. Extend your K-normalizer
to exploit these instructions. Demonstrate your exten-
sions and measure how much the extension can shrink
your generated VM code.

Optimized let expressions [2 points]. K-normalize let
by defining a hybrid policy that results in code that
is superior to whatever you would get by using a one-
size-fits-all policy in step (23).

Efficient compilation of long list literals [1 point]. Us-
ing strict left-to-right evaluation for long list literals
uses a number of registers proportional to the length
of a list. That means, for example, that we can’t com-
pile a literal list with 15 numbers, because we would
run out of registers. But if the first argument to cons
is a literal value, we can change the evaluation order to
compute the second element first. Do so, and confirm
that your UFT can compile a literal list of numbers,
no matter how long, using only two registers.

Polymorphic code generation [1 point]. Assuming
you've already implemented A-normal form, define
your K-normalizer as a functor so that your K-
normalizer can generate both K-normal form and A-
normal form, just by applying the functor to two dif-
ferent actual parameters.

Bignums in vScheme [2 points]. (Not related to K-
normalization.) Repurpose your SML bignum imple-
mentation from CS 105 to work inside the vScheme
interpreter. Add a suitable type of value, and update
the arithmetic primitives so they do mixed arithmetic.
(Alter higher-order function arithOp to handle mixed
inputs and to provide a single point of truth about
promotion rules.)

Bignums in the SVM [} points]. (Not related to K-
normalization.) Implement bignum arithmetic in the
SVM. You can port one of your implementations to C,
or you can port my array-based implementation from
Smalltalk. Or you can try using the GNU multipreci-
sion library (gmp).®

How to claim the project points

To claim this point, submit source code that compiles
and builds a uft binary that understands what fo-kn
is asking for.

5Field reports suggest that gmp is a mixed blessing. At best.
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. To claim this point, identify a line of your code that
contains a continuation passed to bindAnyReg, bindS-
mallest, or a similar function, and explain how the
continuation reserves the allocated register to prevent
its reuse.

. To claim this point, identify a line of your code that
contains a continuation passed to bindAnyReg, bindS-
mallest, or a similar function, and explain how the
continuation does not reserve the allocated register but
rather allows its immediate reuse.

. To claim this point, identify (by line number) every
case in your K-normalizer that binds a list of expres-
sions to a list of registers, and confirm that each case
uses the same higher-order function.

. To claim this point, identify the lines of your code
where it is determined that a function’s incoming ac-
tual parameters are in consecutive registers starting at
register 1.

. Suppose we change the calling convention so that the
function register and argument registers are not killed
by a call. Instead they are required to have the same
values after the return that they had at the call. With
this change, it becomes very difficult to use the tail-
call instruction except for direct recursion. And other
changes, unrelated to tail calls, might also be required
in the UFT. To claim this point, identify one such re-
quired change, either in the K-normalizer or in the code
generator.

. To claim this point, submit a file kntest.scm in which
every value constructor in foscheme.sml, for both exp
and def types, is exercised by some test. Each test
must be documented by a comment that names the
value constructor or value constructors that it tests.
And uft fo-kn kntest.scm must actually generate code.
(It is not necessary for the generated code to run or for
all the tests to pass.)

. To earn this point, your system must run and pass
all the tests in schemel05.scm. To claim the point, let
us know that you accomplished this goal, and in the
reflection, tell us how many tests are included in the file.
If anything went wrong in your first run of step (25),
let us know one thing that went wrong and how you
fixed it.

. To claim this point, justify your choice of policy for
K-normalizing a let expression in step (23). Justifi-
cation should include an explanation of why another
policy is inferior and should be demonstrated with a
code example.

Keep in mind that vScheme local variables are mutable;
that’s what makes this issue difficult.
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