
§2.2
Language I:

Values, syntax,
and initial basis

95

def ::= (val variable-name exp)
| exp
| (define function-name (formals) exp)
|⋆ (record record-name [

{
field-name

}
])

| (use file-name)
| unit-test

unit-test ::= (check-expect exp exp)
| (check-assert exp)
| (check-error exp)

exp ::= literal
| variable-name
| (set variable-name exp)
| (if exp exp exp)
| (while exp exp)
| (begin

{
exp

}
)

| (exp
{
exp

}
)

| (let-keyword (
{
[variable-name exp]

}
) exp)

| (lambda (formals) exp)
|⋆ (&&

{
exp

}
)
∣∣ (|| {exp})

|⋆ (cond
{
[question-exp answer-exp]

}
)

|⋆ (when exp
{

exp
}
)
∣∣ (unless exp

{
exp

}
)

let-keyword ::= let
∣∣ let* ∣∣ letrec

formals ::=
{
variable-name

}
literal ::= numeral

∣∣ #t ∣∣ #f ∣∣ 'S-exp ∣∣ (quote S-exp)

S-exp ::= symbol-name
∣∣ numeral

∣∣ #t ∣∣ #f ∣∣ ({S-exp})
numeral ::= token composed only of digits, possibly prefixed with a plus

or minus sign

*-name ::= token that is not a bracket, a numeral, or one of the “re-
served” words shown in typewriter font

Tokens are as in Impcore, except that if a quote mark ' occurs at the beginning of
a token, it is a token all by itself; e.g., 'yellow is two tokens.

Each quoted S-expression is converted to a literal value by the parser. And each
record definition is expanded to a sequence of true definitions, also by the parser;
in other words, a record definition is syntactic sugar (Section 1.8 on page 68),
as marked by the ⋆. Five forms of conditional expression are also syntactic sugar.
All the other forms are handled by the eval function.

Figure 2.2: Concrete syntax of µScheme

Programming Languages: Build, Prove, and Compare © 2020 by Norman Ramsey.
To be published by Cambridge University Press. Not for distribution.

