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Principal Components Analysis
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What will we learn?
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Dim. Reduction/Embedding
Unit Objectives

 Goals of dimensionality reduction

« Reduce feature vector size (keep signal, discard noise)
 “Interpret” features: visualize/explore/understand

« Common approaches
 Principal Component Analysis (PCA)

 Evaluation Metrics
 Storage size - Reconstruction error
 “Interpretability”



Example
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009




Example: Genes vs. geography

Genes mirror geography within Europe
Nature, 2008
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Constant Reconstructiqn model
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Parameters: m, an F-dim vector
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Training problem: Minimize reconstruction error
N

min 3 (e —m) (oo =)

n=1 squared error between two vectors



Constant Reconstructiqn model
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Parameters: m, an F-dim vector
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Training problem: Minimize reconstruction error
N

min 3 (e —m) (o~

n=1 squared error between two vectors

Optimal parameters:

m”* = mean(z{,...TN)

Think of mean vector as optimal “reconstruction” of a dataset if you must use a single vector



Mean reconstruction

Ex: Viola Jones data set
— 24x24 images of faces = 576 dimensional measurements

Mean

original reconstructed







Linear Projection to 1D

Project onto
1-dimension

© H#awesome



Reconstruction from 1D to 2D

#awful

O = N W B

O
\/Reconstruction:
Only knowing z,

T > what was (x[1],x[2])?
#awesome




2D Orthogonal Basis

#awful

Perfect
e ———— reconstruction!
#awesome

If we could project into 2 dims (same as F), we can perfectly reconstruct

O = N W B




Which 1D projection is best?

#awful

Idea: Minimize reconstruction error



Linear Reconstruction Model
with 1 components 1 e

X; = WZ; + m #——

Fx1 Fxi1 1x1 Fxi1
High-dim. Weights Low-dim “mean”
data embedding vector

or “score”



Linear Reconstruction Model
with 1 components ] e
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W is a vector on
unit circle.

X, = WZ; + m

Problem: “Over-parameterized”. Too many possible solutions!  always 1.

Suppose we have an alternate model with weights w and embedding z’
We would get equivalent reconstructions if we set:

c W=w¥2

e 7=z/2

Solution: Constrain magnitude of w. 2 : w2 —1
w is a unit vector. We care about direction, not scale. f



Linear Reconstruction Model
with 1 components ] e

N W B

e}
o
A ;} o o
/1/ /L W is a vector on
unit circle.
Fx1 Fx1 1X1 Fx1 Magnitude is

always 1.

Given fixed weights w and a specific x, what is the optimal scalar z value?

Minimize reconstruction error!

- _ 2
min (x — (Wz+m))

Exact analytical solution (take gradient, set to zero, solve for z) gives:

z=w!(

Projection of feature vector x onto vector w
r —1m « - .
after “centering” (removing the mean)



Linear Reconstruction Model
with K components

/\

Fx1
High-dim.

data
W = W1 Wo

— Wz, + m

FxK Kx1 Fx1

Weights Low-dim Mean of
vector data vector

Each of the K weight vectors wy is one “component”.

Our goal is to find the K weight vectors that best
reconstruct our training dataset

N F
I ny An W 2
lin Y (@ng —dnp(W))

= n=1 f=1

Solving this squared error reconstruction objective is
known as principal components analysis (PCA)



Linear Reconstruction Model
with K components ] e
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We will require that:
» (1) All weight vectors are unit vectors
» This fixes scale and avoid several W with same error

@ wiw,=1 — Z?:l Wfk =1

(2) Component directions are orthogonal (perpendicular)
* Avoids information redundancy in W’s components

V wak =0 — Z?:l ijWfk =0 Vj#k
Weights that satisfy (1) and (2) form an “orthonormal basis”



View: PCA as Matrix Factorization
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View: Encoding and Decoding

2y = W(z, —m)

L n :> [N |:> ZIAZ'n X; = Wz; + m

encode . decode
“transform” 73@ “reconstruct”




Principal Component Analysis

Transformation step
What happens when you call pca . transform (x QF)

Input:
« X :querydata, QxF
* Q examples of high-dim. feature vectors
» Trained PCA parameters (contained inside pca)

* m : mean vector, size F
« W : learned basis of weight vectors, F x K

Output:
 Z : projections, Nx K
« Each row Z[n] is a low-dim. “embedding” (size K) of X[n]

2 = W' (2, —m)



Example: PCA on Faces

Ex: Viola Jones data set
— 24x24 images of faces = 576 dimensional measurements
— Take first K PCA components

e LA

Mean Dir 1 Dir 2 Dir 3 Dir 4
Projecting data ‘ 1
onto first k original k=10 k - | —

tra.n f rm” Zn “recon: truct

dimensions
Zn = WT(x, —m)
K1 KxF Fx1 Fxi .

If we use all possible components, we
perfectly reconstruct original data



Principal Component Analysis
Training step : What happens whenwecall pca . £it (x NF)

Input:
e X :training data, N x F
» N examples of high-dim. feature vectors
« K: int, number of components
» Satisfies1 <=K<=F
min

7 2
mERF WeRF XK (xnf — Inf (m7 W))

] =
E

1

n

Ly
_ Orth z
subject to: WIW = Ix cgns?fﬂf?a

- Each vec has
magnitude 1

Output: Trained parameters for PCA Vectors are
* m : mean vector, size F

« W : learned basis of weight vectors, F x K
* One F-dim. unit vector (magnitude 1) for each component
« Each of the K vectors is orthogonal to every other



Recall from Linear Algebra

Eigenvalues and Eigenvectors

Here is the most important definition in this text.

& Definition. Let A be an n X n matrix.

1. An eigenvector of A is a nongero vector v in R" such that Av = Av, for some
scalar A.

2. An eigenvalue of A is a scalar A such that the equation Av = Av has a nontrivial
solution.

If Av = Av for v # 0, we say that A is the eigenvalue for v, and that v is an
eigenvector for A.

The German prefix “eigen” roughly translates to “self” or “own”. An eigenvector of A
is a vector that is taken to a multiple of itself, which partially explains the
terminology.

Note. Eigenvalues and eigenvectors are only for square matrices.
Source: https://textbooks.math.gatech.edu/ila/eigenvectors.html



https://textbooks.math.gatech.edu/ila/eigenvectors.html

The weight component vectors are
the eigenvectors of the covariance
matrix of the centered dataset

] — .
S = N;(%ﬂ —m)(x, —m)

Every principal component vector wy satisfies this equation:

o |
ka — )\kwk W[wl V\‘fz wK]

When we fit K principal components to a dataset, the optimal ones (that minimize
reconstruction error) are those with the K largest eigenvalues.

Can use standard linalg libraries to compute the eigenvalues/vectors!



PCA Principles

« Minimize reconstruction error
e Should be able to recreate x from z

min YD (g = Eng(m,W))>?

RF RFXK
me We |

subject to: WIW = Ix

* Equivalent to maximizing variance
« Want reconstructions to retain maximum information



PCA: How to Select K?

* 1) Use downstream supervised task metric
* e.g. regression error, classifier AUROC

 2) Use memory constraints of task

 Can’t store more than 50 dims for 1M examples?
Take K=50

* 3) Plot cumulative “variance explained”
» Take K that seems to capture most or all variance



Empirical Variance of Data X

N

Assume we've computed the A 1

empirical mean vector: m = N Ln
n=1

Empirical variance is defined as averaged squared error from the empirical mean:
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Empirical Variance of reconstructions

N
]- T Assume we have already zero-centered the features
N 2 T

n=1
N
1 T
— N (Zn1w1—|—...—|—ZanK) (Zn1w1+---+ZanK)
n=1
1 N K % Z tr(zZWWw'z,)
— N E E zi L Simplify with lots of linear algebra " — tr(WTSW)

K = Z)\kw,{wk
> ’“

n=1 k=1 :Zw,{ka
k=1

Just sum up the top K eigenvalues!



Proportion of Variance Explained
by first K components

K
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PVE(K)

Goal: Want K value where proportion of variance explained is large.
Indicates good reconstruction ability on our training set.



Variance explained curve

: pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');
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i  from sklearn.datasets import load_digits

digits = load_digits()
digits.data.shape

¢ (1797, 64)



PCA Summary

PRO

 Usually, fast to train, fast to test
 Slowest step: finding K eigenvectors of an F x F matrix

e Nested model
« PCA with K=5 overlaps with PCA with K=4

CON

* Sensitive to rescaling of input data features
 Learned basis known only up to +/- scaling
 Not often best for supervised tasks



PCA: Best Practices

e If features all have different units

 Try rescaling to all be within (-1, +1) or have
variance 1

« If features have same units, may not need to do
this



Dim. Reduction/Embedding
Unit Objectives

 Goals of dimensionality reduction

« Reduce feature vector size (keep signal, discard noise)
 “Interpret” features: visualize/explore/understand

« Common approaches
» Principal Component Analysis (PCA)
« word2vec and other non-linear embeddings

 Evaluation Metrics
 Storage size - Reconstruction error
 “Interpretability”



Training Data

Lab : R .

= Training Data

® Part 1 : , 1 n s ) \‘. e Reconstructed Data

Img 1683 Img 1685 Img 1691

° Part ) Img 1667

Original
Img

K=10

Reconstr.



