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Abstract

We consider the offline problem of routing a permutation of tokens on the nodes of a d-dimensional

hypercube, under a queueless MIMD communication model (under the constraints that each hypercube

edge may only communicate one token per communication step, and each node may only be occupied

by a single token between communication steps). For a d-dimensional hypercube, it is easy to see that d

communication steps are necessary. We develop a theory of “separability” which enables an analytical

proof that d steps suffice for the case d = 3, and facilitates an experimental verification that d steps

suffice for d = 4. This result improves the upper bound for the number of communication steps required

to route an arbitrary permutation on arbitrarily large hypercubes to 2d − 4. We also find an interesting

side-result, that the number of possible communication steps in a d-dimensional hypercube is the same

as the number of perfect matchings in a (d + 1)-dimensional hypercube, a combinatorial quantity for

which there is no closed-form expression. Finally we present some experimental observations which

may lead to a proof of a more general result for arbitrarily large dimension d.
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1 Introduction

In this paper, we consider the offline problem of routing a permutation of tokens on the nodes of a d-

dimensional hypercube, under the constraints that each node starts with one token and ends with one token.

We use a queueless MIMD communication model, in which each hypercube edge may only communicate

one token per communication step, and each node may only be occupied by a single token between com-

munication steps. Each hypercube edge is considered to be bidirectional and therefore exchanges of tokens

between adjacent nodes are possible in one communication step. The goal is to minimize the number of

steps of communication required to realise an arbitrary permutation. Clearly at least d communication steps

are required. This paper considers the conjecture that d communication steps suffice for routing arbitrary

permutations on arbitrarily large hypercubes.

Our experimental results indicate that it is possible to route arbitrary permutations in d communica-

tion steps for d = 4. Our techniques use combinatorial properties to significantly reduce the permutation

space that needs to be checked computationally, by a factor of hundreds of thousands. These techniques are

powerful enough provide a human-checkable proof for the case d = 3, as further confirmation of a compu-

tational verification by Cooperman [3, 28]. By Ramras’ lemma, we therefore improve the best known result

for the upper bound in arbitrarily large hypercubes to 2d− 4 communication steps.

2 Related Work

This is a well-studied problem, with several variants. The following discussion of terminology derives from

Grammatikakis et al [6]. We consider the offline version of the problem in which the permutation to be

routed is given in advance. One processing unit has access to the entire permutation and predetermines the

paths to be travelled by each token, prior to the computation. In contrast, the online version of the problem

restricts that the permutation is not known in advance, and during any step, each processing unit in the

interconnection network only has access to its memory and that its local neighbors.

The circuit-switched model requires that the path of edges travelled by a token from its source to its

destination be all held simultaneously and exclusively by that token. Intermediate nodes along the path may

be common to different source-destination paths, but each directed arc in an edge (considered as a pair of

opposite directed arcs) must be exclusively held. This contrasts with the packet-switched model in which a

token is communicated along each successive edge in the path in a subsequent communication step.
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Some early hypercube designs were constrained such that communication could only occur along edges

of the same dimension in a given communication step. This is sometimes referred to as a synchronous

communication model, and computers that operate under this model are single-instruction-stream, multiple-

data-stream (SIMD) computers. We note that this is also referred to in the literature by Grammatikakis et al

as single-port routing [6].

Without the restriction that all communications in a given step must occur in the same dimension, one

obtains a variety of models for a multiple-instruction-stream, multiple-data-stream (MIMD) computer.

For example, a more relaxed model has also been studied extensively which allows any number of

dimensions in the hypercube to be used in a single communication step, but requires that each node either

abstain from communication or else send and receive along the same dimension in each time step. This only

permits exchanges of packets with adjacent nodes, and it follows that each node is only occupied by a single

packet between communication steps. The routing theory under this model is dependent on matchings (in

the graph-theoretical sense). We modify the terminology of Grammatikakis et al [6] in referring to this as

the single-port MIMD model.

The model we study is next in level of generality. It is identical to the previous single-port MIMD

model, except that there is no restriction that packets are sent and received on the same dimension by com-

municating nodes. Again only one packet may be received by each node and one packet transmitted by each

node during a communication step, and each node can only contain a single packet between communication

steps. If each node is considered to also have a communication link pointing to itself, then this model can

very simply be characterized as requiring each node to send exactly one packet and receive exactly one

packet during each communication step. We call this a queueless MIMD routing model because each node

needs only a queue of size 1 to hold packets. We also note that this model is called congestion-free routing

by Ramras [28, 27, 29].

The next model does not have the restriction that a node may only send and receive a single packet in

a given timestep. Instead, a node may send tokens to all its neighbors and simultaneously receive tokens

from all its neighbors. However it retains the restriction that a packet has to leave a node on the next

communication step after the one during which it arrived. We call this an all-port MIMD communication

model. Note that in the context of circuit-switching, all-port communication has a different but consistent

meaning – it means that a node can be intermediate on many source-destination paths.

A final model is one in which each node may receive and send packets on all dimensions simultaneously
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in a communication step, and a node may hold on to a packet for sending later. Buffers could be associated

with the node itself, or else they could be associated with the edges of the node. A node could then contain

more than d packets at a time, where d is the degree of the node. We call this the buffered all-port MIMD

model.

Szymanski studies the offline circuit-switched all-port version of this problem [35], in contrast to our

consideration of the packet switched model. Under this model he shows that for d ≤ 3, the hypercube

is rearrangeable, meaning that any permutation can be routed [35]. Szymanski conjectures that the d-

dimensional hypercube is rearrangeable. In general, a routing under the circuit-switched model automat-

ically provides a routing under the all-port MIMD packet-switched model but not the queueless MIMD

packet-switched model since it may put multiple packets at an intermediate node at the same time. Szy-

manski notes that a proof of his rearrangeability conjecture for d = 4 appears to be challenging. Szymanski

also had a still stronger conjecture, that rearrangeability is possible with shortest paths. This still stronger

version was disproven by Lubiw with a 5-dimensional counterexample [19]. In passing we note that Szy-

manski’s routings do not work for the queueless MIMD packet-switched model. Consider a 3-dimensional

hypercube with a permutation in which packets at node 0 and node 7 interchange positions, and every other

node stays put. Szymanski’s routing sends every packet along a shortest path, which means packets in nodes

1–6 would not move, whereas some must move under the queueless MIMD packet-switched model.

Szymanski’s original rearrangeability conjecture stands. He also notes that for the all-port MIMD

packet-switched model, routing is possible in 2d − 1 steps [35]. In the same model, the result was fur-

ther improved by Shen et al to 2d− 3 steps as a corollary of their main result, namely an explicit algorithm

for routing arbitrary permutations on the circuit-switched hypercube such that each directed edge is used at

most twice [32].

In the more restrictive queueless MIMD model, Ramras uses a bound on the optimal routing time of a

cross-product graph in terms of its factors (Theorem 1), due Annexstein et al [2], to effectively prove that

if permutation routing for the r-hypercube is possible in r steps, then for d ≥ r, permutation routing is

possible in 2d − r steps [28]. In our routing model, the result for d = 3 was verified computationally by

Cooperman [3]. Ramras therefore establishes that permutation routing is possible in 2d− 2 steps, based on

the analytical proofs, and 2d − 3 steps, taking into account the computational result by Cooperman. Note

that this is an explicit queueless MIMD result, which uses stronger restrictions than the all-port MIMD

result of Shen et al [32].
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Alon et al [1] also consider the offline hypercube permutation routing, under the single-port MIMD

model, where packets may only be exchanged with adjacent nodes. Under this model, they also consider

many other different interconnection networks. For hypercubes in particular, they prove that routing is not

possible in d steps for d ∈ {2, 3}. Thus their model appears to be too strong for the sort of result we seek.

Further work by Høyer and Larsen in the same model considers arbitrary graphs, and shows that arbitrary

permutations can be routed in 2n − 3 steps, where n is the number of nodes [8, 7]. Zhang also proves that

under this model in which only edge exchanges are allowed, routing can be done on a tree (and therefore

for any graph) in 3
2 + O(log n) steps, where n is the number of nodes [38].

In the online version of the buffered all-port MIMD model, Hwang et al have shown that oblivious

routing is possible in d steps for d ∈ {2, . . . , 7}, using only local information [10]. In another paper [9]

this is improved for up to d ≤ 12. More recently, Vöcking obtained some very interesting results in the

buffered all-port MIMD model [37]. He presents an online oblivious randomized algorithm that routes in

d + O(d/ log d) steps, and a matching lower bound. He also obtains a deterministic offline algorithm in the

buffered all-port MIMD model that routes in d + O(
√

d log d) steps with three buffers per edge. They are

particularly interesting because these are the first results that use d + o(d) steps.

Permutation Routing has been studied in other interconnection networks with different communication

paradigms [6]. There is a very wide variety of results for on-line routing. An early result was for the more

general problem of sorting on a hypercube, and this was shown to be possible for the n-node hypercube

in O(log n(log log n)2) time in the worst case by Cypher and Plaxton [4]. Kaklamanis et al also proved

an Θ(
√

n/ log n) time bound for deterministic oblivious routing on the n-node hypercube hypercube [14].

Newman and Schuster extend the store-and-forward paradigm for permutation routing to hot-potato routing

for meshes, hypercubes and tori [22]. Leighton et al were the first to show that it is possible to route in a

two-dimensional mesh using the minimum of 2n− 2 communication steps where n is the side of the mesh,

using constant-sized communication queues [16]. Sibeyn et al also study the two-dimensional mesh, and

further minimized the number of queues required. One of their algorithms routes in the optimal number of

communication steps, using queues of size 32. The other algorithm improves the queue size to 12 by trading

off the optimal number of communication steps by a constant [33]. Kaufmann and Sibeyn also study the k−

k-routing problem, a variant in which each node starts and ends with k packets. In the arbitrary-dimensional

mesh, they used randomization to prove that it is possible in (1 + o(1))max{2dn, 1
2kn} communication

steps, where d is the dimension and n is the side of the mesh. Their results can be modified to tori, and the
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communication model can be modified to the cut-through routing model [15].

Some of the preceding results have proven routing properties for all permutations on hypercubes of

bounded dimension, under different communication models. An alternative approach has also been to

consider routing properties of hypercubes of arbitrary dimension, but for restricted classes of permutations,

again under different communication models.

An important subclass of permutations for general-purpose computing is the class of bit permute com-

plement (BPC) permutations, which are useful for matrix transposing, vector reversal, bit shuffling and

perfect shuffling [21]. Nassimi and Sahni present a routing scheme for routing BPC permutations on SIMD

hypercubes in d steps, which is optimal [21]. This may be compared with the bound of 2d − 1 steps for

an arbitrary permutation on the SIMD hypercube [36]. Johnsson and Ho present algorithms for optimal

matrix transposition in the all-port MIMD model [11]. This is further developed to generalized shuffle per-

mutations in the queueless and all-port MIMD models [12]. Generalized shuffle permutations are a more

general form of BPCs which operate on an array of data associated with a large virtual hypercube, which

is mapped onto a smaller real hypercube [12]. The BPC therefore moves data between nodes as well as

changing positions of items within a node. Further work by the same authors in the all-port MIMD model

considers the problem of all-to-all personalized communication [13].

Ramras improves the optimal routing results for BPCs by proving that hypercube automorphisms (which

are the same as BPCs) can be routed in d steps under the more restricted queueless MIMD model [27]. He

also proves an analogous result for linear complement permutations on hypercubes of arbitrary dimension

[29].

Lin considers the problem of manipulating general vectors on hypercubes and provides optimal algo-

rithms in the synchronous (SIMD) model [18]. He defines general vectors as starting from an arbitrary node

and having an arbitrary length. He provides for operations such as merging, splitting, rotation, reversal,

compression and expansion (only some of which are permutations).

Given an array which has been mapped into the hypercube, the cyclic shift permutations cyclically shift

the elements of the array by a given offset. Assuming that the array is mapped into the hypercube under the

natural ordering which maps array cell i to hypercube node i, Ranka and Sahni have shown that in the all-

port MIMD model, this form of permutation routing is possible in d steps [30]. Under the binary reflected

Gray code (BRGC) order, which maps the array into a Hamiltonian path of the hypercube defined by the

Gray code, Ouyang and Palem have shown that routing of cyclic shifts is possible in 4
3d steps in the all-port
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MIMD model [24].

In the SIMD model, certain permutations such as the shift permutation have been shown to be routable

in an optimal number of synchronous communication steps, in a way that each node always contains at most

one packet between communication steps, and such that the dimension exchanges can occur in any order

[25]. Under this model, Panaite identifies a large class of hypercube permutations, called frequently used

bijections (FUBs), which are similarly routable, including admissible lower triangular and admissible upper

triangular permutations, and p-orderings with cyclic shifts. The motivation for this SIMD model is to be

able to perform a group of up to d permutation routings simultaneously, without any requirement for local

buffering of messages in intermediate nodes during a communication step [25].

Given the above results in their totality, especially those of Szymanski, Ramras, Hwang et al, and

Vöcking, we are cautiously optimistic about the following conjecture which is the subject of the remainder

of this paper.

Conjecture Under the packet-switched queueless MIMD communication model, an arbitrary permutation

on the d-dimensional hypercube can be offline-routed in d steps.

3 Notation

Definition 3.1 We denote the bounded set of nonnegative integers {0, . . . , n − 1}, which has n elements,

by [n].

Definition 3.2 Let u and v be nonnegative integers. We define |u, v| as the number of bits that are different

in the binary representations of u and v. Note that there is no ambiguity by omitting the number of bits in

the binary representation if we assume that leading blank spaces are all zero.

Definition 3.3 We define the d-dimensional hypercube Qd as the graph ([2d], {(u, v) : |u, v| = 1}).

Definition 3.4 SN denotes the symmetric group of order N , the group of all permutations on the set [N ].

Definition 3.5 Let ∆d be {δ|δ ∈ S2d and ∀i ∈ [2d], |i, δ(i)| ≤ 1}.

We call ∆d the set of allowable permutations, alluding to the fact that they are the set of permitted

communication steps.
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Definition 3.6 Let φ ∈ S2d . The Qd permutation routing problem is to determine a sequence δ0, . . . , δk−1

of permutations in ∆d such that φ = δk−1 ◦ . . . ◦ δ0. Such a finite sequence is known to exist [28]. If there

exists a finite sequence of length k, then we say φ is k-factorable.

Definition 3.7 We will also say S2d is k-factorable if every φ ∈ S2d is k-factorable.

Given these definitions, we may restate the main conjecture considered in this paper as follows:

Conjecture 3.8 For all d, S2d is d-factorable.

It has been shown by Ramras that the conjecture is true for d = 2 – every permutation in S22 is 2-

factorable [28], and it has been verified by a computer program (reported in a private communication from

Cooperman to Ramras[28]) that the conjecture holds for d = 3 [28].

We present an approach which simplifies the problem enough to permit the human verification of the

case for d = 3 and to to permit a computer verification of the case for d = 4. It basically tries to use

a recursive algorithm which converts a problem for dimension d into two disjoint problems of dimension

d− 1 where possible, and verifies the exceptions explicitly. We develop this approach as follows:

Definition 3.9 Let bj(v) = bit j of v.

Definition 3.10 Let B ⊆ [d], where |B| = t. A permutation φ ∈ S2d is t-separable by B if there exist

permutations δ0, . . . , δt−1 ∈ ∆d and β such that

• φ = β ◦ δt−1 ◦ . . . ◦ δ0.

• ∀i ∈ [2d], j ∈ B ⇒ (bj(i⊕ β(i)) = 0),

This captures the idea that after the first t communication steps, no motion will be permitted in any of the

dimensions in B (the set of dimensions that will be “broken”). Equivalently, we could say that all deliveries

are completed with respect to the dimensions in B. It therefore reduces the original routing problem to 2 t

separate cases of (d− t)-subcubes involving the dimensions [d] \B.

Definition 3.11 If φ is t-separable by B we will equivalently say φ is t-separable into [d] \ B.

The following easy results highlight the relationship between the notions of separability and factorabil-

ity.
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Lemma 3.12 If φ ∈ S2d is d-separable into ∅, then φ is d-factorable.

The generalized principle of induction easily yields the following results:

Lemma 3.13 For t < d, if all permutations in S2t are t-factorable and φ ∈ S2d is (d− t)-separable, then

φ is d-factorable.

Corollary 3.13a If ∀t < d, all permutations in S2t are t-factorable and for each φ ∈ S2d there is a t′ < d

such that φ is (d− t′)-separable, then S2d is d-factorable.

On applying the latter corollary with Ramras and Coopermans’ results [28], we obtain the following:

Corollary 3.13b For d ≥ 3, if φ ∈ S2d is (d− t)-separable for some t ≤ 3, then φ is d-factorable.

The following lemma, which extends Ramras’ result for d = 2, can be verified very easily:

Lemma 3.14 All permutations in S22 are 1-separable by D for any suitable choice of D.

From this it follows that

Corollary 3.14a For d ≥ 3, if φ ∈ S2d is (d − 2)-separable, then φ is (d − 1)-separable, and therefore

d-factorable.

10



4 Characterizing 1-separability

In this section, we develop an algebraic characterization of 1-separability. This provides the basis for our

treatment of Conjecture 3.8, yielding in Section 5 an analytic proof for d = 3 and in Section 6 an experi-

mental verification for d = 4.

Definition 4.1 For α ∈ Sd, Aα : Qd → Qd is the hypercube automorphism defined by bα(j)(A
α(v)) =

bj(v) for all j ∈ [d] and v ∈ [2d].

We will call a function like Aα a dimension-relabelling by α. It is easy to see that (Aα)−1 = Aα−1
.

Definition 4.2 For u ∈ [2d], Au : Qd → Qd is the hypercube automorphism defined by Au(v) = u⊕ v for

all v ∈ [2d].

We call a function like Au in this definition a zero-relocation to node u. Note that from this definition it

follows that (Au)−1 = Au.

Definition 4.3 We define Aα
u = Au ◦Aα

The following lemma is well known [17]:

Lemma 4.4 Every hypercube automorphism is characterized by a value u ∈ [2d] and α ∈ [Sd] and is

obtained by applying Aα
u to the hypercube.

We obtain the inverse of Aα
u by noting that

(Aα
u)−1 = (Au ◦Aα)−1 = (Aα)−1 ◦ (Au)−1 = Aα−1 ◦ Au.

We also note that in general (Aα
u)−1 6= Aα−1

u . The noncommutative nature of Au and Aα is character-

ized further by the following lemma:

Lemma 4.5 For α ∈ Sd and u ∈ [2d], Aα ◦ Au = AAα(u) ◦Aα
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PROOF For arbitrary v ∈ [2d], and for arbitrary dimension j ∈ [d],

bα(j)

(

AAα(u) ◦Aα(v)
)

= bα(j) (Aα(u)⊕Aα(v)) (by 4.2)

= bα(j) (Aα(u)) ⊕ bα(j) (Aα(v))

= bj(u)⊕ bj(v) (by 4.1)

= bj(u⊕ v)

= bα(j) (Aα(u⊕ v)) (by 4.1)

= bα(j) (Aα ◦Au(v)) (by 4.2)

Since α is onto, all the bits of Aα ◦Au and Aα(u) ◦Aα are equal, thus proving the result. 2

We will also need the following lemma to enable us to compose dimension relabellings:

Lemma 4.6 For α, β ∈ Sd, Aα ◦ Aβ = Aα◦β

PROOF For arbitrary v ∈ [2d], and for arbitrary dimension j ∈ [d],

bα◦β(j)

(

Aα ◦ Aβ(v)
)

= bα(β(j))

(

Aα ◦Aβ(v)
)

= bβ(j)

(

Aβ(v)
)

(by 4.1)

= bj(v) (by 4.1)

= bα◦β(j)

(

Aα◦β(v)
)

(by 4.1)

Since α and β are both onto, α ◦ β is onto, therefore all the bits of Aα ◦Aβ and Aα◦β are equal. 2

Definition 4.7 For φ : [2d] → [2d], π(φ, j) = {v ∈ V (Qn) | bj(φ(v)) 6= bj(v)}. π(φ, j) is called the

projection of φ in dimension j.

The projection of φ along j is the set of nodes with packets which have to cross dimension j at some

point. These packets are of interest because they have to cross dimension j immediately if all movement

along dimension j will be disallowed after the next computation step (as a means of recursing).

For example, consider the permutation (065)(127)(34), shown leftmost in Figure 1 on page 21. Its pro-

jection in dimension 2 (leftmost) contains all nodes except 1 and 6. So π((065)(127)(34), 2) = {0, 2, 3, 4, 5, 7}.

12



Two neighboring nodes in the hypercube differ in one bit (say bit j). It is easy to see that under the

automorphism Au their images also differ in bit j. Under Aα, their images differ in bit α(j):

Lemma 4.8 For w ∈ [2d], Aα(wj) = (Aα(w))α(j).

PROOF From the definitions, if i 6= j, then bα(i)(A
α(wj)) = bi(w

j) = bi(w) and bα(i)

(

(Aα(w))α(j)
)

=

bα(i)(A
α(w)) = bi(w). Similarly, if i = j, then bα(i)(A

α(wj)) = bi(w
j) = bi(w) and bα(i)

(

(Aα(w))α(j)
)

=

bα(i)(Aα(w)) = bi(w). Thus all bits of Aα(wj) and (Aα(w))α(j) are equal. 2

Given two permutations that are related under an automorphism, the following lemma shows the rela-

tionship between their projections.

Lemma 4.9 Let φ ∈ S2d , α ∈ Sd, u ∈ [2d] and j ∈ [d] be arbitrary. Then:

π(Aα
u ◦ φ ◦ (Aα

u)−1, α(j)) = Aα
u(π(φ, j))

PROOF For arbitrary v ∈ [2d],

v ∈ Aα
u (π(φ, j))

⇔ (Aα
u)−1(v) ∈ π(φ, j)

⇔ bj

(

φ ◦ (Aα
u)−1(v)

) 6= bj

(

(Aα
u)−1(v)

)

(by 4.7)

⇔ bα(j)

(

Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j)

(

Aα ◦ (Aα
u)−1(v)

)

(by 4.1)

⇔ bα(j)

(

Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j)

(

Aα ◦ Aα−1 ◦ Au(v)
)

(by 4.4)

⇔ bα(j)

(

Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j)(Au(v))

⇔ bα(j)(u)⊕ bα(j)

(

Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j)(u)⊕ bα(j)(Au(v))

⇔ bα(j)

(

u⊕Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j) (u⊕Au(v))

⇔ bα(j)

(

Au ◦Aα ◦ φ ◦ (Aα
u)−1(v)

) 6= bα(j) (Au ◦Au(v)) (by 4.2)

⇔ bα(j)

(

Aα
u ◦ φ ◦ (Aα

u)−1(v)
) 6= bα(j)(v) (by 4.3, 4.2)

⇔ v ∈ π(Aα
u ◦ φ ◦ (Aα

u)−1, α(j)) (by 4.7)

2
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Sometimes we characterize a permutation φ by specifying (for each dimension k), the set of nodes P (k)

containing packets that need to cross dimension k in order to be delivered. In the following we define the
∑

operator to construct the permutation φ given these lists P (k) for each dimension. This operation is in

a loose sense the opposite of the projection operator π. We also show the precise sense in which they are

opposite. The resulting operation is more general and can construct relations that are not functions.

Definition 4.10 Suppose P (k) ⊆ [2d] for all k ∈ [d]. Then
∑

k(P (k)) describes a map from [2d] into [2d]

in this way:

bj(

(

∑

k

(P (k))

)

(v)) = bj(v) if and only if v ∈ P (j)

Note: sometimes the dummy variable k is omitted, so that
∑

k(P (k)) is written as
∑

P .

Lemma 4.11 Let P (k) ⊆ [2d] for all k ∈ [d]. π(
∑

k P (k), j) = P (j).

PROOF

v ∈ π(
∑

k P (k), j) ⇔ bj((
∑

P ) (v)) 6= bj(v) (by 4.7)

⇔ bj((
∑

P ) (v)) = bj(v)

⇔ v ∈ P (j) (by 4.10)

2

Lemma 4.12 If φ is a map from [2d] into [2d], then
∑

k(π(φ, k)) = φ.

PROOF Let v be arbitrary and w = (
∑

k(π(φ, k))) (v). Then:

bj(w) = bj(v) ⇔ v ∈ π(φ, j) (by 4.10)

⇔ bj(φ(v)) 6= bj(v) (by 4.7)

⇔ bj(φ(v)) = bj(v)

Thus w = φ(v) for all v, so
∑

k(π(φ, k)) = φ. 2

Whether a permutation is 1-separable by dimension k into [d] \ {k} depends on P (k). In the following

we develop a characterization of those P (k) for which the permutation is not 1-separable into [d] \ {k}.

Definition 4.13 Let Π(j) = π(S2d , j) \ π(∆d, j).
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Lemma 4.14 φ is 1-separable into [d] \ {j} if and only if π(φ, j) = π(δ, j) for some δ ∈ ∆d.

PROOF First, suppose that φ is 1-separable into [d] \ {j}, so that φ = β ◦ δ for some δ ∈ ∆d and

bj(β(v)) = bj(v) for all v ∈ V (Qd). Then v ∈ π(φ, j)⇔ 〈v, vj〉 ∈ χ(β ◦ δ)⇔ bj(β ◦ δ(v)) 6= bj(v)⇔

bj(δ(v)) 6= bj(v)⇔ 〈v, vj〉 ∈ χ(δ)⇔ v ∈ π(δ, j). Thus π(φ, j) = π(δ, j).

Second, suppose π(φ, j) = π(δ, j) for some δ ∈ ∆d. This means that bj(φ(v)) = bj(δ(v)) for all

v ∈ V (Qd), and replacing v by δ−1(v) yields bj(φ◦δ−1(v)) = bj(v) for all v ∈ V (Qd), so φ = (φ◦δ−1)◦δ

is clearly a 1-separation. 2

Corollary 4.14a φ is 1-inseparable if and only if π(φ, j) ∈ Π(j) for all j ∈ [d].

The following lemmas essentially point out the relationship between projections π(φ, j) ∈ Π(j), of

permutations φ that are not separable by dimension j into [d] \ {j} and the images of the projection and the

permutation under a hypercube automorphism. This will allow us to enumerate all the projections that are

1-inseparable by one dimension and modify it to obtain the set of projections that are 1-inseparable by the

other dimensions.

Lemma 4.15 Let α ∈ Sd and p ∈ Π(j). Then Aα(p) ∈ Π(α(j)).

PROOF p ∈ Π(j) means there is a permutation φ, not allowable, such that π(φ, j) = p. Then by Lemma

4.9, π(Aα ◦φ ◦Aα−1
, α(j)) = Aα(p). Now Aα ◦φ ◦Aα−1

cannot be allowable because otherwise φ would

be allowable. Thus Aα(p) = π(Aα ◦ φ ◦ Aα−1
, α(j)) ∈ Π(α(j)). 2

Corollary 4.15a Aα(Π(j)) = Π(α(j)) for each α ∈ Sd.

PROOF The lemma implies Aα(Π(j)) ⊆ Π(α(j)). Applying the lemma for dimension α(j) and auto-

morphism Aα−1
yields Aα−1

(Π(α(j))) ⊆ Π
(

α−1(α(j))
)

and thus Π(α(j)) ⊆ Aα(Π(j)). 2

If all the arguments P (k) of the
∑

operator are in the respective Π(k), then we obtain a 1-inseparable

permutation. In the following we modify the
∑

operator to accept all its arguments from one particular set

Π(J) where J is a fixed dimension. This allows us to use only one copy of Π(J) instead of constructing a

different Π(k) for each dimension k.
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Definition 4.16 Let a fixed J ∈ [d] be given, and for all k ∈ [d] let %k ∈ Sd be given, satisfying %k(J) = k.

Then if P (k) ⊆ [2d] for all k ∈ [d],
∑

k
%(P (k)) is defined as:

∑

k

%
(P (k)) =

∑

k

(A%k (P (k)))

Theorem 4.17 φ is 1-inseparable if and only if:

φ =
∑

k

%
(pk) where pk ∈ Π(J) for all k ∈ [d]

PROOF ⇒: Let 1-inseparable φ be given. For any k ∈ [d], Lemma 4.15 says A%k
−1

(π(φ, k)) = pk for

some pk ∈ Π(%−1
k (k)) = Π(J). Thus π(φ, k) = A%k(pk) for all k ∈ [d]. By Lemma 4.12,

φ =
∑

k

(π(φ, k)) =
∑

k

(A%k ◦ pk) =
∑

k

%
(pk)

⇐: Consider π(
∑

k
%(pk), j) for arbitrary j:

π(
∑

k
%(pk), j) = π(

∑

k(A
%k ◦ pk), j) (by 4.16)

= A%j ◦ pj (by 4.11)

∈ Π(%j(J)) = Π(j) (by 4.15a)

Thus φ is 1-inseparable by Corollary 4.14a. 2

Our procedure for constructing Π(J) for a fixed dimension J is more easily understood based on a

slightly different view of P (k). This is developed in the following:

Definition 4.18 The profile σj(φ) of permutation φ in dimension j is a map from the half-cube comprising

nodes v with bj(v) = 0 into [4] defined this way:

σj(φ)(v) = 2 (bj(v)⊕ bj(φ(v))) +
(

bj(v
j)⊕ bj(φ(vj))

)

The profile is simply a way to encode the information from π(φ, j), as the following lemma shows:
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Lemma 4.19

σj(φ)(v) =







































0 if v 6∈ π(φ, j) and vj 6∈ π(φ, j)

1 if v 6∈ π(φ, j) and vj ∈ π(φ, j)

2 if v ∈ π(φ, j) and vj 6∈ π(φ, j)

3 if v ∈ π(φ, j) and vj ∈ π(φ, j)

PROOF The result follows directly from the definitions. 2

Lemma 4.20 The number of vertices v for which σj(φ)(v) = 1 is the same as the number for which

σj(φ)(v) = 2.

PROOF Let H0 and H1 be two disjoint half-cubes not containing any edges in dimension j. Since φ is

a permutation, the number of v in H0 for which φ(v) ∈ H1 must be the same as the number of v in H1

for which φ(v) ∈ H0. This means that the number of v for which σj(φ) is 2 or 3 must be the same as the

number for which σj(φ) is 1 or 3. Eliminating those for which σj(φ) is 3 gives the result. 2

The following property is satisfied by every profile σ which causes φ to be 1-inseparable, and it is easy

to visualize and verify computationally when expressed this way:

Definition 4.21 A profile σ = σj(φ) is said to be regular if there is a vertex-disjoint set of directed paths

lying within the half-cube in which the profile is defined satisfying the following conditions:

• v appears at the head of a path if and only if σ(v) = 1.

• v appears at the end of a path if and only if σ(v) = 2.

• If v appears as an intermediate node in a path, then σ(v) = 0.

Lemma 4.22 σj(φ) is regular if and only if φ is 1-separable by {j}.

PROOF In light of Lemma 4.14, we need only show that σj(φ) is regular if and only if π(φ, j) = π(δ, j)

for some δ ∈ ∆d.
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Suppose first that δ ∈ ∆d and π(φ, j) = π(δ, j). By Lemma 4.19, this means that σj(φ) = σj(δ).

Consider the set of directed edges 〈v, δ(v)〉 such that bj(v) = bj(δ(v)) = 0. A straightforward application

of the definitions show that σj(δ) is regular.

Second, suppose σj(φ) is regular. Define δ this way: if 〈v, w〉 is in some path, let δ(v) = w and

δ(wj) = vj; if v is at the head of a path, let δ(vj) = v; if v is at the end of a path, let δ(v) = vj . Clearly

δ ∈ ∆d. It is straightforward to verify, using Lemma 4.19, that π(δ, j) = π(φ, j), and thus σj(δ) = σj(π).

2
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5 The case d = 3.

We characterize the 1-inseparable permutations in Q3 using Theorem 4.17 with J = 2, %0 = (201), %1 =

(21), and %2 the identity. Our goal is to enumerate the equivalence classes of 1-inseparable permutations,

where two permutations are considered equivalent if one can be obtained from the other by a hypercube

automorphism. Formally, φ1 ≈ φ2 ⇔ φ1 = Aα
u ◦ φ2 ◦ (Aα

u)−1 for some Aα
u .

The first step is to enumerate the members of Π(2). By Lemma 4.22, we enumerate all σ2(φ) that are

not regular. The half-cube on which σ2(φ) is defined comprises the four-cycle on [4]. By Lemma 4.20,

there are zero, one, or two vertices for which σ2(φ) is 1, and zero, one, or two, respectively, for which it is

2. In the first case, σ2(φ) is regular vacuously. In the third case, edges connecting each vertex labeled 1 to

a neighbor labeled 2 serve as the two disjoint paths establishing regularity.

In the second case, if the vertex labeled 2 is adjacent to the vertex labeled 1, then a directed edge

connecting them establishes regularity. If the vertex labeled 2 is not adjacent to the vertex labeled 1, and if

there is a vertex labeled 0, then a path of length two through the vertex labeled 0 suffices. Finally, if there

is no vertex labeled 0, then no suitable path is possible, and in that case σ2(φ) is not regular. There are four

ways this final case can happen, according to which vertex v ∈ [4] has σ2(φ)(v) = 1.

Lemma 4.19 can now be used to calculate the members of Π(2), the inseparable projections in dimension

2. They are shown in the table below, together with their images under %1 and %2.

p A(201)(p) A(21)(p)

p0 = {1, 2, 3, 4, 5, 6} p0 p0

p1 = {0, 2, 3, 4, 5, 7} p2 p1

p2 = {0, 1, 3, 4, 6, 7} p3 p3

p3 = {0, 1, 2, 5, 6, 7} p1 p2

Now we face the task of examining all
∑%(a, b, c) for a, b, c ∈ Π(2), where we adopt the convention

that a corresponds to dimension 2, b to dimension 1, and c to dimension 0. Instead of considering all 64

such cases, we use automorphisms of Q3 to reduce those to a list of six, based on the following property of

Q3:

Lemma 5.1 Suppose a set of six directed edges of Q3 is formed by taking for each dimension j, a directed

edge 〈v, w〉 that crosses dimension j together with its “opposite” which connects the antipode of v to the

antipode of w. Then some automorphism of the hypercube will carry that set to one of the following:
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〈2, 0〉, 〈0, 1〉, 〈1, 5〉 and their opposites

〈2, 0〉, 〈0, 1〉, 〈5, 1〉 and their opposites

〈2, 0〉, 〈0, 1〉, 〈0, 4〉 and their opposites

〈2, 0〉, 〈0, 1〉, 〈4, 0〉 and their opposites

〈2, 0〉, 〈1, 0〉, 〈4, 0〉 and their opposites

〈0, 2〉, 〈0, 1〉, 〈0, 4〉 and their opposites

PROOF Suppose the set of edges contains some path of length two. Use Am to move the midpoint m of

that path to vertex 0, and then use a dimension relabeling Aα so that the path is 〈2, 0〉, 〈0, 1〉. There are four

possible ways to choose a pair of edges for the other dimension, yielding the first four lines in the above list.

Suppose there is no path of length two. Since the six edges have twelve endpoints, some vertex m must

be touched by two edges. Use Am to move m to vertex 0, followed by Aα so that the other two edges are

〈2, 0〉 and 〈1, 0〉 or 〈0, 2〉 and 〈0, 1〉. In the first case, adding 〈5, 1〉, 〈1, 5〉, or 〈0, 4〉 would create a path

of length two. In the second case, adding 〈5, 1〉, 〈1, 5〉, or 〈4, 0〉 would create a path of length two. The

remaining choices produce the final two entries in the above list. 2

The above six possibilities are essentially different, which can be seen by observing the following distin-

guishing characteristics. The first comprises a directed cycle of length six. The second defines an undirected

cycle of length six. The remaining four are characterized by having a degree-3 vertex with out-degree two,

one, zero, and three respectively.

Lemma 5.2 Given any map φ =
∑%(a, b, c) for a, b, c ∈ Π(2), φ ≈ φ′ where φ′ is one of the following:

φ′ Projections
∑%(p1, p3, p0) (p1, p2, p0)

∑%(p2, p3, p0) (p2, p2, p0)

∑%(p0, p3, p0) (p0, p2, p0)

∑%(p3, p3, p0) (p3, p2, p0)

∑%(p3, p3, p3) (p3, p2, p1)

∑%(p0, p0, p0) (p0, p0, p0)

PROOF Select a set of directed edges of Q3 in the following way. For j = 0, 1, 2, include 〈v, vj〉 in the

set if and only if v 6∈ π(φ, j). Each pi in Π(2), and likewise each %j(pi), omits exactly a pair of vertices
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which are antipodes, so Lemma 5.1 applies to this set. It is straightforward to verify that the six sets listed in

Lemma 5.1 correspond to the projections shown in the second column of the above table. Applying A(21)−1

in dimension 1 and A(201)−1

in dimension 0 yields the first column. 2

Thus the six maps from Lemma 5.2, three of which are permutations, include representatives of all

equivalence classes of 1-inseparable permutations. The following table shows the permutation determined,

or in the case of no permutation, two vertices that are mapped to the same vertex under the map.

Permutation or reason
∑%(p1, p3, p0) (065)(127)(34)
∑%(p2, p3, p0) 0→ 6, 1→ 6
∑%(p0, p3, p0) (0275)(16)(34)
∑%(p3, p3, p0) 0→ 6, 1→ 6
∑%(p3, p3, p3) 1→ 6, 2→ 6
∑%(p0, p0, p0) (16)(25)(34)

Since the three listed permutations have cycles of different lengths, they are inequivalent. In light of

Theorem 4.17, we have established:

Theorem 5.3 There are three essentially different 1-inseparable permutations of Q3: (065)(127)(34),

(0275)(16)(34), and (16)(25)(34).

These permutations are illustrated in Figure 1.
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Figure 1: Three canonical 1-inseparable permutations

By factoring these three, we establish the main result for d = 3:

Theorem 5.4 All permutations on eight elements can be factored into three allowable permutations of Q3.
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PROOF Here are factorizations.

Permutation Factorization

(065)(127)(34) (23)(45) ◦ (0264)(1375) ◦ (023754)

(0275)(16)(34) (01)(23)(45)(67) ◦ (023754) ◦ (0264)(1375)

(16)(25)(34) (132645) ◦ (132645) ◦ (132645)

2

Corollary 5.4a Every permutation of Q3 which is neither 1-separable nor 2-separable is equivalent to

(16)(25)(34).

PROOF Any permutation not equivalent to one of the above three is 1-separable. The factorizations

shown for the first two of these provide 2-separations into dimension 0, since their third factors (23)(45)

and (01)(23)(45)(67) use only dimension 0. Regarding the third permutation, without loss of generality

assume dimension 0 is chosen for a 2-separation. Then two factors would have to achieve the permutation

(0176)(24)(35) which is easily seen to be impossible. Thus the third permutation is not 2-separable. 2
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6 The case d = 4.

In this section we present an experimental verification of the following results:

Result 6.1 All permutations in S24 can be factored into four allowable permutations of Q4.

A slightly stronger result has also been verified:

Result 6.2 All 1-inseparable permutations in S24 are 3-separable in all possible ways.

This shows that the basic conjecture is true with “room to spare”.

6.1 Basic Approach

The set of 1-inseparable permutations on Q4 may be constructed similarly to the case for d = 3. For d = 4,

we use J = 3, and a set {%j |j ∈ [4]} defined by

%j(i) =



























i for i < j

j for i = 3

i + 1 for j ≤ i < 3

Again, we desire to consider the equivalence classes of 1-inseparable permutations and factorise one

member of each equivalence class, as in Theorem 5.3. In order to do this, we experimentally determine the

set Π(3), based on the characterization in Lemma 4.22. To determine whether a possible profile λ is regular,

we use a brute-force depth-first search algorithm. The algorithm checks whether there exists a set of paths

that satisfy the conditions in Definition 4.21.

Algorithm 6.3 EnumeratePi

Output: Π(3)

For each labelling λ : V (Q3)→ [4]

If |{u|λ(u) = 1}| = |{u|λ(u) = 2}|

If λ is regular

enumerate(λ)
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This enumeration yields 2120 labellings of V (Q3) which are not regular, and each of these determines

a unique member of Π(3). It is therefore necessary to consider 21204 4-tuples in an enumeration of 1-

inseparable mappings, and not all of these are permutations.

We further reduce the space of permutations that need to be examined by restricting our attention to

permutations that are canonical in the following sense (assuming an arbitrary total ordering on the 2120

labellings):

Definition 6.4 A permutation φ = Σ%(m3,m2,m1,m0) ∈ S2d is canonical if the tuple (m3,m2,m1,m0)

is lexicographically less than or equal to all tuples (m′

3,m
′

2,m
′

1,m
′

0) such that Σ%(m′

3,m
′

2,m
′

1,m
′

0) =

Aα
u ◦ φ ◦ (Aα

u)−1 for some u ∈ [2d] and α ∈ Sd.

The basic idea of the algorithm is summarized in the following pseudocode:

Algorithm 6.5 EnumerateOneInseparablePermutations

Output: Enumeration of all essentially different 1-inseparable permutations

For each 4-tuple (m3,m2,m1,m0) ∈ (Π(3))4

If φ = Σ%(m3,m2,m1,m0) is a permutation

If φ is canonical

enumerate(φ)

Testing whether a mapping is a permutation is trivial. Testing whether φ is canonical is a little more in-

teresting: Given a 4-tuple (m3,m2,m1,m0), for each Aα
u we need to find the equivalent tuple (m′

3,m
′

2,m
′

1,m
′

0)

defined by φ′ = Σ%m′

j = Aα
u ◦ φ ◦ (Aα

u)−1, where φ = Σ%mj .

The calculation of m′

j is based on the following equation:

m′

j = A%−1
j (π(φ′, j))

= A%−1
j (Aα

u(π(φ, α−1(j))))

= A%−1
j (Aα

u(A
%

α−1(j)(mα−1(j))))

= A
A

%
−1
j (u)

◦
(

A%−1
j ◦Aα ◦ A

%
α−1(j)

)

(mα−1(j))

= A
A

%
−1
j (u)

◦ A
%−1

j
◦α◦%

α−1(j)(mα−1(j))
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This computation can be done very quickly using the following tables:

M[m][θ][u] = Aθ−1

u (m) ∈ Π(3), for all (m, θ, u) ∈ Π(3)× S3 × [24]

B[j][θ][u] = blank, for all (j, θ, u) ∈ [4]×Π(3) × [24]

P[α][u][j] = &B[α−1(j)][%−1
α−1(j) ◦ α−1 ◦ %j][A

%−1
j (u)]

Note that we would normally need to define θ over the range S4, but we use S3 because

%−1
α−1(j) ◦ α−1 ◦ %j(3) = 3.

We are essentially focussing on 4-element permutations which map 3 to 3, and there is a very natural

correspondence between these and the set S3.

Once these tables are defined we can calculate m′

j very quickly, on average, by batch-processing a

number of these computations which depend the same value of mj . This is done by copying M[mj ][θ][u]

into B[j][θ][u] for all (j, θ, u) ∈ [4]×Π(3)× [24]. Then:

∗P[α][u][j] = B[α−1(j)][%−1
α−1(j) ◦ α−1 ◦ %j ][A

%−1
j (u)]

= M[mα−1(j)][%
−1
α−1(j) ◦ α−1 ◦ %j][A

%−1
j (u)]

= A
A

%
−1
j (u)

◦A%−1
j

◦α◦%
α−1(j)(mα−1(j))

= m′

j

This process of copying the 96 values in M[mj ][θ][u] into B[j][θ][u] for all (j, θ, u) ∈ [4]×Π(3)× [24]

effectively defines 384 = 24 × 16 cells in the ∗P “virtual” array in one step. Moreover the fact that we

compute the m′

j in lexicographical enumeration implies that m′

j can be used for a few levels of iteration if

it is not m′

0. As explained in the following subsection, further optimizations are possible that leverage this

approach.
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6.2 Optimizations

In practice, we use predictive tests to rule out some cases when only some of the entries in a 4-tuple have

been selected. If a partial tuple cannot be completed in a way that translates into a permutation, then none of

the possible completions of the tuple need to be checked. Similarly, if a partial tuple can not be completed

into a canonical permutation, then none of the possible completions need be generated. We use * to denote

tuple entries that have not been filled in.

The noncanonical prediction works by using the array P to determine as many of (m ′

3,m
′

2,m
′

1,m
′

0) as

possible for each α ∈ [Sd] and u ∈ [d], and making the obvious inferences from those results.

Algorithm 6.6 PotentialCanonical

For α ∈ [Sd]

Let j be the smallest value such that none of mα−1(3), . . . ,mα−1(j) is *

For u ∈ [2d]

If (m′

3, · · · ,m′

j) <lex (m3, · · · ,mj), Return False

Return True

In practice the determination of j in the second line is hard-coded into the program so that only appro-

priate table references are performed.

The partial permutation test is given a list of k projections m3, · · ·m4−k ∈ Π(3), and it is understood

that the remaining elements m4−k−1 · · ·m0 are unspecified. Given a binary number v, let Hv be the set of

nodes in V (Q4) whose leftmost k bits are the binary equivalent of v. For the purposes of computing
∑%,

we can use any value for the unspecified elements (including the null set).

Algorithm 6.7 PotentialPermutation

Output: True when there exists a way to specify the unspecified values to realise a permutation

Let k be the number of mi whose values are specified.

Compute the mapping φ =
∑%(m3, . . . ,m4−k, ∅, . . . , ∅)

For each v ∈ [2k]

If
∣

∣{u ∈ [24]|φ(u) ∈ Hv}
∣

∣ 6= 24−k Return False

Return True
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These tests based on partial information are combined in the following top level algorithm which prunes

the unnecessary branches of the search tree:

Algorithm 6.8 EnumerateOneInseparablePermutations

Output: Enumeration of all essentially different 1-inseparable permutations

For each m3 ∈ Π(3)

If PotentialCanonical(m3 , ∗, ∗, ∗)

For each m2 ∈ Π(3)

If PotentialPermutation(m3 ,m2, ∗, ∗)

If PotentialCanonical(m3 ,m2, ∗, ∗)

For each m1 ∈ Π(3)

If PotentialPermutation(m3 ,m2,m1, ∗)

If PotentialCanonical(m3 ,m2,m1, ∗)

For each m0 ∈ Π(3)

If PotentialPermutation(m3 ,m2,m1,m0)

If PotentialCanonical(m3 ,m2,m1,m0)

enumerate(φ = Σ%(m3,m2,m1,m0))

Note that no PotentialPermutation test is performed at the outermost level because every projection

in Π(3) is known to be a potential permutation if it is the only specified mapping, by Algorithm 6.3. Also

the tests at the innermost level determine whether in fact the specified 4-tuple of projections determines a

permutation (and a canonical permutation).

Together, these partial tests enable us to identify 31,275,077 canonical permutations on Q4 that need to

be factored. This is 0.00015% of the total number of permutations. This savings includes a factor of 16

reduction for exploiting zero-relocation symmetries and a factor of 24 reduction for exploiting dimension-

relabelling symmetries. Further reduction results from the decision to focus on explicitly constructed 1-

inseparable permutations.

Cost savings from these partial tests at different levels are detailed in the following table:
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Number of tuple elements specified

Cutoff type 1 2 3 4

Nonpermutation 0 56,793 21,133,804 2,443,217,046

Noncanonical 2,078 21,259 987,583 12,634,637

Note that a cutoff after specifying k tuple elements results in a savings of 2120(4−k) tuples. There are

2.02 × 1013 tuples that are not examined as a result of these cutoffs. Coincidentally, this is very close to

the number (2.09 × 1013) of permutations. Evidently, there are almost as many tuples to examine as there

would be permutations to factor if we attempted a brute-force factorization of all permutations. However

our approach of enumerating 1-inseparable permutations is much faster because it is much faster to test that

a tuple is not a permutation (or not canonical) than it is to factor a permutation. No search and backtracking

is required in the former.

In practice, we have found it possible to enumerate the canonical 1-inseparable permutations in an hour

or two of run time. The rate at which we can factor random permutations (most of which are 1-separable)

is 2.5× 104 per second, versus 2.5 × 105 per second for for testing tuples.

6.3 Factoring

The basic structure of the factorization procedure is a depth-first exhaustive search, controlled by a 5 × 16

array P . The task is best visualized as a one-person game with the following rules. Initially, “tokens” from

the set [16] are distributed to the vertices of Q4, one token per vertex. Then a series of “moves” is allowed,

where in each move, any subset of the tokens may be moved, each to some adjacent vertex, as long as no

two tokens ever occupy a vertex simultaneously after the move is completed. At the end of four such moves,

each token v must occupy vertex v. Thus, by placing token φ(v) at vertex v initially, the task of factoring φ

is embodied in this game.

More generally, the same structure is used to find a factorization showing that a permutation is separable

into a given set of dimensions. The procedure simply searches for a sequence of moves that deliver each

token to the appropriate subcube. For example, in testing for 3-separability into dimension 3, token 0 must

be at either vertex 0 or vertex 8 after three steps, token 1 must be at 1 or 9, etc. We let smax denote the

number of steps in the factorization, so in testing separability into dimension-set D, smax = d− |D|.

The array P , at the end of a successful search process, records the complete history of one of these
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games: entry P [s][v].token records the token present at vertex v immediately after step s, with P [0][v].token

recording the initial placement of tokens.

To begin the search, P is initialized with P [0][v].token = φ(v) and P [s][v].token = ε for 1 ≤ s ≤

smax, where ε means “empty.” The search process then fills in the empty entries one by one. Although

it might seem natural to fill in all entries P [1][v] first, then P [2][v], and so on, the search process instead

chooses P [s][v] one at a time using various criteria, so it may skip around through various values of s and

v. The fact that the time steps are represented explicitly means the search process has the flexibility to do

this.

During the search, entry P [s][v] is said to be on the “frontier” if for every s ′ ≤ s, there is some v′ with

P [s′][v′].token = P [s][v].token. If the progress of a particular token is conceptualized as an unbroken

path forward through space and time, then the frontier is the point on that path that is furthest forward in

time. In the search process, some frontier entry w = P [s][v].token is chosen, and, through backtracking

search, the consequences of setting P [s + 1][v ′].token = w are evaluated for all feasible v ′.

Sometimes a token is also placed at step smax at the same time a frontier entry is filled in. This is done

when all the paths available to reach the destination vertex or subcube must pass through a given vertex at

step smax. For example, for a 3-separation into dimension 3, token 9 must be at vertex 1 or 9 after step 3;

if it is initially at vertex 6, then it cannot reach vertex 9 in three moves, and thus P [3][1].token ← 9. Let

us designate this particular operation a “prediction” by the algorithm. Predictions can trigger backtracking

whenever multiple predicted or actual tokens would be required at any P [smax][v].

Three tests are applied to determine whether a particular possible choice P [s + 1][v ′] is feasible. (Of

course, only values v′ which differ from v in at most one bit are even looked at.) (1) The token must still

be within range of its destination; that is, its remaining distance to travel must not exceed the number of

steps remaining. (2) If s + 1 < smax, then there must be at least one way to move the given token forward

from P [s+1][v′] toward its destination, using an entry P [s+2][v ′′] not filled in with another token. (3) If a

prediction is possible, then the token’s predicted arrival at vertex w must not contradict P [smax][w].token.

(In other words, two tokens cannot be predicted to occupy the same vertex after the last step.)

The running time of a backtracking search is strongly influenced by the order in which choices are

attempted. In choosing an entry at the frontier, the algorithm chooses the entry which is the most “con-

strained,” meaning that it has the fewest choices that will satisfy tests (1) and (2). The intent of this is to

evaluate preferentially those choices that are most likely to lead to an impossible situation, thus accelerating
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the consequential backtracking. One side-effect is the immediate taking of forced actions, cases where there

is only one feasible way to advance a token.

During the program’s development, two other ways to speed up the search algorithm were tried but

found to be ineffective. One was checking whether a potential placement would block another token’s

only feasible path, abandoning the placement if so. This method produced a small but inconsequential

improvement in the run time. The other method was dynamic programming: recording in compressed form

the non-empty part of the entire P array in a separate table, and avoiding evaluating the same situation

twice. It turned out that the search algorithm rarely generated such repeated situations; due to the extra

overhead, including access times for its large table in the presence of hardware cache and virtual memory

effects, the dynamic programming version was only half as fast as the plain version.

Several items of information are stored for each P [s][v] to support the above-described calculations:

P [s][v].goes to: move from v for step s + 1, i.e. the v ′ such that P [s][v].token = P [s + 1][v ′].token;

P [s][v].comes from: move to v for step s, i.e. the v ′ such that P [s][v].token = P [s− 1][v ′].token;

P [s][v].predict: predicted arrival location for P [s][v].token, i.e. the v ′ such that P [s][v].token =

P [smax][v
′].token;

P [s][v].options: number of feasible step-(s + 1) moves from v.

Algorithm 6.9 expresses the above ideas. It uses an auxiliary stack, rather than recursion, to support

backtracking. The frontier is maintained as a doubly linked list, ordered by P [s][v].options. Although

the algorithm is formally organized just to determine whether a permutation is separable, as a side-effect it

leaves information in the P array showing the factorization it discovered.
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Algorithm 6.9 Factor

Output: whether permutation φ is separable into dimension(s) D

For each v ∈ [2d]

P [0][v].token← φ(v)

For each s, 1 ≤ s ≤ smax, P [s][v].token← ε

Set all other fields of P [s][v] to appropriate initial values

GoForward:

If every (s, v) on Frontier satisfies s = smax, Return True

For s < smax, choose most constrained (s, v) on Frontier /*C,F*/

P [s][v].goes to← ε

ContinueForward:

Choose next feasible move (after P [s][v].goes to) satisfying (1), (2), (3)

If there is no such move, GoTo GoBack

Record move in P [s][v].goes to and P [s + 1][v ′].comes from

To predict arrival at w, set P [s+1][v ′].predict and P [smax][w].token /*P*/

Set P [s + 1][v′].options to the number of feasible options satisfying (1), (2)

Push (s + 1, v′) onto Stack

GoTo GoForward

GoBack:

If Stack is empty, Return False

Pop (s + 1, v′) from Stack

Use P [s + 1][v′].predict to retract any prediction

Set (s, v) using P [s + 1][v′].comes from

GoTo ContinueForward

To show the effectiveness of the above-described techniques, versions of the factoring program were

prepared which embodied subsets of the heuristics, and the programs’running times were measured. The

tests were conducted on a Sun Microsystems 400 MHz UltraSPARC-II processor. The results are presented

in Table 1.
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Number of permutations tested per second
1-sep. 3-sep. 3-sep. Fully

Method (fails) (fails) (succeeds) factor

base 8,244.023 0.058 2.694 44.014
+F 8,223.684 0.001 0.144 0.149
+C 8,210.181 0.058 2.701 43.860
+P 7,942.812 1.262 64.185 42.955

+F+P 8,156.607 0.002 0.593 0.142
+C+F 13,495.277 1.645 37.760 37.841
+C+P 7,936.508 1.267 91.603 57.296

+C+F+P 13,531.800 2.150 48.788 36.532

Table 1: Run time consequences of the search-pruning heuristics.

When the program manages to find a factorization, it quits without attempting to enumerate all factor-

izations, and avoids much of the searching and backtracking that is required in a unsuccessful attempt. This

may result in differing dynamics and run times. Thus, in preparing the test data, all permutations were first

tested to determine their separability, and the program’s performance was measured separately for batches

of successful and unsuccessful factorization attempts.

Each table entry shows the number of permutations factored per second. (The number of permutations

used in each test varied from 12 for the slowest versions of the program to 100,000 for the fastest.) The

columns represent different types of problems: unsuccessful tests for 1-separability, unsuccessful tests for

3-separability, successful tests for 3-separability, and successful full factorizations without regard to sepa-

rability. The table omits data for successful tests of 1-separability; those tests ran twice as fast as the fastest

tests presented in the table and had no dependence on the heuristics. Most of the permutations were ran-

domly selected; the full factorization test used just 1-inseparable permutations because they were not quite

as easy as random ones, requiring about 50% more time.

The rows represent different versions of the program, corresponding to allowing the frontier to grow

irregularly rather than by steps (denoted +F), and incorporation of the “prediction” (+P) and “constrained”

(+C) heuristics. In versions lacking the “constrained” heuristic, the choices are made by the reverse of the

heuristic: the choice with the largest number of remaining options is taken. The lines in the algorithm where

these heuristics are implemented are marked with comments /*C,F*/ and /*P*/.

It can be seen from this performance data that the run time of the program depends strongly on the

heuristics. Except in the first column, the best versions of the program were about three orders of magnitude

faster than the worst. No version of the program was uniformly best; those in the bottom rows of the table
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did generally better across all tests, and the program with all heuristics did best on the hardest problems.

This data predicts that 31,000,000 1-inseparable permutations which happen to be 3-separable in all

four ways can have their 3-separabilities verified in approximately (4× 31, 000, 000)÷ (48× 3600) ≈ 720

hours. The computation can be performed in parallel, so this computation can be carried out, for example,

in one day using thirty computers.

The timing tests also rule out verifying Conjecture 3.8 by enumerating all permutations and attempting

to factor. At a rate of 25,000 factorizations per second, approximately the rate at which 1-separability can

be discovered, it would take 2 × 1013 ÷ (9 × 107) hours to test all 16! permutations, or about 25 years of

computer time.

6.4 Code Checking

Our algorithms are quite complicated, and therefore we ensure correctness by having two completely inde-

pendent permutation enumeration programs, one by each author. First, we verify that the same total number

of canonical permutations is obtained by the two programs. To further verify that we are actually producing

the same set of permutations, they are enumerated in lexicographic order, and each of them is expressed in

a mutually agreed binary format, which is then hashed using the MD5 checksum algorithm. Our algorithms

agree on the checksum obtained for the entire set of permutations.

We have one version of the factoring algorithm, which is well tested. We have also run the program

in a mode where every factorization is checked by composing the allowable permutations to verify that

we obtain the factored permutation. The latter check is extremely simple to implement and debug, and it

verifies the factoring algorithm.

6.5 Problem Scaling

In this subsection we argue that this computational approach does not scale to the case d = 5. The following

parameters of the problem increase very rapidly with the size of the hypercube dimension. Overall these

rapidly increasing parameters discourage an exhaustive computational verification of Conjecture 3.8 for

d = 5.
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Parameter

Formula Parameter Values

Dimension

d 3 4 5

Hypercube size

2d 8 16 32

Number of Permutations

|S2d | 8! 16! 32!

Approximate Number of Permutations

≈ 2d! 4× 104 2× 1013 3× 1035

Allowable Permutations (Note 1)

|∆d| 272 589,185 16,332,454,526,976 [34]

Number of Non-regular Profiles

|Π(d− 1)| 4 2120 167,983,476

Number of Canonical 1-inseparable permutations

3 31,275,077 ≈ 1030 (Note 2)

Note 1. This number is discussed in Subsection 6.6.

Note 2. This estimate is discussed in Section 7 on page 39.

6.6 On the number of allowable permutations

We determined the sequence of the numbers of allowable permutations (for increasing dimension starting

from 0) to be:

1, 2, 9, 272, · · ·

We then searched the Sloane’s Online Encyclopaedia of Integer Sequences [34] to determine higher

numbers in the sequence. This sequence is characterized as the number of perfect matchings in a hypercube

[5], and the next two (and only other known) terms in the sequence are 589,185 and 16,332,454,526,976

[34, 20, 26]. We also verified the value 589,185 computationally, and it turns out that the relationship
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between these two quantities is provable:

Theorem 6.10 The number of perfect matchings in Qd+1 is the same as the number of allowable permuta-

tions on Qd.

PROOF In this proof, we use greek letters α, β, and γ to represent d-bit strings, and the roman letters a,

b, c and d to represent bit variables. LetMd+1 be the set of perfect matchings on Qd+1. Recall that ∆d is

the set of allowable permutations on Qd. We will refer to the parity of a binary string as even or odd (rather

than its numeric value). Given a matching M we will write ~M(aα, bβ) when {aα, bβ} ∈ M and aα is

even.

Define the function Φ :Md+1 → ∆d by

Φ(M) = σ, where σ(α) = β if ~M(aα, bβ)

Note that in the definition we always map the rightmost d bits of the even node in any edge of the

matching to the rightmost d bits of the odd node. From this it is clear that the number of vertices on which

σ is defined is the same as the number of edges in M. Hence to prove that σ is bijective, it suffices to prove

that σ is onto.

For every perfect matching M , we claim that Φ(M) = σ ∈ ∆d. Let β be given. Choose b such that bβ

is odd. Suppose ~M(aα, bβ). Since aα is even, σ(α) = β, so σ is onto, and therefore bijective.

Finally suppose that σ is not allowable. There exist α and β such that |α, β| ≥ 2 and σ(α) = β. But this

requires that ~M(aα, bβ) for some a and b, where |aα, bβ| ≤ 1, which is not possible. Hence σ is allowable,

thus proving that σ ∈ ∆d.

Next we claim that Φ is bijective. Given σ ∈ ∆d, we will construct a mapping M ∈ Md+1 such that

Φ(M) = σ in the obvious way as follows: if σ(α) = α then {0α, 1α} ∈ M . On the other hand consider

the case that σ(α) = β 6= α and σ(γ) = α, where γ 6= α. If α is even, then we ensure ~M (0α, 0β). We

also note that 1α is odd so γ is even and we can ensure ~M(1γ, 1α). Similarly if α is odd, we can ensure

~M(1α, 1β). Again we note that 0α is odd so γ is even and we can ensure ~M(0γ, 0α). In order to show

that M is a perfect matching we need to show for every α, 0α and 1α are both in the matching, and this is

clearly the case from the construction, so it remains to show that M is a matching.

Suppose M as constructed is not a matching. Then there are three distinct nodes aα, bβ and cγ such

that {aα, bβ} ∈ M and {aα, cγ} ∈ M . If aα is even, then σ(α) = β and σ(α) = γ imply that β = γ
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since σ is one-to-one. Since bβ and cγ are adjacent to aα, they must be the same parity, so b = c, which is

a contradiction. On the other hand if aα is odd, then σ(β) = α and σ(γ) = α, which imply that β = γ and

bβ and cγ are different parity, so both can not be adjacent to aα. This proves that M is a matching and that

Φ is onto.

It remains to show that Φ is one-to-one. Suppose Φ(M1) = Φ(M2) = σ. Also suppose that {aα, bβ} ∈

M1 and {aα, cγ} ∈ M2, where bβ 6= cγ. If aα is odd then σ(β) = α and σ(γ) = α, so either σ is not

one-to-one (a contradiction), or else γ = β. In the latter case b 6= c, to ensure distinctness, but that implies

that bβ and cγ are not the same parity, which is also a contradiction.

On the other hand if aα is even then σ(α) = β and σ(α) = γ, which implies that either β 6= γ and

σ is not a function (a contradiction) or β = γ and again parity constraints cannot be satisfied. Hence Φ is

one-to-one and this completes the proof that Φ :Md+1 → ∆d is bijective. 2

This establishes our claim on the number of allowable permutations for d = 5, and shows a little more

how the problem size increases with dimension. We also note that a closed form expression is not known for

the number of perfect matchings in a hypercube [31, 26], hence for the number of allowable permutations

in a hypercube.

36



7 Other Experimental Results

From Result 6.2, one might wonder whether there are any permutations that are not 3-separable in at least

one dimension. (The answer seems to be that there are not.) To shed light on this, and to explore possible

interconnections among the various kinds of separability, we tabulated statistics in several ways.

We tested three distinct sets of permutations: (a) randomly generated permutations; (b) the canonical

1-inseparable permutations; and (c) the inverses of the canonical 1-inseparable permutations. Random

permutations were generated using the “ranper” function [23], using random numbers from the Solaris 5.7

operating system’s “random” function.

For each of these sets, we tested for 1-separability, 2-separability, and 3-separability, and tallied the

occurrences of each combination. These results are presented in the following table. All table entries

connote 3-separability because every permutation tested was 3-separable in some way. The results fail to

disclose any compelling pattern. It appears that inseparability is rare in general.

1-sep 2-sep 1-sep
Permutations 3-sep & & 2-sep

(number tested) only 3-sep 3-sep 3-sep
(a) random

(2,100,000) .0004% .006% .057% 99.94%
(b) 1-inseparable

(31,275,077) .79% 99.20%
(c) inverses of 1-insep.

(31,275,077) .11% .15% 5.21% 94.51%

Table 2: Separability frequencies for various sets of permutations.

In another experiment on 100 million randomly generated permutations, we addressed the question

of whether 1-inseparability by a given dimension makes 1-inseparability or 3-inseparability of either the

permutation or its inverse using either the given dimension or some other dimension more or less likely.

We found little correlation. The strongest effect was that a permutation was twice as likely (30%) to be 1-

inseparable by dimension d if its inverse was 1-inseparable by dimension d than it was in general (16.5%).

We also explored experimentally some possible underpinnings of Result 6.2. These explorations pro-

vided counterexamples to two conjectures, each of which would imply Result 6.2. The first conjecture was

that if a permutation was 1-inseparable by dimension d, then it would be 3-separable into dimension d.

We generated 446 counterexamples. A weaker conjecture was that the number of dimensions by which a

permutation was 1-inseparable plus the number of dimensions into which it was 3-inseparable would never
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exceed 4. For this, we found exactly one counterexample: (1 3 12 8 7 5 10 15 14)(2 13)(4 11)(6 9). It

is 1-separable only by dimension 1, and it is 3-separable into just dimensions 1 and 2. Furthermore, it is

not 2-separable at all, and its inverse is neither 1-separable nor 2-separable. It is the most difficult-to-factor

permutation we know. We know of no permutations that are not 3-separable.

We estimated the frequency of 1-inseparability in 5 dimensions in two ways. First, we generated per-

mutations at random and applied our factorization routine. We found that around 0.15% of 500 billion

randomly generated permutations were 1-inseparable. This is double the rate in 4 dimensions. Second, we

enumerated all 167,983,476 irregular profiles and stored them in a file. (Through data compression tech-

niques, we were able to store them using an average of 3 bits per profile.) Then we generated 5-tuples of

inseparable projections at random and tested whether they defined permutations. Using several hundred

hours of computer time, we generated 3 billion such tuples and found 8 that defined permutations. This

confirms the first estimate, since a rough calculation predicts 9: there should be .0015 · 32! inseparable

permutations, there are 167,983,4765 tuples, and

.0015 · 32!
1679834765

· 3× 109 ≈ 8.8

Each canonical permutation corresponds on average to almost 5! distinct equivalent ones. (The corre-

spondence would be exact if there were no permutations invariant under some hypercube automorphism;

there are relatively few such instances.) This means there should be close to .0015 · 32! ÷ 5! ≈ 3.3 × 1030

canonical 1-inseparable permutations in 5 dimensions.

The theoretical results of Section 4 provide a reasonable level of understanding of 1-separability. As

rare as 1-inseparability is, 2-inseparability is rarer and 3-inseparability rarer still. It appears likely that all

permutations in four dimensions are 3-separable. The experimental results in five dimensions suggest a

higher rate of 1-inseparability, but since we expect 4-inseparability to be rarer than 3-inseparability, the

overall trend is unclear. We speculate that (d− 1)-separability in d dimensions may be a productive subject

for future research.
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8 Conclusions

In this paper we have considered the offline permutation-routing problem on a hypercube, under the queue-

less MIMD packet-switched model, which uses one message buffer per node and assumes a communica-

tion capacity of one message per directed edge during each communication step. We have looked at the

conjecture that d communication steps are sufficient to route an arbitrary permutation on a d-dimensional

hypercube.

We have developed a theory of separability, and used it to prove the conjecture for the 3-dimensional

hypercube. We have also used it to conduct a computer verification of the 4-dimensional case. The latter

result improves the upper bound for the number of communication steps required to route an arbitrary

permutation on arbitrarily large hypercubes to 2d− 4.

In the process, we discovered a bijection between the possible communication steps in a d-dimensional

hypercube and the number of perfect matchings in a (d + 1)-dimensional hypercube. It is interesting to

note that there is no closed-form expression (or asymptotic characterization) for the latter combinatorial

quantity. We have also presented experimental observations on the four- and five-dimensional cases. We

propose 1-separability and (d− 1)-separability as ways to approach the general result.
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