
Container-Managed Exception Handling for
the Predictable Assembly of Component-

Based Systems

Kevin Simons, Judith Stafford

Department of Computer Science
Tufts University

Medford, MA USA 02155
{ksimons,jas}@cs.tufts.edu

Abstract. Component containers provide a deployment environment for
components in a component-based system. Containers supply a variety of
services to the components that are deployed in them, such as persistence,
enforcement of security policies and transaction management. Recently,
containers have shown a large amount of potential for aiding in the predictable
assembly of component-based systems. This paper describes an augmentation to
the component container, called the Container-Managed Exception Handling
(CMEH) Framework, which provides an effective means for deploying
exception handling mini-components into a component-based system. This
framework promotes a more effective handling of exceptional events, as well as
a better separation of concerns, yielding a more predictable component
assembly.

1 Introduction

The goal of this ongoing research is to develop a container-managed exception
handling (CMEH) framework that facilitates the creation and deployment of modular
exception handling mini-components in order to promote proper separation of
concerns in COTS-based systems. Commercial component developers are generally
not aware of the components with which their software will interact when used in an
assembly, and are therefore written to be as reusable as possible. The JavaTM 2
Enterprise Edition (J2EETM) framework allows for binary implementations of
Enterprise JavaBeanTM (EJB) components to be directly “wired” together in a
deployment without any sort of “glue code”. This can be accomplished via EJB
metadata and Java reflection. Components do not need to be aware of each other,
merely the interfaces that they provide and require. Directly connecting commercial-
off-the-shelf (COTS) components provides a great many well known benefits, but
also yields several problems with predicting the behavior of the system once it is
assembled [4]. One such predictable assembly problem arises due to current
exception-handling practices in component-based systems. Commercial components

are designed with no knowledge of the components with which they interact, and
therefore have no knowledge of the exceptional behavior of such components
resulting in three possible exception-related situations: (1) Components making calls
to other components will be catching generic exceptions with very little useful
exception handling. (2) The result of a component operation may be considered
exceptional by the system developer in the context of the current application, but the
exceptional result is allowed by the calling component. (3) There may be exception
results that could be easily handled by the developer without requiring exception
propagation back to the calling component, which would most likely handle the
exception poorly in the first place.

Component containers are a receptacle into which components are deployed,
providing a set of services that support component execution [7]. With these services
implemented in the container, the developer is allowed to concentrate on writing
components in their domain of expertise. Containers, therefore, provide an excellent
model for the separation of concerns. Furthermore, all calls made to components
must be relayed through the containers, so containers provide an excellent means of
crosscutting. Containers are currently showing a great deal of promise in aiding in the
problem of predictable assembly [7].

The basis of our research is an augmentation the J2EE container known as the
Container-Managed Exception Handling (CMEH) framework. The ability to handle
exceptions outside of the components alleviates the problem of improper exception
handling in commercial components. Giving the system developer the ability to deal
with the exceptions in an application-specific context leads to more useful handling of
exceptions and more predictable and robust system performance. Furthermore,
abstracting the exception handling into the container helps alleviate the tangle that
generally occurs in exception handling code within commercial components [3]. For
this research, the EJB container used was the container provided as a part of the JBoss
open-source application server1. Conceptually, this research focuses primarily on
application-level exceptions. Memory usage, for example, is a system-level exception
that can be handled within the framework. If the system developer needs to impose
memory constraints not inherent in the Java virtual machine, these types of exception
may be raised and handled by the CMEH framework.

2 The CMEH Framework

The CMEH framework allows system developers to quickly and easily deploy and
manage exception handling components on a Java application server, allowing for
more appropriate handling of component exceptions. The CMEH framework provides
an event-driven model for handling exceptional behavior. By intercepting component
method calls at a variety of points during method invocation and dispatching
exception events at these points, the CMEH framework allows event handling code to
correct the exceptional behavior of the system. There are three main events dispatched
during a method invocation: method-called, method-returned and method-

1 www.jboss.org

exception. When a component method is called, the invocation is intercepted before
it reaches the component and the method-called event is fired. Handlers listening for
this event have the opportunity to perform any necessary processing, before the
invocation is released and allowed to reach the component method. If the method
returns properly, the container stops the propagation of the return value and fires the
method-returned event, again allowing the appropriate handlers to perform their
processing. If instead the component method throws an exception, the propagation of
the exception is paused and the method-exception event is fired. There are two
additional events, test-component-state and recover-component-state that are
used to handle cases where exceptional behavior results in a component being left in
an invalid state.

Handling of component method-exception event

When an application-level exception is thrown by a method of a component, system
developers have an opportunity to handle the exception after it is caught by the
CMEH framework. This can be done in a variety of ways. In the simplest case, the
exception-handling code can simply re-throw the exception, and it will be propagated
back to the calling component. This is the generic behavior of the EJB container
before the introduction of this new exception mechanism.

One useful option when handling the exceptions thrown by a component is to
convert the exception into a different subclass of the Java Exception class. This
method allows for the exception to be translated into an exception that the calling
component knows how to handle properly. Of course, knowing what exceptions a
component can handle is not immediately obvious, and often must be discovered
through use [4].

Another possible use of this mechanism is to stop the propagation of the exception
altogether. Rather than propagating an exception back up the stack to the caller, the
system developer may instead wish to return a value of the correct type to the caller.
This will effectively allow the developer to return a default value to the calling
component in the event of erroneous behavior, or to perform simple modifications to
the return values in order to correct any possible errors that will occur when the return
value reaches the calling component.

Handling of component method-called and method-returned events

The container-managed exception handling mechanism allows a system developer to
check the arguments passed to a component method before the method has been
executed. This provides the developer with several useful options. First, the developer
can test the value of the arguments to ensure they are acceptable in the application and
to the component being called. If they are, the method call continues as normal with
the arguments being passed along to the called method. If the arguments are in any
way out of range, the container exception handling code can raise an exception that
will be propagated back to the calling component, effectively ending the method call.
Again, the developer will be able to throw an exception that can be usefully handled

be the calling component. Furthermore, the system developer can modify the values
of the arguments, then allow the method call to proceed as normal, thus eliminating
any erroneous behavior in the component receiving the method call.

Similar to the monitoring of arguments, this container model also provides the
developer with the means to verify all return values returned by a component method.
Once again, the return value can also be modified by the container exception code in
order to ensure correct functioning of the system, or an exception can be propagated
back to the caller.

Handling of test-component-state and recover-component-state events

During the execution of a component method, a component may be left in a state that
is invalid in the context of the application. Often the application is notified of this by
way of an exception. After a component method throws an exception, the exception
either 1) propagates back to the caller of the method or 2) is translated or caught by a
handler of the method-exception event. In the CMEH framework, after an exception is
thrown by a component method, the framework fires a test-component-state event
after the method invocation has concluded and before the control flow of the
application progresses. By handling this event, the developer can write code to test the
state of the component in question. If the developers event handling method
determines that the component’s state is invalid, a recover-component-state event is
fired. By handling this event, the system developer has an opportunity to correct the
state of the component before the application flow resumes. Exactly how to handle
this event is well beyond the scope of this research, but the CMEH framework
provides a means of handling invalid component states in a modular fashion.

3 Implementation Details

In the CMEH framework, handlers for the various events are created by implementing
a set of simple interfaces. The following interface is representative of the entire set of
interfaces that allows the system developer to handle each of the five exception event
types:

public interface MethodExceptionEventHandler {

public Object handleMethodExceptionEvent(
MethodExceptionEvent event,
Invocation methodInvocation)
throws Exception;

}

In order to deploy their exception event handling code, the system developer must

modify the XML deployment descriptor of the EJB whose methods they want to
monitor. The system developer must add a new tag into the <assembly-descriptor>
portion of the deployment descriptor, as follows:

<assembly-descriptor>

<exception-handler>
 <method>
 <ejb-name>TestEJB</ejb-name>
 <method-name>create</method-name>
 </method>

<method-called-handler class=”org.ks.eh.mcHandler1”/>
<method-exception-handler class=”org.ks.eh.meHandler1”/>
<test-component-state-handler class=”org.ks.eh.tcsHandler1”/>

</exception-hander>
…

The <exception-handler> tag is formatted much in the same way as <method-

permission> and <container-transaction> tags. The <method> tag specifies which
method is to be handled by the container-managed exception handler. Each of *-
handler tags specify the fully-qualified Java class to use in handling that event. It is
perfectly valid to specify the same event handler class for several different component
methods, and it is also valid to specify several handlers to handle the same event for
the same component method, allowing exception handling code to be further
modularized.

The next sections detail the JBoss application server implementation of the CMEH
framework. Also covered is the reliance of the framework on several J2EE services,
as well as services specific to JBoss.

3.1 The Interceptor Stack

In the JBoss application server, services (such as transaction and security) are
wrapped around a client’s call via the interceptor stack. The interceptor stack is a
chain of stateless components that implement the Interceptor interface. This
interface has a single method, invoke, that is passed a wrapped method call. The task
of a single interceptor in the stack is to receive the invocation from the previous
interceptor, perform any necessary processing, and then either pass the invocation on
to the next interceptor, or throw an exception, effectively canceling the client’s
method call.

The interceptor stack is contained within the component container. The final
interceptor in the chain is the container interceptor, which makes the actual call to the
EJB method itself. The return value of the component method is then passed back up
the interceptor stack, where once again the interceptors have the opportunity to
perform operation on the invocation, pass the invocation further up the stack, or throw
an exception back to the client.

The CMEH framework adds a new interceptor to the chain that is responsible for
intercepting method invocations at the appropriate times and dispatching the
exception events.

3.2 The JMS-based exception event model

The exception event model in the container-managed exception handling framework
is based on the Java Messaging Service (JMS). This service, which is provided as part

of the JBoss J2EE application server, provides a means of dispatching and listening
for asynchronous messages. In JMS, a topic is a form of channel that listeners wait for
messages on. When the system developer deploys their exception event handlers, the
framework automatically registers them to listen on the appropriate JMS topic. When
an event is fired by the framework, a new JMS message is created and then dispatched
to the correct topic. Event handlers, deployed to handle the type of event that is
carried by the JMS message, will receive the event and a new thread is automatically
created by JMS for handling the event in. This allows for the framework to support
asynchronous handling of exceptional behavior, which will prove helpful if several
handlers are deployed on the same event for the same component method and some of
the handling of exceptional behavior can be done concurrently. If several synchronous
exception event handlers are deployed to handle the same event on the same
component methods, the handlers receive the exception event in the order they were
specified in the deployment descriptor. Specifying whether or not a handler is to be
used asynchronously is also specified in the XML deployment descriptor.

3.3 The ExceptionHandlerService MBean

The exception handler service, responsible for the deployment of event handlers and
dispatching JMS messages, is implemented as a Managed Bean or MBean in the
CMEH framework. Other MBeans in JBoss include services for transactions and
security. When an EJB wishing to use CMEH (as specified in the deployment
descriptor) is deployed into the component container, the ExceptionHandlerService
MBean deploys the event and registers them with the appropriate JMS topic so that
they can have exception events dispatched to them. If the system developer deploys a
new version of the exception handlers when the system is up and running, the
ExceptionHandlerService’s class loader dynamically replaces the exception event
listener object so that the new version will receive the events. When the CMEH
interceptor in the interceptor stack receives the invocation, it uses the Java Naming
and Directory Interface (JNDI) to look up the ExceptionHandlerService and
instructs the service to dispatch a JMS message containing the appropriate exception
event.

Implementing the service as an MBean allows applications running in other JVMs
to look up the service via JNDI and register their exception event handlers with the
services. This feature allows for exception handling code on entirely different
machines to be registered with service in order to handle exceptional behavior in a
distributed and parallel fashion.

3.4 Exception event automation

Some exception event handling patterns are useful enough that they have been
automated in the CMEH framework. For instance, translation of exceptions can be
accomplished with the following addition to the deployment descriptor:

<method-exception
class=”org.tufts.exceptionservices.ExceptionTranslator”>

<translate-exception from=”java.io.IOException” to=”MyException”/>
</method-exception>

By adding this to the XML deployment descriptor, the system developer does not

have to write any code, and the appropriate exception event handlers are created and
deployed automatically. Other automated patterns include automatically testing the
integer and string attributes of EJBs for the test-component-state event and
automatic component reloading for the recover-component-state event.

4 Performance Overhead

Adding these exception handling mini-components to a software systems will
introduce some performance overhead. There will be exception checking code
running on method calls that rarely produce any erroneous or exceptional behavior.
Certain efficiency steps must be taken by the developers of the exception handlers in
order to minimize the costs of the exception handling. Since this framework has not
yet been deployed with a large-scale software system, empirical results have not been
collected, however the added benefits of proper separation of concerns, ease of
development and predictability should far outweigh any costs.

On the other hand, there is a certain amount of overhead added to the system by the
framework itself, even if the exception handlers themselves are very simple.
Empirical data was collected for a very simple software system with only two
components. Various tests were run to determine the amount overhead added to the
system with varying number of dummy exception handling components. All tests
were run on a Linux machine, with the JBoss server running on the Sun Java SDK
1.4.1.

Table 1. Latency Statistics for the CMEH Framework

 0 Syn, 0 Asyn 1 Syn, 0 Asyn 0 Syn, 1 Asyn 1 Syn, 1 Asyn
Method call 31ms 74ms 68ms 89ms
Method return 84ms 111ms 104ms 127ms
Exception 86ms 111ms 108ms 124ms

Currently, both the synchronous and asynchronous exception handlers are using

JMS to provide the exception events. As a result, synchronous handlers incur a larger
performance overhead. However, in theory, the synchronous handlers could be based
on a much simpler mechanism (such as Java Events), cutting the performance costs.
The future work of this research will focus a great deal on minimizing the overhead of
the framework itself.

5 Conclusions and Future Work

Since commercial component developers are generally unaware of the exceptional
behavior of the components their code will interact with, current exception handling
techniques are insufficient for dealing with component-based systems. They fail to
handle most exceptions in a useful way and they don’t allow for handling exception
behavior in the context of the application. The CMEH framework provides a means
for system developers to handle exceptional behavior in their systems in a simple,
modular, well-organized fashion. It provides automation for deploying and
maintaining event handlers that are used to handle exceptions in an application-
specific way. This system was primarily developed for dealing with COTS
components, however modularity, separation of concerns and reduction of code tangle
make it useful when developing proprietary components as well.

Currently, the implementation strategy is focusing on both adding new features as
well as minimizing the overhead imposed by the system. The synchronous event
handlers will be implemented using simple Java events and will be removed from the
JMS portion of the framework. Also, in order to make the asynchronous event
handling more useful, features are being added to automatically deploy event handlers
on to remote application servers in order to handle exceptional behavior in a truly
parallel fashion. This should greatly increase the speed when performing processor-
intensive exception recoveries, providing the machines have low network latency.
New features for automatic detection and recovery from invalid component states will
likely not be added to the framework, as it is outside the scope of this research.

References

1. Agha, G. and W. Kim. “Actors: A Unifying Model for Parallel and Distributed Computing.”
Journal of Systems Architecture, 45(15):1263-1277, 1999.

2. Bass, L. et al. “Volume I: Market Assessment of Component-based Software Engineering.”
Technical Report CMU/SEI-2001-TN-007, Software Engineering Institute, May 2000.

3. Lopes, C. et al. “Using AspectJTM for Programming the Detection and Handling of
Exceptions.” Proceedings of the ECOOP Exception Handling in Object Oriented Systems
Workshop, June 2000.

4. Stafford, J. and K. Wallnau. “Predicting Feature Interactions in Component-Based Systems.”
Proceedings of the ECOOP Workshop on Feature Interaction of Composed Systems, June
2001.

5. Tarr, P., and H. Ossher. “Hyper/JTM: Multi-Dimensional Separation of Concerns for
JavaTM.” Proceedings of the 22nd International Conference on Software Engineering, June
2000.

6. Tarr, P et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns.”
Proceedings of the 21st International Conference on Software Engineering, May 1999.

7. Vecellio, G., W. Thomas and R. Sanders. “Containers for Predictable Behavior of
Component-based Software.” Proceedings of the Fifth ICSE Workshop on Component-
Based Software Engineering, May 2002.

