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Abstract. A large number of variants of the Perceptron algorithm have
been proposed and partially evaluated in recent work. One type of al-
gorithm aims for noise tolerance by replacing the last hypothesis of the
perceptron with another hypothesis or a vote among hypotheses. An-
other type simply adds a margin term to the perceptron in order to
increase robustness and accuracy, as done in support vector machines. A
third type borrows further from support vector machines and constrains
the update function of the perceptron in ways that mimic soft-margin
techniques. The performance of these algorithms, and the potential for
combining different techniques, has not been studied in depth. This pa-
per provides such an experimental study and reveals some interesting
facts about the algorithms. In particular the perceptron with margin is
an effective method for tolerating noise and stabilizing the algorithm.
This is surprising since the margin in itself is not designed or used for
noise tolerance, and there are no known guarantees for such performance.
In most cases, similar performance is obtained by the voted-perceptron
which has the advantage that it does not require parameter selection.
Techniques using soft margin ideas are run-time intensive and do not
give substantial performance benefits. The results also highlight the dif-
ficulty with automatic parameter selection which is required with some
of these variants.

1 Introduction

The success of support vector machines (SVM) [1, 24] has led to increasing inter-
est in the perceptron algorithm. Like SVM, the perceptron algorithm has a linear
threshold hypothesis, can be used with kernels, but unlike SVM, it is simple and
efficient. Interestingly, despite a large number of theoretical developments, there
is no result that explains why SVM performs better than perceptron, and sim-
ilar convergence bounds exist for both (see e.g. [13]). In practice, SVM is often
observed to perform slightly better with significant cost in run time. Several
on-line algorithms have been proposed which iteratively construct large mar-
gin hypotheses in the feature space, and therefore combine the advantages of
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large margin hypotheses with the efficiency of the perceptron algorithm (see e.g.
[9, 12, 18]).

The focus in this paper is on variants that are designed to handle noisy data
or otherwise compensate for the fact that, since the perceptron is a sequential
algorithm, its final hypothesis may not be the best one to use. In particular, the
longest survivor variant [15, 10] and the voted perceptron variant [8] do not use
the last hypothesis from training the perceptron but instead pick a “best” hy-
pothesis or take a vote among hypotheses produced during training. This change
in hypothesis can be used to guarantee that the hypothesis is good in a statistical
sense and provide guarantees on the performance of the algorithm in the PAC
learning model [25]. A second family of variants utilize the idea of a margin as
in SVM. The perceptron algorithm with margin [17, 19] forces the hypothesis to
have an explicitly given margin on the training data if that is possible. Adding to
this idea, one can mimic soft-margin versions of support vector machines [19, 16]
within the perceptron algorithm. Technically, one constrains the update function
of the perceptron algorithm so as to perform a trade-off similar to the resulting
optimization in SVM. Most of these variants have already been introduced in
the literature and studied in isolation from other variants. However, no study
has explored the possibility of combining these variants or comparing their per-
formance. We believe that this is important since these algorithms have already
been used and demonstrated in applications with large datasets (e.g. [4]) and
a better understanding of what works and when can have a direct implication
for future use. This paper provides such an experimental study and indeed the
results reveal interesting facts.

In particular the experiments show that the perceptron with margin is the
most successful variant. This is surprising since among the algorithms experi-
mented with it is only one not designed for noise tolerance. The voted perceptron
comes second, and it has the advantage that no parameter selection is required
for it. Combining the two has the potential for further improvements but this
occasionally degrades performance. The results also suggest that the soft-margin
variants do not provide additional improvements. Both the voted perceptron and
the margin variant reduce the deviation in accuracy in addition to improving the
accuracy. This is an important property that adds to the stability and robustness
of the algorithms.

The experiments also highlight the problems involved with parameter selec-
tion. Both the margin variant and the soft-margin extensions require selection of
parameters and one must design an automatic method for doing that. Any such
method would be time intensive since many versions of the algorithms need to be
run and compared. For small datasets this can be done, but then the variance in
performance may be too high for reliable parameter selection. For large datasets
the computational overhead may be a limiting factor even if using a hold-out
set for parameter selection. Identifying a good trade-off and methodology is an
important experimental challenge.

The rest of the paper is organized as follows. The next section reviews all
the algorithms and our basic settings for them. Section 3 describes the experi-



mental evaluation. We have performed two kinds of experiments. In “parameter
search” we report the best results obtained with any parameter setting. This
helps set the scope and evaluate the potential of different algorithms to improve
performance and provides insight about their performance, but of course it does
not give statistically reliable results. In “parameter optimization” the algorithms
automatically select the parameters and the performance can be interpreted sta-
tistically. Finally, in Section 4 we discuss the results and future work.

2 Algorithms

2.1 The Perceptron Algorithm

Basics — The perceptron algorithm [22] takes as input a set of training ex-
amples in Rn labeled {−1, 1}. Using a weight vector, w, initialized to 0, and
a threshold, θ, it predicts the label of each training example x to be y =
sign(〈w,x〉 + θ). The algorithm adjusts w and θ on each misclassified exam-
ple by an additive factor.

More formally, we can abstract the domain X by using a mapping Φ to
represent the examples. Given a set of m training examples and their labels,
Z = {(x1, y1), . . . , (xm, ym)} ∈ (X × {−1, 1}), a number of training iterations
T , and a function Φ : X → F ⊆ Rn, for each training iteration, the perceptron
classifies each xi ∈ X according to sign(〈w, Φ(xi)〉 − θ) and updates w and θ if
sign(〈w, Φ(xi)〉 − θ) 6= yi. At the end of the T training iterations, the algorithm
returns (w, θ). The final weight vector and corresponding threshold returned by
the algorithm are also known as the hypothesis. The algorithm is summarized in
Figure 1.

Parameters — The parameter θ is known as the threshold or bias. In the
classical version of the perceptron, θ is initialized to 0 and updated by an additive
factor of each misclassified example. One way to conceptualize θ is to add a (n+1)
dimension to each training example with a fixed value of

√
C as as opposed to

maintaining a separate quantity and updating it. The parameter C controls the
update rate of θ relative to other weights.

The parameter η is known as the “learning rate,” as it controls the extent
to which w can change on a single update. If η is too large, the hypothesis
may seem unstable during the learning process since each update will make
substantial changes. If η is too small, the required running time to find the
separating hyperplane may be longer than the number of training iterations
chosen. Note, however, that initializing θ to 0 means that η has no effect since
sign(〈w, Φ(xi)〉−θ) = yi iff sign(η(〈w, Φ(xi)〉−θ)) = yi. A value of θ = 0 is often
used in practice, but θ does affect results obtained and this can be significant in
early iterations of the algorithm.

The Dual Form — Note that after k examples have been classified, w =
∑m

i=1 ηαiyiΦ(xi) where αi is the number of mistakes that have been made on



Input set of examples and their labels Z = ((x1, y1), . . . , (xm, ym)) ∈ (X ×
{−1, 1}), Φ : X → F ⊆ Rn, η

– Initialize w← 0 and θ ← θInit
– for every training epoch:

– for every xj ∈ X:
• ŷ ← sign(〈w, Φ(xj)〉 − θ)
• if (ŷ 6= yj)
∗ w← w + ηyj(Φ(xj))
∗ θ ← θ + ηCyi

Fig. 1. The basic perceptron algorithm

example i. Subsequently, a new example xj is classified according to sign(SUM−
θ) where

SUM =
∑

i

ηαiyi〈Φ(xi), Φ(xj)〉. (1)

The expression of w as the sum of the examples with coefficients is known as
the “dual form” of the perceptron [2]. When using the dual form, the update
procedure consists of simply incrementing the αi for the xi on which the mistake
was made. The algorithm is summarized in Figure 2.

If the perceptron makes mistakes on k different examples, classifying a new
example in the primal form takes O(n) multiplications and additions, however
classifying the new example in the dual form takes O(nk) multiplications and
additions. As k = O(n), this is a significant performance difference. As we discuss
below the dual version can be faster when using kernels to work implicitly in
large feature spaces.

Margin, Separability, and Mistake Bounds When the data are linearly sep-
arable via some hyperplane (w, θ), the margin is defined as γ = min1≤i≤m(yi(〈w, xi〉−
θ)). When (w, θ) is normalized, γ is the minimum Euclidean distance of any point
in the dataset to (w, θ). If the data are linearly separable, and θ is initialized to
0, the perceptron algorithm is guaranteed to converge in ≤ (R

γ
)2 iterations [21],

where R = max1≤i≤m ‖xi‖.
In the case of non-separable data, the extent to which the data is non-

separable can be quantified. The quantity ξi = max(0, γ−yi(〈w,w〉+θ)), known
as a slack variable, is a measure of the degree to which xi fails to have a margin
γ via w [2]. Observe that when ξi = 0, it means that the example xi has margin
at least γ via the hyperplane defined by (w, θ). The perceptron is guaranteed to

make no more than ( 2(R+D)
γ

)2 mistakes on T examples, where D =
√

∑T
i=1 ξ2

i

for any w, γ > 0 [8, 23]1

1 [8] has a proof of this bound for one training iteration only. [23] has a proof for mul-
tiple iterations on a different perceptron variant, however the proof can be adapted
to show the same bound for the classical perceptron.



Input as in primal form.

– Initialize α← 0m,k ← 0,w0 ← 0 and θ ← θInit
– for every training epoch:

– for every xj ∈ X:
• SUM ←

∑

i|αi 6=0
ηαiyi(〈Φ(xi), Φ(xj)〉)

• ŷ ← sign(SUM − θ)
• if (ŷ 6= yj)
∗ αj ← αj + 1
∗ θ ← θ + ηCyj

Fig. 2. The perceptron in dual form

2.2 The λ-trick

The λ-trick [16, 19] attempts to minimize the effect of noisy examples dur-
ing training similar to the L2 soft margin technique used with support vector
machines [2]. We classify example xj according to sign(SUM − θ) where

SUM =
∑

i|αi 6=0

η(αi + δijλ)yi〈Φ(xi), Φ(xj)〉 (2)

and where

δij =

{

1 if i = j
0 otherwise

.

Thus during training, if a mistake has been made on xj then in future iterations
we increase αj artificially by λ when classifying xj but not when classifying
other examples. A high enough value of λ can make the term (αj + λ)yj〈xj , xj〉
dominate the sum in Equation (2). Consider a noisy example xk such that Equa-
tion (1) repeatedly mis-classifies xk. Using the λ-trick, the algorithm will cor-
rectly classify the noisy example as soon as (αk+λ) is large enough to dominate
the rest of the sum in Equation (2) and hence will not continue to mis-classify
xk, effectively ignoring the noisy example for the remaining training iterations.
The disadvantage of making λ too large is that all examples will be classified
correctly immediately thus eliminating the training procedure altogether.

2.3 The α-bound

This variant is motivated by the L1 soft margin technique used with support
vector machines [2]. The α-bound places a bound α on αi in Equation (1), such
that when the algorithm makes a mistake on some xi, it does not increment αi if
αi ≥ α. The idea behind this procedure is to limit the influence of any particular
noisy example on the hypothesis. Intuitively, a good setting for α is some fraction
of the number of training iterations. To see that, assume that the algorithm has
made α mistakes on a particular noisy example xk. In all subsequent training
iterations, αk remains the same, whereas the algorithm may continue to increase



the α-coefficients of other non-noisy examples, hence increasing their influence
in the final hypothesis. If the ratio of non-noisy examples to noisy examples is
high enough the algorithm should be able to bound the effect of noisy examples
in the early training iterations while leaving sufficient un-bounded non-noisy
examples to form a good hypothesis in subsequent iterations. While this is a
natural variant, we are not aware of any experimental results using it.

2.4 Perceptron Using Margins

The Perceptron Algorithm using Margins (PAM) [17] attempts to establish a
constant sized margin, τ , during the training process. When the data are linearly
separable and τ < γopt, PAM finds a separating hyperplane with a margin that
is guaranteed to be at least γopt

τ√
8(ηR2+τ)

, where γopt is the maximum possible

margin [19]. In contrast, the classical perceptron has no lower bound on the
margin of its final hypothesis. Following work on support vector machines [1, 2]
one may expect that providing the perceptron with higher margin will add to
the stability and accuracy of the hypothesis produced.

To establish the margin, instead of only updating on examples for which the
classifier makes a mistake, PAM updates on xj if

yj(SUM − θ) < τ (3)

where SUM is as in Equation (1). Notice that this includes the case of a mistake
where yj(SUM − θ) < 0 and the case of correct classification with low margin
when 0 ≤ yj(SUM −θ) < τ . In this way, the algorithm “establishes” the margin
parameterized by τ .

A variant of PAM exists in which a different value of τ is chosen for positive
examples than for negative examples [19]. This seems to be important when the
class distribution is skewed. We do not study that variant in this paper.

2.5 The Kernel Perceptron

It is often the case that data in Rn are not separable by any hyperplane in Rn

but the data are separable by some non-linear function in Rn. The perceptron
algorithm as described above is incapable of expressing non-linear functions of
the input. By modifying the perceptron to take advantage of kernel functions,
we can express non-linear separators.

A kernel is a function K such that K(x, y) = 〈Φ(x), Φ(y)〉 for all x, y ∈ X ,
where Φ is a mapping from X to some inner product space F . In other words,
the function K allows us to compute the inner product of x and y in the feature
space F without explicitly representing Φ(x) or Φ(y). As an example, consider the
kernel K(x, y) = (〈x, y〉+T )d, where T is some constant. Algebraic manipulation
shows that this is equivalent to calculating 〈Φ(x), Φ(y)〉 where our feature space is
all monomials of degree ≤ d, each weighted by some binomial coefficient. Hence
this kernel function allows us to express non-linear relationships between the
data while only doing a linear amount of work in the dimension of the original



feature space. Now the dual form of the algorithm can be modified to use the
kernel function to calculate the inner product implicitly.

2.6 Longest Survivor and Voted Perceptron

The classical perceptron returns the last weight vector w, i.e. the one obtained
after all training has been completed, but this may not always be useful especially
if the data is noisy. For example if our data is arranged such that a number of
noisy examples reside at the end of the set then the last hypothesis is most
affected by the noisy examples and may not be good. This is a general issue
that has been studied in the context of using on-line algorithms that expect one
example at a time in a batch setting where a set of examples is given for training
and one hypothesis is used at the end to classify all future instances. Several
variants to handle this issue exist. In particular [15] show that longest survivor

hypothesis, i.e. the one who made the largest number of correct predictions
during training in the on-line setting, is a good choice in the sense that one can
provide guarantees on its performance in the PAC learning model [25]. Several
variations of this idea were independently proposed under the name of the pocket

algorithm and empirical evidence for their usefulness was provided [10].
The voted perceptron [8] assigns each vector a “vote” based on the number of

sequential correct classifications by that weight vector. Whenever an example is
misclassified, the voted perceptron records the number of correct classifications
made since the previous misclassification, assigns this number to the current
weight vector’s vote, saves the current weight vector, and then updates as normal.
After training, all the saved vectors are used to classify future examples and their
classifications are combined using their votes. This algorithm was analyzed in
[8] where bounds on the error rate were provided for the noisy case as well.
At first sight the voted-perceptron seems to require expensive calculation for
prediction. But as pointed out in [8], the output of the weight vector resulting
from the first k mistakes can be calculated from the output of the weight vector
resulting from the first k− 1 mistakes in constant time. So when using the dual
perceptron (e.g. if kernels are used) the prediction phase of the voted perceptron
is not substantially more expensive than the prediction phase of the classical
perceptron.

When the data are linearly separable and given enough iterations, both these
variants will converge to a hypothesis that is very close to the simple perceptron
algorithm. The last hypothesis will predict correctly on all examples and indeed
its vote will be the largest vote among all hypotheses used. When the data are
not linearly separable the quality of hypothesis may fluctuate during training as
noisy examples are encountered. The voted perceptron is the only variant with
known theoretical guarantees on performance in this case.

2.7 Algorithms Summary

We summarize the various algorithms and prediction strategies in Figure 3 that
also gives a template for our implementation.



TRAINING: Input set of examples and their labels

Z = ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1, 1}), Φ : X → F ⊆ Rn

– Initialize α ← 0m,k ← 0,w0 ← 0, tally ← 0, best tally ← 0, αl.s. ← 0m,
θ ← θInit

– for every training epoch

– for every xj ∈ X:
• SUM ←

∑

i|αi 6=0
η(αi + δijλ)yiK(xi, xj)

• Predict:

∗ if SUM < θ − τ, ŷ = −1
∗ else if SUM > θ + τ,ŷ = 1
∗ else ŷ = 0

• if (ŷ 6= yj) AND (αi < α)
∗ αj ← αj + 1
∗ Update ‘‘mistakes’’ data structure

∗ θ ← θ + ηCyi
∗ votek+1 ← 0
∗ k ← k + 1
∗ tally ← 0

• else if (ŷ = yj)
∗ votek ← votek + 1
∗ tally ← tally + 1
∗ if (tally > best tally)

· best tally ← tally

· αl.s. ← α

PREDICTION: To predict on a new example xm+1:

– CLASSICAL:

• SUM ←
∑m

i=1
ηyiαiK(xi, xm+1)

• ŷ ← sign(SUM − θ)
– LONGEST SURVIVOR:

• SUM ←
∑m

i=1
ηyiαl.s.iK(xi, xm+1)

• ŷ ← sign(SUM − θ)
– VOTED:

• SUM ← 0
• for k ← 1 to num mistakes

∗ SUMk ← SUM + ηymistakei
K(xmistakei

, xm+1)
∗ ŷ ← sign(SUM − θ)
∗ VOTES ← VOTES +voteiŷ

• ŷfinal ← sign(V OTES)

Fig. 3. Illustration of All Algorithm Variants

2.8 Choice and Setting of Parameters

The algorithms described above have several parameters that can affect their
performance dramatically. In this paper we are particularly interested in studying
the effect of parameters related to noise tolerance, and therefore we fix the value
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of θInit,η, and the number of training iterations. In addition, for all parameters
we would like to have fixed values or ranges that are comparable across all
datasets, and so they should be independent of dataset characteristics. In the
following we explain how these are formulated and chosen.

First we present the fixed values or formulas for η, θInit, C and the number
of iterations. Prior to fixing these values, we ran experiments in which we varied
θinit, η, the number of training iterations, and normalized the example vectors.
The results showed that while the performance of the algorithms overall was dif-
ferent in these settings, the relationship between the performance of individual
algorithms seems to be stable across these variations. As explained above, the
number of iterations must be sufficiently high to allow the α parameter (bound-
ing αi) to be effective, as well as to allow the weight vector to achieve some
measure of stability. Except where noted below, we report results for 100 iter-
ations and η = 0.1; our preliminary experiments revealed that while number of
iterations does affect performance, the relationship between the performance of
the algorithms remains similar. Additionally, 100 iterations appeared sufficient
to achieve a stable hypothesis as illustrated on an example dataset in Figure 4.
For the larger datasets, “USPS,” “Adult” and “MNIST,” which we will discuss
further in section 3.1, we reduced the number of training iterations and increased
η accordingly in order to run the experiments in a reasonable amount of time.
For “Adult” we set η = 0.4 with 5 training iterations and for “MNIST” we set
η = 1 with 1 training iteration. For “USPS,” we used η = 0.1 and 100 iterations
for parameter search, and η = 0.1 and 10 iterations for parameter optimization.

We set θInit = avg(K(xi, xi)), initializing the threshold at the same scale
of inner products. Combined with a choice of η = 0.1, this makes sure that a
few iterations should be able to guarantee that an example is classified correctly
given no other changes to the hypothesis.

We fix the value of C to be in the same range as inner products in the original
space, that is C = avg(〈xi, xi〉). This seems reasonable as C has a chance to affect
the result but does not overwhelm the value of the original inner products.



Exploratory experiments with both natural and artificial data using the poly-
nomial kernel with different degrees suggested that modifying the degree of the
polynomial kernel will not provide further insight into the behavior of the al-
gorithms in question; our experiments resulted in either degree-independent be-
haviors or overfitting. We therefore use a degree 1 polynomial, or linear, kernel,
which is simply the inner product in the original feature space with an additive
factor of C. Note that this means that we can run the experiments using the
primal representation in order to reduce run times.

For the remaining parameters, τ, α, λ, we want to choose values that are
dataset independent. The values of α and λ are naturally in this category since
they are comparable to the αi and therefore they scale with the number of
iterations. For τ we rewrite the formulation above as follows. Instead of updating
on xj if

yj(SUM − θ) < τ

we update if
yj(SUM − θ) < τθInit = τ · avg(K(xi, xi))

so that τ can be thought of as measured in units of the average inner product of
data in the domain. Our experiments explore natural ranges for these parameters
whose size and granularity are constrained by the computational requirements
of trying the different variations. Concrete settings are given in the experimental
section.

3 Experimental Evaluation

We ran two sets of experiments with the algorithms described above. In one
set of experiments we searched through a pre-determined set of values of τ , α,
and λ by running each of the classical, longest survivor, and voted perceptron
using 10-fold cross-validation and parameterized by each value of τ ,α, and λ as
well as each combination of τ × α and τ × λ. This first set of experiments is
called parameter search. The purpose of the parameter search experiments was
to give us a comprehensive view of the effects of the various parameters. This
can show whether a method has any chance of improving performance since
the experiments give us hindsight knowledge. The experiments can also show
general patterns and trends in the parameter landscape again giving insight
into the performance of the methods. Notice that parameter search cannot be
used to indicate good values of parameters as this would be hand-tuning the
algorithm based on the test data. However, it can guide in developing methods
for automatic selection of parameters.

In the second set of experiments, we used the same set of values as in the
first experiment, but using a method for automatic selection of parameters. In
particular we used a “double cross validation” wherein each fold of the cross
validation (1) one uses parameter search on the training data only using another
level of cross validation, (2) picks values of parameters based on this search,
(3) trains on the complete training set for the fold using these values, and (4)



evaluates on the test set. We refer to this second set of experiments as parameter

optimization. This method is expensive to run as it requires running all combi-
nations of parameter values in each internal fold of the outer cross validation. So
if both validations use 10 folds then we run the algorithm 100 times per param-
eter setting. This sets a strong limitation on the number of parameter variations
that can be tried. Nonetheless this is a rigorous method of parameter selection.
Due to their size, for the “USPS,” “MNIST,” and “Adult” datasets, there is no
outer cross-validation and we perform steps 1-4 as above only once. For ease of
comparison to other published results, in steps 1-4 we use the 7291/2007 train-
ing/test split for “USPS” as in [19], and a 60000/10000 split for “MNIST” as in
http://yann.lecun.com/exdb/mnist/.

Both sets of experiments were run on randomly-generated artificial data and
real-world data from the University of California at Irvine (UCI) repository and
other sources. The purpose of the artificial data was to simulate an ideal envi-
ronment that would accentuate the strengths and weaknesses of each algorithm
variant. The other datasets explore the extent to which this behavior is exhibited
in real world problems.

For further comparison, we also ran SVM on the datasets using the L1-norm
soft margin and L2-norm soft margin. We used SVM Light [14] and only ran
parameter search.

3.1 Dataset Selection and Generation

For the artificial data we generated idealized scenarios. We first identify 4 types.
The simplest, type 1, is linearly separable data with very small margin. Type 2 is
linearly separable data with a larger margin. For types 3 and 4 we first generate
data as in types 1 and 2 and then add random class noise by randomly reversing
the labels of a given fraction of examples. One might expect that the basic
perceptron algorithm will do fine on type 1 data, the perceptron with margin
will do particularly well on type 2 data, that noise tolerant variants without
margin will do well on type 3, and that some combination of noise tolerant
variant with margin will be required for type 4 data. However, our experiments
show that the picture is more complex; preliminary experiments with artificial
data from types 1-3 confirmed that the expected behavior is observed, except
that the perceptron with margin performed well on data of type 3 as well, that
is, when the “natural margin” was small and the data was not separable due to
noise. We report on experiments with artificial data where the margin and noise
levels are varied to effectively span the 4 different types.

Concretely the data was generated as follows. Given requested parameters
for number of features, noise rate and the required margin size (as percentage of
average of the square of the L2-norm of the examples), we randomly generated
the weight vector and examples. We measured the margin of the examples with
respect to the weight vector and then discarded any examples that fell within the
margin. For the noisy settings, for each example we randomly switched the label
with probability equal to the desired noise rate. In the tables of results presented
below, f stands for number of features, M stands for the margin size, and N



Name # features* # examples Baseline

Adult 105 32561 75.9

Breast-cancer-wisconsin 9 699 65.5

Bupa 6 345 58

USPS 256 9298 N/A

Wdbc 30 569 62.7

Crx 46 690 55.5

Ionosphere 34 351 64.4

Wpbc 33 198 76.3

sonar.all-data 60 208 53.4

MNIST 784 70,000 N/A

*after preprocessing

Table 1. UCI and Other Natural Dataset Characteristics

stands for the noise rate. We generated datasets with parameters (f,M,N) ∈
{50, 200, 500} × {0.05, 0.1, 0.25, 0.5, 0.75} × {0, 0.05, 0.1, 0.15, 0.25}, and for each
parameter setting we generated two datasets, for a total 150 datasets.

For real world data we first selected two-class datasets from the UCI Machine
Learning Repository [7] that have been used in recent comparative studies or
in recent papers on linear classifiers [3, 6, 5, 11]. Since we require numerical
attributes, any nominal attribute in these datasets was translated to a set of
binary attributes each being an indicator function for one of the values. Since all
these datasets have a relatively small number of examples we added three larger
datasets to strengthen statistically our conclusions: “Adult” from UCI [7], and
“MNIST2,” and “USPS3,” the 10-class character recognition datasets.

For the multiclass data, we trained one classifier for each class simultane-
ously, then for each example on the test set we chose the label of the classifier
generating the maximum output. The datasets used and their characteristics
after the nominal-to-binary feature transformation are summarized in Table 1.

3.2 Exploratory Experiments and General Setup

All the results reported give average accuracy in 10-fold cross-validation exper-
iments, except where noted (in parameter optimization the average is over the
outer 10-fold cross-validation). To avoid any ordering effects of the data, each
dataset is randomly permuted before running the experiments. For the larger
datasets, “MNIST,” “Adult,” and “USPS,” in the parameter optimization ex-
periments, the training/test split is maintained by permuting the training and
test sets independently.

Finally we performed a comparison of the classical perceptron, the longest
survivor and the voted perceptron algorithms without the additional variants.

2 http://yann.lecun.com/exdb/mnist/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html\

#usps



V > C V > LS LS > C LS > V C > LS C > V V = LS = C

Noise = 0 0 0 0 0 0 0 30

Noise = 0.05 12 10 11 3 0 2 16

Noise = 0.1 15 15 14 3 3 3 12

Noise = 0.15 16 14 13 5 6 3 10

Noise = 0.25 16 12 13 8 7 4 10

Table 2. Noise Percentage vs. Dominance: V = Voted, C = Classical, LS = Longest
Survivor

Table 2 shows a comparison of the accuracies obtained by the algorithms over the
artificial data. We ignore actual values but only report whether one algorithm
gives higher accuracy or whether they tie (the variance in actual results is quite
large). One can see that with higher noise rate the voted perceptron and longest
survivor improve the performance over the base algorithm. Over all 150 artificial
datasets, the voted perceptron strictly improves performance over the classical
perceptron in 59 cases, and ties or improves in 138 cases. Using the distribution
over our artificial datasets one can calculate a simple weak statistical test that
supports the hypothesis that using the voted algorithm does not hurt accuracy,
and can often improve it.

3.3 Parameter Values

As explained above the parameters are naturally scaled so that we can use
the same ranges for all datasets. Since the double cross validation is expen-
sive we limited the searches to the values: τ ∈ {0, 0.125, 0.25, 0.5, 1, 2, 4}, α ∈
{∞, 80, 60, 40, 20, 10, 5}, and λ ∈ {0, 0.125, 0.25, 0.5, 1, 2, 4} as well as all combi-
nations τ ×α and τ ×λ in these ranges. Notice that the values as listed from left
to right vary from no effect to a strong effect for each parameter. Since search
over combined values is particularly expensive we have also experimented with
a variant that first searches for a good τ value and then searches for a value of
α or λ while fixing the chosen τ value.

We did not perform any experiments involving α on “MNIST” or “Adult”
as their size required too few iterations to justify any reasonable α-bound.

3.4 Parameter Search

The parameter search experiments reveal several interesting aspects. We observe
that in general the variants are indeed helpful on the artificial data since the per-
formance increases substantially from the basic version. The numerical results
are shown in Table 4 and discussed below. Before showing these we discuss the
effects of single parameters. Figure 5 illustrates that the accuracy is reasonably
well-behaved with respect to the parameters; good performance is obtained in a
non negligible region, but local maxima exist; this is typical of the results from
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Fig. 5. Parameter Search on Artificial Data

the artificial data. Data obtained for the non-artificial datasets showed some-
what different characteristics. In some datasets little improvement was obtained
with any variant or parameter setting. In others, improvement was obtained for
some parameter values but the regions were not as large. This suggests that
automatic parameter selection may be tricky for these datasets. Nonetheless it
appears that when improvement is possible, τ on it own was quite effective;
notice in Figures 6,7, and 8 that τ is consistently effective, but λ and α are
not. As expected, our experiments also showed that very large values of τ harm
performance significantly. These are not shown in the graphs as we have limited
the range of τ in the experiments.
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Fig. 6. Parameter Search on promoters Dataset from UCI

Tables 3 and 4 summarize the results of parameter search experiments on the
real world data and some of the artificial data, respectively. For each dataset and
algorithm the tables give the best accuracy that can be achieved with parameters
in the range tested. This is useful as it can indicate whether an algorithm has
a potential for improvement, in that for some parameter setting it gives good
performance. In order to clarify the contribution of different parameters, each
column with parameters among τ, α, λ includes all values for the parameter ex-
cept the non-active value. For example, any accuracy obtained in the τ column
is necessarily obtained with a value τ 6= 0. The value for τ = 0 is included in
other columns.



75

80

85

90

95

100

0 2−3 2−2 2−1 20 21 22

A
cc
u
ra
cy

%

τ

Parameter Search on τ : MNIST

Voted

♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Last

s

s s

s
s

s s

s

Longest

4

4

4
4

4 4 4

4

75

80

85

90

95

100

0 2−3 2−2 2−1 20 21 22

A
cc
u
ra
cy

%

λ

Parameter Search on λ: MNIST

Voted

♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Last

s s s s s s s

s

Longest

4 4 4 4 4 4 4

4

Fig. 7. Parameter Search on MNIST Dataset

Several things can be observed in the tables. First as mentioned above τ is
useful even in datasets with noise; this is obvious both in the artificial datasets
with noise and in the UCI datasets, all of which are inseparable in the native fea-
ture space. Second, differences between the basic algorithm, the longest survivor
and the voted perceptron are noticeable without additional variants. For the ar-
tificial datasets this only holds for one group of datasets (f = 50), the one with
highest ratio of number of examples to number of features (12 : 1). 4 The longest
survivor seems less stable and has lower performance in some cases. Third, for
the artificial datasets using τ alone (with last hypothesis) gives higher accuracy
than using the voted perceptron alone. For the UCI, “MNIST,” and “USPS”
datasets this trend is less pronounced; while τ always helps the last hypothesis,
it only occasionally helps voted, and sometimes hurts it. In all datasets, while
α and λ do improve performance in a number of cases, they are less effective
in general than τ , and do not provide additional improvement when combined
with τ .

The results for the artificial data seem to suggest that the voted perceptron
is only likely to help in noisy data and when the ratio of numbers of examples to

4 The results for data with f = {200, 500} are omitted from the table. In these cases
these was no difference between the basic, longest and voted versions except when
combining with other variants.
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Fig. 8. Parameter Search on USPS Dataset

features is sufficiently high. On the other hand the τ variant seems to be useful
even with low ratios of examples to features. To explore this hypothesis, we ran
a set of experiments using the “Adult” dataset. We measure performance when
training with 10, 100, 1000, 5000, 10000 and 20000 examples. The results for
several values of τ are shown in Table 5. The table contradicts the observation
from the artificial data. While τ continues to help everywhere, we see that with
a small number of examples (e.g. 100) the voted perceptron performs as well or
better than the τ variant.

The table also adds a fifth observation about stability of the algorithms. Note
that since we report results for concrete values of τ we can measure the standard



Baseline Nothing τ λ α τ × λ τ × α

breast-cancer-wisconsin Last 65.5 90.6 96.8 97.2 96.9 97.3 97.2

Longest 96.9 97.0 97.2 97.0 97.3 97.2

Voted 96.9 96.8 97.2 96.9 97.3 97.2

bupa Last 58 57.5 71.8 64.1 69.2 71.5 67.8

Longest 64.1 58.2 64.8 68.4 60.9 61.2

Voted 68.9 65.9 67.7 70.7 67.4 66.0

wdbc Last 62.7 92.4 93.2 92.8 93.3 93.9 92.6

Longest 92.4 93.2 92.6 92.4 92.8 92.8

Voted 92.3 92.0 93.2 92.4 93.2 92.4

crx Last 55.5 62.5 68.6 65.5 66.7 69.0 66.7

Longest 55.1 63.6 65.5 63.5 65.5 65.2

Voted 64.9 65.4 65.5 66.7 65.5 66.4

promoters Last 50 78.8 92.8 82.1 78.8 94.4 93.8

Longest 78.8 92.8 82.1 78.8 94.4 94.4

Voted 78.8 93.4 82.1 78.8 94.4 93.8

ionosphere Last 64.4 86.6 87.5 86.9 87.7 88.6 87.2

Longest 87.2 87.5 87.8 88.0 88.3 87.7

Voted 88.0 87.7 87.5 88.6 88.9 87.5

wpbc Last 76.3 77.3 76.4 80.6 76.9 79.0 76.4

Longest 77.2 76.4 77.4 78.5 76.9 76.4

Voted 78.8 76.4 80.6 77.4 78.5 76.4

sonar.all-data Last 53.4 71.9 74.6 72.5 77.1 75.8 79.1

Longest 75.3 77.1 73.3 77.2 77.7 78.7

Voted 75.1 77.2 73.8 77.1 78.7 77.7

USPS Last N/A 91.5 94.1 90.4 92.8 94.3 94.1

Longest N/A 86.9 93.9 90.4 92 93.9 93.9

Voted N/A 93.5 94.2 93.4 93.6 94.3 94.3

MNIST Last N/A 85.2 89.2 85.2 89.2

Longest N/A 81.7 88.6 81.7 88.6

Voted N/A 90.2 90.6 90.2 90.6

Table 3. Parameter Search on UCI and Other Datasets

deviation in accuracy observed. One can see that both the τ variant and the voted
perceptron significantly reduce the variance in results. The longest survivor does
so most of the time but not always. The fact that the variants lead to more stable
results is also consistently true across the artificial and UCI datasets discussed
above and is an important feature of these algorithms.

3.5 Parameter Optimization

We have run the parameter optimization on “USPS,” “MNIST,” the UCI datasets,
and the artificial datasets. Selected results are given in Tables 6 and 7.

For these experiments we report average accuracy across the outer cross-
validation as well as a 95% T -confidence interval around these, as suggested in



Noise Pctg. (N) Nothing τ λ α τ × λ τ × α

f = 50,M = 0.75

Last, N = 0 97.5 100 97.32 97.5 100 100

Longest 97.5 100 97.32 97.5 100 100

Voted 97.5 100 97.32 97.5 100 100

Last, N = 0.05 80.29 93.79 91.51 92.78 93.79 94.21

Longest 86.13 93.58 91.51 91.32 93.58 94

Voted 87.58 93.58 91.51 92.78 93.58 94

Last, N = 0.1 80.13 88.39 86.92 86.13 88.39 89.01

Longest 79.88 88.18 86.92 86.53 88.39 88.82

Voted 82.58 88.8 86.92 86.13 88.8 89.01

Last, N = 0.15 70.28 82.59 80.1 80.52 82.59 83.64

Longest 76.78 81.14 80.1 80.31 83.83 83.23

Voted 78.24 83.63 80.1 80.52 83.84 83.64

Last, N = 0.25 63.08 68.9 67.43 66.18 68.9 69.1

Longest 58.73 68.67 67.43 64.53 70.33 69.92

Voted 65.35 69.3 67.43 66.18 69.71 69.71

Table 4. Parameter Search on Artificial Datasets

[20]. No confidence interval is given for “USPS,” “MNIST,” or “Adult,” as the
outer cross-validation loop is not performed.

In more detail, we use the maximum likelihood estimate of the standard

deviation σ, s =
√

1
k

∑

i(yi − ȳ)2 where k is the number of folds (here k = 10),

yi is the accuracy estimate in each fold and ȳ is the average accuracy. We then

use the T confidence interval y ∈ ŷ±t(k−1),0.975

√

1
k(k−1)

∑

(yi − ȳ)2. Notice that

since t9,0.975 = 2.262 and k = 10 the confidence interval is 0.754 of the standard
deviation.

In Tables 6 and 7 columns of parameter variants do include the inactive
option. Hence, in contrast with the tables for parameter search, the search in the
τ column includes the value of τ = 0 as well. This makes sense in the context of
parameter optimization since the algorithm can choose between different active
values and the inactive value. Notice that the standard deviation in accuracies is
high on these datasets. This highlights the difficulty of parameter selection and
algorithm comparison and suggests that results from single split into training
and test sets that appear in the literature may not be reliable.

Tables 6 and 7 show improvement over the basic algorithm in all datasets
where parameter search suggested a potential for improvement, and no decrease
in performance in the other cases, so the parameter selection indeed picks good
values. Both τ and the voted perceptron provide consistent improvement over
the classical perceptron; the longest survivor provides improvement over the
classical perceptron on its own, but a smaller one than voted or τ in most cases.
Except for improvements over the classical perceptron, none of the differences
between algorithms is significant according to the T -intervals calculated. As ob-



# examples: 10 100 1000 5000 10000 20000

Accuracy Std. Dev.

τ = 0

Last 77.1 1.8 75.9 3.2 76.6 10.1 79.4 3.9 78.8 4.7 81.1 2

Longest 77.3 1.7 78.2 1.4 80.9 1.8 82.3 0.7 81.9 1.4 82 2.3

Voted 77.1 1.7 78.7 1.3 82.7 0.3 83.9 0.2 84.3 0.2 84.5 0.2

τ = 0.01

Last 76.6 2.1 71.3 10.6 78.5 3.8 79.3 2.8 79.9 3.2 80.8 1.8

Longest 77.1 1.6 78.2 1.8 81 2.5 82.1 0.8 82.6 0.4 82.5 1

Voted 77 1.6 78.9 1.3 82.8 0.2 83.9 0.2 84.3 0.2 84.6 0.2

τ = 0.1

Last 76 2.8 75.3 6.4 78.9 6.5 80.7 2.4 81.8 2 81.7 1.9

Longest 76.4 2.1 76.9 3.9 80.7 1.9 82.2 1.4 82.6 0.8 82.4 1.7

Voted 76.5 2.1 79.2 1.3 82.7 0.33 83.9 0.1 84.3 0.2 84.5 0.2

τ = 1

Last 75.3 1.7 77 3.4 81.4 2 83 0.9 83.3 0.8 83.9 0.4

Longest 75.9 0 76.4 1.5 78.8 2.9 81.6 2.5 81.1 2.8 81.4 2.3

Voted 76 0.33 77.4 1.7 82.6 0.3 83.6 0.2 83.9 0.2 84.2 0.2

τ = 2

Last 76.1 0.5 77.4 1.7 82.3 0.6 83.1 0.5 83.4 0.9 84.1 0.2

Longest 75.92 0 75.9 0.01 77.5 2.5 81.5 2.3 82.3 2.2 81.2 2.8

Voted 70.7 15.6 75.9 0.04 82.3 0.4 83.4 0.2 83.7 0.2 84 0.2

τ = 4

Last 76.1 0.5 75.9 0.03 82.2 0.5 83.1 0.4 83.5 0.5 83.9 0.2

Longest 75.92 0 75.9 0.01 75.9 0.04 80.5 3.1 80.3 3.4 81.9 3.1

Voted 70.7 15.6 75.9 0.01 80.2 1.23 83.2 0.2 83.5 0.2 83.7 0.2

Table 5. Performance on “Adult” dataset as a function of margin and training set size

served above in parameter search, the variants with α and λ offer improvements
in some cases, but when they do, τ and voted almost always offer a better im-
provement. Ignoring the intervals we also see that neither the τ variant nor the
voted perceptron dominates the other. Combining the two is sometimes better
but may decrease performance in the high variance cases. Typical results in the
literature use higher degree polynomial kernel on the “MNIST” and “USPS”
datasets. Table 7 includes results using τ with a degree 4 polynomial kernel for
these datasets. We can see that for “MNIST” the variants make little difference
in performance but that for “USPS” we get small improvements and the usual
pattern relating the variants is observed.

Table 6 also gives results for SVM. We have used SVMlight [14] and ran
with several values for the constants controlling the L1 soft margin. For L1 op-
timization the values used for the “-c” switch in SVMLight are {10−5, 10−4,
10−3, . . .,104}. For the L2 optimization, we used the following values for λ:
{10−4, 10−3, . . . , 103}. The results for SVM are given for the best parameters
in a range of parameters tried. Thus these are essentially upper bounds on the
performance of SVM on these datasets. As can be seen the perceptron variants
give similar accuracies and smaller variance and they are therefore excellent
alternative for SVM.

These experiments distinguish the voted perceptron, the τ variant and their
combination as the best potential algorithm in our suite.



Nothing τ λ α τ × α τ × λ τ → α τ → λ SVM L1 SVM L2

Breast-cancer-wisconsin

Last 90.6 +/- 2.3 95.2 +/- 2.1 95.2 +/- 3.1 94.7 +/- 3.3 95.3 +/- 2.6 96.3 +/- 2.1 95.1 +/- 2.3 96.9 +/- 1.3

Longest 96.9 +/- 1.2 96.8 +/- 1.7 97.2 +/- 1.4 96.3 +/- 1.9 96.8 +/- 1.6 97 +/- 1.6 96.8 +/- 1.7 96.9 +/- 1.8 96.8 +/- 2.2 96.7 +/- 1.7

Voted 96.9 +/- 1.3 96.8 +/- 1.4 97 +/- 1.4 96.6 +/- 1.6 97 +/- 1.6 97.2 +/- 1.4 96.8 +/- 1.4 96.9 +/- 1.5

Bupa

Last 57.5 +/- 7.8 69.8 +/- 6.5 61.5 +/- 6.3 68.9 +/- 4.1 69.9 +/- 5.7 69.8 +/- 5.8 69.8 +/- 6.5 70.9 +/- 5.9

Longest 64.1 +/- 7.1 64.1 +/- 7.1 64.1 +/- 6.6 65.3 +/- 4.3 65.3 +/- 4.3 64.1 +/- 6.6 65.3 +/- 4.3 64.1 +/- 6.6 66.5 +/- 8.6 63.2 +/- 5.2

Voted 68.9 +/- 5.8 68.9 +/- 5.8 67.5 +/- 6.4 68.9 +/- 6.3 68.9 +/- 6.3 67.5 +/- 6.2 68.9 +/- 6.3 67.2 +/- 6.0

Wdbc

Last 92.4 +/- 2.9 93 +/- 2.7 93.2 +/- 2.5 91.6 +/- 2.7 92.8 +/- 2.8 93.2 +/- 2.8 93 +/- 2.7 93.5 +/- 2.2

Longest 92.4 +/- 2.0 91.7 +/- 2.5 92.1 +/- 2.5 92.3 +/- 2.3 93.2 +/- 1.7 92.5 +/- 2.1 92.6 +/- 2.1 91.4 +/- 2.9 92.8 +/- 4.4 94.7 +/- 2.1

Voted 92.3 +/- 2.3 92.3 +/- 2.6 92.8 +/- 2.7 91.7 +/- 1.9 91.6 +/- 2.2 92.4 +/- 2.4 91.6 +/- 2.6 92.8 +/- 2.3

Crx

Last 62.5 +/- 5.1 68.7 +/- 2.9 64.5 +/- 4.1 65.8 +/- 4.1 68.1 +/- 3.5 68.7 +/- 2.2 68.7 +/- 2.9 67.8 +/- 2.8

Longest 55.1 +/- 7.3 60.4 +/- 6.5 62.6 +/- 4.8 62.6 +/- 4.4 64.5 +/- 4.9 60.9 +/- 5.7 62.9 +/- 4.6 59.4 +/- 6.7 76.6 +/- 13.7 65.9 +/- 22.8

Voted 64.9 +/- 4.0 64.2 +/- 2.7 65.4 +/- 3.2 66.2 +/- 3.8 66.4 +/- 3.7 64.9 +/- 2.6 65.7 +/- 3.3 64.3 +/- 3.1

Ionosphere

Last 86.6 +/- 3.8 87.2 +/- 3.4 86.3 +/- 3.5 85.7 +/- 4.8 86.9 +/- 3.4 86.9 +/- 2.6 86.6 +/- 3.0 86.6 +/- 2.6

Longest 87.2 +/- 3.8 86.9 +/- 2.6 87.8 +/- 3.6 87.5 +/- 3.5 86.9 +/- 4.0 87.2 +/- 3.2 86.9 +/- 3.4 87.7 +/- 2.9 87.1 +/- 7.1 86.9 +/- 4.2

Voted 88 +/- 3.7 86.3 +/- 4.3 86.6 +/- 3.5 87.7 +/- 3.2 87.5 +/- 3.2 87.7 +/- 3.1 86 +/- 4.9 86 +/- 3.9

Wpbc

Last 77.3 +/- 4.7 76.7 +/- 4.4 76.4 +/- 4.4 75.1 +/- 6.1 75.1 +/- 6.1 77 +/- 5.2 75.7 +/- 6.2 78.3 +/- 5.1

Longest 77.2 +/- 3.8 76.7 +/- 5.3 75.8 +/- 3.6 75.8 +/- 6.0 76.9 +/- 4.4 74.8 +/- 4.3 75.8 +/- 4.4 74.6 +/- 5.4 78.6 +/- 7.8 78.6 +/- 8.4

Voted 78.8 +/- 4.7 78.5 +/- 4.8 79 +/- 5.0 76.4 +/- 4.8 76.9 +/- 4.8 79 +/- 5.0 76.9 +/- 4.8 78.5 +/- 5.1

Sonar

Last 71.9 +/- 6.3 73.1 +/- 5.4 72.4 +/- 6.0 75.5 +/- 6.4 72.1 +/- 7.4 71.1 +/- 6.5 74.1 +/- 6.4 73.6 +/- 5.1

Longest 75.3 +/- 5.1 77.6 +/- 6.2 73.3 +/- 6.0 74.3 +/- 6.9 73.5 +/- 5.9 74.1 +/- 7.5 74 +/- 5.5 78.1 +/- 6.6 57.2 +/- 11.9 55 +/- 11.8

Voted 75.1 +/- 6.0 75.6 +/- 6.9 74.3 +/- 5.6 77.5 +/- 7.0 78.1 +/- 7.0 77.1 +/- 7.2 76.1 +/- 7.9 75.6 +/- 6.9

f=200,N=0.05,M=0.75

Last 80.1 +/- 3.6 84.1 +/- 4.0 80.1 +/- 3.6 83.4 +/- 4.4 83.9 +/- 4.1 86.8 +/- 4.4 82 +/- 4.7 84.9 +/- 4.6

Longest 80.1 +/- 3.6 83.5 +/- 3.3 80.1 +/- 3.6 81.6 +/- 3.8 84.7 +/- 4.1 87.1 +/- 3.5 83.3 +/- 3.4 84.1 +/- 3.8

Voted 80.1 +/- 3.6 82 +/- 3.5 80.1 +/- 3.6 83.4 +/- 4.4 85.6 +/- 4.2 87.3 +/- 4.3 82.2 +/- 3.5 84.3 +/- 4.4
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Nothing τ λ τ × λ τ → λ

USPS

Last 87.4 90.7 87.4 90.3 90.2

Longest 87.5 89.9 87.4 90.3 89.9

Voted 89.7 90.9 89.6 90.9 90.9

Adult

Last 81.9 83.9 83 83.8 83.8

Longest 83.4 83.4 83.4 83.6 83.4

Voted 84.4 84.2 84.4 84.3 84.3

MNIST

Last 85.6 87.1 85.5 87.1 87.1

Longest 79.8 86.8 79.8 86.8 86.8

Voted 88 88.4 88 88.4 88.4

USPS,degree 4 poly kernel

Last 92.9 93.6

Longest 91.6 92.9

Voted 92.7 93.2

MNIST,degree 4 poly kernel

Last 95.2 95.4

Longest 93.2 94.9

Voted 94.8 95

Table 7. Parameter Optimization Results for Large Datasets

4 Summary and Conclusions

The paper provides an experimental evaluation of several noise tolerant variants
of the perceptron algorithm. The results are surprising since they suggest that
the perceptron with margin is the most successful variant although it is the only
one not designed for noise tolerance. The voted perceptron comes second, and it
has the advantage that no parameter selection is required for it. The difference
between voted and perceptron with margin are most noticeable in the artificial
datasets, and the two are indistinguishable in their performance on the UCI
data. The experiments also show that the soft-margin variants do not provide
additional improvement in performance.

Both the voted perceptron and the margin variant reduced the deviation in
accuracy in addition to improving the accuracy. This is an important property
that adds to the stability of the algorithms. Combining voted and perceptron
with margin has the potential for further improvements but can harm perfor-
mance in high variance cases. In terms of run time, the voted perceptron does not
require parameter selection and can therefore be faster. On the other hand its test
time is slower especially if one runs the primal version of the algorithm. Overall,
the results suggest that a good tradeoff is obtained by fixing a small value of τ ;
this gives significant improvements in performance without the penalty in run
time for optimization.

Our results also highlight the problems involved with parameter selection.
The method of double cross-validation is time intensive and our experiments for
the large datasets were performed using the primal form of the algorithms since
the dual form is too slow. In practice, with a large dataset one can afford to
use a hold-out set for parameter selection so that run time is more manageable.



In any case, such results must be accompanied by estimates of the deviation to
provide a meaningful interpretation.

Our work raises several interesting questions for further work. Finding a the-
oretical explanation for the success of the margin variant on noisy data is an
important problem. The proofs in [8] and [23] provide mistake bounds for the
noisy case. But they do not distinguish between the classical perceptron and
perceptron using margin and therefore they do not resolve this question. Notice
that we cannot run a maximum margin algorithm to completion in such a case
without using a soft margin heuristic whereas the perceptron algorithm performs
quite well in this case. One potential explanation is that the fact that we are
performing a bounded number of iterations bounds the effect of every example,
similar to the soft-margin α variant. However, the fact that the α variant did
not provide any additional consistent improvement does not support this expla-
nation. Concerning the longest survivor, Gallant [10] has experimented with the
“ratchet” variation that re-evaluates each hypothesis on the entire dataset and
picks the best one according to this measure instead of the original streak of good
predictions. It would be interesting to see if this would stabilize the algorithm
better.
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