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Abstract

In this paper we present a multiscale non-parametric shape model for the seg-
mentation of 3D branching structures such as vasculature or biological neuronal
networks. The proposed technique models these structures as surfaces formed by
varying-sized interconnected cylinders using higher order active contours. A geo-
metric shape model is built using this approach and incorporated into a surface
estimation problem. The model is defined as a geometric cost function that favors
the formation of 3D branching shapes when minimized. The resulting functional
is incorporated into an active contour framework that is evolved using level set
methods. The proposed method is applied to vasculature segmentation in images
obtained from 3D digital subtraction angiography. This technique is novel in that
it extends previous higher order active contours models for the modeling of branch-
ing structures in 3D; it uses the geodesic metric instead of the Euclidean to define
the region of interaction between boundary subsets of points; and it defines a shape
model that is multiscale, which was not possible with previous higher order active
contours models.
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1 Introduction

The study and development of efficient methods for vasculature segmentation
in 2D and 3D images is an active field of research. Vessel segmentation meth-
ods have applications in visualization, disease diagnosis and surgical planning
[Hoit & Malek, 2005], [Schirmer & Malek, 2007a], [Schirmer & Malek, 2007b],
[Toyota et al., 2008]. Numerous algorithms have been proposed in the im-
age processing and medical imaging literature and the vast majority depend
upon the imaging modality, the application domain, the user-interaction re-
quirements and other specific factors [Kirbas & Quek, 2004].

However, the segmentation of vessels from 3D medical images is difficult
and challenging. There are several reasons for this. First, the radius of
vessels varies along their longitudinal axis and depends typically on the type
of vessel (e.g. smaller for thin blood vessels and larger for certain coronary
arteries such as the aorta). Second, blood vessels are not isolated objects with
a fixed shape; they are typically assumed to branch and bend producing a
vasculature network. Third, the images obtained by the scanning devices are
often noisy and show artifacts due to the non-linear nature of the imaging
process. These artifacts typically make the vessels and the surrounding tissue
locally difficult to recognize and separate. Finally, the segmentation of curved
3D structures presents more algorithmical difficulties than that of planar
structures in 2D images [Wörz & Rohr, 2007].

The work presented in this paper tries to overcome the difficulties men-
tioned above in an integrated framework. We propose a level set-based ac-
tive contours method that automatically extracts the vasculature from 3D
angiographs. The research described in this document is mostly theoretical
and serves as a Ph.D. proposal for the first author, who expects to imple-
ment the ideas presented here in the months following the publication of this
report.

The rest of the paper is organized as follows. The following two subsec-
tions introduce the reader to the Aneurysm Project and 3D angiography, the
imaging modality that is used to get the vasculature volume data. Section
2 looks at the related work in vessel segmentation, active contours and geo-
metric shape priors. Section 3 shows the higher order active contours model
originally introduced by [Rochery et al., 2006] on which our work was based.
Section 4 describes the proposed multiscale shape prior. Finally, Sections 5
and 6 discuss preliminary results and future work.
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Fig. 1: (a): Graphical depiction of a cerebral aneurysma. (b): Cross section
of a 3D-DSA image from a patient with a cerebral aneurysm.

a Adapted from http://www.nhlbi.nih.gov/

1.1 Motivation for research

The research presented in this paper is being conducted as part of the
Aneurysm Project at Tufts University. The goal of this project is the study
of techniques for vessel extraction in 3D angiographs and of algorithms for
the automatic detection and classification of brain aneurysms.

Brain aneurysms are abnormal dilations in the intracranial vasculature.
These dilations usually occur at the base of the brain near the Circle of
Willis, the circle of arteries that supplies blood to the brain (see Figure
1(a)). Aneurysms can grow, leak, and even rupture, spilling blood into the
surrounding tissue and causing what is known as a subarachnoid hemorrhage
[Edlow et al., 2007]. The rupture of an aneurysm can produce permanent
severe damage in the nervous system or even death. According to the U.S.
Department of Health and Human Services, around 30,000 people died from
brain aneurysm ruptures in 2004, accounting for 1% of the total number of
deaths in the same year [Heron, 2007], [Edlow et al., 2007]. The factors that
cause aneurysms to form and ultimately to rupture are believed to be both
physiological and developmental [Lasheras, 2007]. They are phisiological,
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because it has been shown that the lack of elastin and collagen is a main
factor in the formation of aneuryms. Elastin and collagen are proteins that
regulate the elasticity, strength and thickness of blood vessel walls. They
are developmental, because it has been also shown that the geometry of an
aneurysm determines its tendency to grow and rupture. Aneurysms are for
example more likely to grow in certain angles between the main axis of the
aneurysm and the adjacent vessel.

The goal of the Aneurysm Project is two-fold. First, to develop algo-
rithms that efficiently extract the vasculature from 3D angiographs, an imag-
ing modality that will be described in the following section. This is the main
focus of the paper and the task on which the first author is currently work-
ing. Second, the Aneurysm Project researches the correlation between the
geometry of the vasculature and the formation, growth and/or rupture of
aneurysms.

1.2 The image acquisition process

The images used in the Aneurysm Project are given directly in the format
of volume data by a 3D-Digital Subtraction Angiography (3D-DSA) device
currently used at the Tufts-New England Medical Center1. 3D-DSA is an
imaging modality that allows for the visualization of blood vessels in a bony
or dense soft tissue environment.

The acquistion process occurs in 3D-DSA in three steps [Toyota et al.,
2008]. First, a catheter is guided from the femoral artery of the patient
under study to the ascending aorta and positioned in the internal carotid or
vertebral artery with the suspected intracranial aneurysm. Second, an X-
Ray contrast agent is injected through the catheter into the targeted arterial
vessel. Third, the C-arms of the 3D-DSA device generates an X-Ray field
between its arms while it rotates in a continuous 200◦ around the patient’s
head placed in the isocenter. The device measures the linear attenuation
of the media to the X-ray field and reconstructs the volume data once the
scanning is completed. The acquisition process takes less than a minute to
finish. The extracted images by the 3D-DSA device used in our experiments
have a size of 256 by 256 by 229 and a spatial resolution of 0.5 mm. Figure
1(b) shows a sample slice obtained from one of our images.

1 3D-DSA is also known as 3D Rotational Angiography (3DRA) or as 3D Angiography
(3DA).
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2 Related work

The image segmentation method proposed in this paper is based on active
contours. Active contours are deformable models that were originally intro-
duced in a parametric fashion in [Kass et al., 1988] as “Snakes”. Nonpara-
metric active contours (usually known as geometric active contours) were
later introduced in [Caselles et al., 1997] with the help of the level sets-based
evolution framework introduced in [Osher & Sethian, 1988] and [Osher &
Shu, 1991].

Most active contours models include cost functions (also known in the lit-
erature as energy functionals or energy terms) that either search for contours
(surfaces) that move towards the boundaries of the object to be detected
[Kimmel & Bruckstein, 2003], or search for contours that part the image
in homogeneous regions [Chan & Vese, 2001] when minimized. The former
uses edge detectors typically based on the gradient of the image to find the
boundaries of the objects. The latter usually looks at the statistics of the
image intensity inside and outside the closed contour.

Classical active contours based solely on image terms do not have prior
information about the geometry or the shape of the objects that are being
segmented. This results in a number of drawbacks. First, they are not able
to distinguish between objects with similar image properties. This presents
an important difficulty in the segmentation of vasculature in certain imaging
modalities, such as computed tomography angiography, where the bones and
the blood vessels have similar edge profiles and intensity histograms. Second,
the lack of prior knowledge about the shape and geometry can produce over-
segmentation and undersegmentation of the image [Xie & Mirmehdi, 2008]
due to the non-convexity nature of the energy functionals used.

2.1 Learned shape priors

A number of segmentation methods have been proposed to define models
that capture the shape and geometry of vasculature [Hoover et al., 2000],
[Tyrrell et al., 2007], [Li & Yezzi, 2007], [Wörz & Rohr, 2007]. However,
most of these models are usually parametric (e.g. superellipsoids, cylinders)
and cannot be used in conjunction with geometric active contours driven by
level sets. In addition, there has been much work in the last ten years defining
and incorporating statistical shape priors that can be used in active contours
driven by level sets [Chen et al., 2001], [Cootes et al., 1995], [Wang & Staib,
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1998], [Kim et al., 2007a], [Tsai et al., Feb. 2003]. These methods usually add
a learned prior to the energy functional that gives priority to some shapes
over others. However, these priors only behave well for objects whose shape
varies slightly across several samples, usually up to an affine transformation
(rotation, translation, dilation, and shear) [Kim et al., 2007a]. The graph
topology of the human vasculature is known to change from patient to patient
(e.g. different number of nodes and edges) [Aylward et al., 2005]. The
topology changes even more drastically if different regions of the body are
considered. These variations cannot be completely modeled considering only
small variations of affine transformations, and a more powerful solution is
needed.

2.2 Non-learned shape priors

Some work has been done in the derivation and implementation of non-
learned shape priors that model the geometry of the vasculature. [Nain et al.,
2004] define a “soft shape prior” that penalizes segmentation leaks (strong
undersegmentation). Their shape filter fixes the percentage of points that fall
both within a ball centered at each point inside the contour and the contour’s
enclosed region. The radius of the ball is given manually beforehand relative
to the maximum vessel width. The main drawbacks of their shape prior are
that it only works at a fixed scale and that it suffers from oversegmentation
near branches of the vasculature, where the size of the maximally inscribed
balls is slightly bigger than along a vessel. [Li & Yezzi, 2007] models the
surface of blood vessels in 3D images as 4D paths given by a series of spheres
along the centerline of a vessel. The surface is found as the 4D path that
minimizes the length of all possile trajectories between two 4D endpoints
(spheres) given by the user. The 4D space arclength is weighted by the
mean and variance of the region enclosed by the surface. Their shape prior
is multiscale since it can deal with vessels of varying sizes, but it does not
handle branches automatically. Finally, it needs initialization from the user
in the form of maximally inscribed spheres at each end point of the vessel to
be segmented.

3 Higher order active contours

Higher order active contours were originally introduced by Rochery et. al
in [Rochery et al., 2006] and [Rochery et al., 2007]. These new active con-
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Fig. 2: Shape prior introduced in [Rochery et al., 2006]. (a): Example of a
2D branching structure that is favored by the energy functional of Equation
1. (b): Equation 1 forces points with parallel tangent vectors such as t̂ (s1)
and t̂ (s3) to get closer, and points with antiparallel tangent vectors such as
t̂ (s1) and t̂ (s4) to stay apart at a distance of at least dmin.

tours differ from previous models in that they can define cost functions that
depend on the global geometry of the contour. The minimization of these
functionals results in contour speeds that depend on the whole boundary
of the contour and their interior, allowing thus for the definition of shape
constrains. This differs from classical linear functionals where the contour
speeds usually depend on infinitesimals defined in a neighborhood of each
point of the contour, such as weighted line elements [Caselles et al., 1997] or
area and volume elements [Chan & Vese, 2001].

The main idea behind higher order active contours is the definition of
cost functionals with multiple integrals over the boundaries and the enclosed
regions2. This way, the new energy functionals can model non-local interac-
tions between subsets of points in the contour boundary or between subsets
of points and the image data. Rochery et. al. used a higher order active
contour model to define quadratic energies that create a shape prior for the
extraction of roads from 2D satellite imagery. To do so, they defined a objec-
tive function that when minimized it favours the segmentation of 2D shapes
with a branching structure, such as the one in Figure 2(a). The original

2 The use of multiple integrals over the same domain creates polynomial functionals of
arbitrary order, and thus non-linear.
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energy term is given as:

E2D HOAC = −
∫∫

δD

t̂ (s) · t̂ (s′)ψ (||C(s)− C(s′)||) dsds′ (1)

where C is a curve (contour) that maps points from R to R2 and that tries
to fit to the boundaries of the object to be segmented when the energy is
minimized. The parameters s and s′ define arc-length parameterizations in
the domain δD of the curve C, and t̂ (s) and t̂ (s′) are tangent vectors to the
contour at the points C(s) and C(s′). The term ||C(s)− C(s′)|| measures
the Euclidean distance between the points C(s) and C(s′) in the boundary
of the curve, and t̂ (s) · t̂ (s′) measures the alignment between the tangent
vectors. The function ψ is the Heaviside function which can be approximated
[Osher & Fedkiw, 2002] as

ψ (x) =


2 x < dmin − ε
0 x > dmin + ε

1− x−dmin

ε
− 1

π
sin
(
π x−dmin

ε

)
otherwise

(2)

where dmin is a parameter that is set heuristically a priori to model the
radius of the region of interaction between points on the surface.

When t̂ (s) and t̂ (s′) are both parallel (collinear vectors with the same
direction), the energy functional decreases if the Euclidean distance between
C(s) and C(s′) does. On the other hand, when t̂ (s) and t̂ (s′) are antiparallel
(collinear vectors with opposed directions), the energy increases when the
points get closer than dmin. This idea is shown graphically in Figure 2(b).

Equation 1 works well for 2D images, where both parallel and antiparallel
tangent vectors have enough information to identify the tangent space at each
point on a curve. However, these concepts cannot be extended directly to 3D,
since the tangent space to a surface in 3D is isomomorphic to R2. Another
drawback of Equation 1 is that it requires that the parameter dmin is given
a priori. This means that the width of the roads to be extracted should be
known ahead. In vasculature segmentation that would translate into the fact
that the diameter of the vessels should be also known ahead.
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4 Multiscale shape prior for the segmentation of
vasculaure in 3D Imagery

In this section we present our shape prior for 3D branching structures based
on the model presented in the previous section. To do so, a reference frame is
needed for each point on the object’s surface. This frame should allow for the
definition of geometric point-to-point interactions invariant to the pose of the
surface inside the volume data. A natural frame to work with is the Darboux
frame [Gray, 2006]. Given a surface X : (u, v) ∈ Ω ⊂ R2 → R3, the Darboux
frame is defined as the R3 orthonormal basis (ê1 (u, v) , ê2 (u, v) , n̂ (u, v)),
where n̂ (u, v), ê1 (u, v) and ê2 (u, v) are the normal vector and the vector
of principal directions respectively, all uniquely defined at any non-umbilical
point3 in the boundary of a continuously differentiable surface4.

Given a point p = X (u, v) on a surface like the one defined above, its
normal vector can be obtained as n̂ = (Xu ×Xv) / (||Xu ×Xv||) with Xu and
Xv referring to the first derivatives of X. Similarly, the vectors of principal
directions at the same point are given by the eigenvectors v̂1 and v̂2 of the
shape operator, which is defined in the domain Ω of the the surface X in
terms of the first and second fundamental forms of X by the Weingarten
Equations. The Weingarten Equations are given in matrix form for the basis
(Xu, Xv) of the tangent space TpX of the surface X at p by:

dn̂(Xu,Xv) =
1

EG− F 2

(
MF − LG NF −MG
LF −ME MF −NE

)
(3)

where the following definitions hold:

E (u, v) = Xu ·Xu L (u, v) = n̂ ·Xuu

F (u, v) = Xu ·Xv M (u, v) = n̂ ·Xuv

G (u, v) = Xv ·Xv N (u, v) = n̂ ·Xvv (4)

with Xuu Xuv and Xvv referring to the second derivatives of X. The eigen-

3 Non-umbilical points are points where the surface is not locally spherical. That is,
points where the principal curvatures are not identical.

4 For practical reasons it will be assumed in the rest of the paper that the surfaces under
consideration are at least of class G3.
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vectors (v̂1, v̂2) of the shape operator dn̂(Xu,Xv) are given by:

v̂1 (u, v) ={
−GL+NE +

√
−4 (M2 − LN) (F 2 −GE) + (GL− 2FM +NE)2

2FL− 2ME
, 1

}
v̂2 (u, v) ={
−
GL−NR +

√
−4 (M2 − LN) (F 2 −GR) + (GL− 2FM +NR)2

2FL− 2MR
, 1

}
(5)

The principal directions of the surfaceX are thus given by ê1 = v11Xu+v12Xv

and ê2 = v21Xu + v22Xv with v̂1 ≡ (v11, v12) and v̂2 ≡ (v21, v22).
Each of the eigenvectors of dn̂(u,v) has an associated eigenvalue k1, k2

which corresponds to either the maximum or minimum normal curvatures
kmax and kmin of the surface at the point p = X (u, v):

k1 (u, v) =

GL− 2FM +NR−
√
−4 (M2 − LN) (F 2 −GR) + (GL− 2FM +NR)2

2 (F 2 −GR)

k2 (u, v) =

GL− 2FM +NR +
√
−4 (M2 − LN) (F 2 −GR) + (GL− 2FM +NR)2

2 (F 2 −GR)
(6)

The Darboux frame defined above can be used to define point-to-point rela-
tionships that capture the local geometry of the vasculature. We first make
the assumption that the surface formed by the boundary of the vascula-
ture can be represented as a series of interconnected perfect local cylinders.
This assumption has been shown to be reasonable previously [Wörz & Rohr,
2007], [Makowski et al., 2006], and in any case, the errors derived from the
inaccuracy of this assumption will still be balanced with the combination of
image-terms (see section 2 above).

In order to build the desired shape prior we will use the following fact:
Given a point p on a cylinder C : (u, v) → R3 and its Darboux frame
(ê1 (u, v) , ê2 (u, v) , n̂ (u, v)) it is possible to estimate the Darboux frame
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(a) (b)

Fig. 3: (a): Estimation of Darboux frames on a cylinder following the nota-
tion from Equation 7. (b): The Heaviside function ψinfl defined in Equation
17.

(ê1 (u′, v′) , ê2 (u′, v′) , n̂ (u′, v′)) and its location relative to the former at any
point p′ on the same cylinder given a unit direction vector between them p̂p′.
Figure 3(a) shows this idea graphically.

We define with some abuse of notation the following Darboux frames:

(ê1, ê2, n̂) = (ê1 (u, v) , ê2 (u, v) , n̂ (u, v)) at p = X (u, v)

(ê′1, ê
′
2, n̂

′) = (ê1 (u′, v′) , ê2 (u′, v′) , n̂ (u′, v′)) at p′ = X (u′, v′) (7)

We assume without lost generality that the principal directions ê1, ê′1 cor-
respond to the eigenvalues kmin and k′min and ê2 and ê′2 to the eigenvalues
kmax and k′max, all at the points p and p′ respectively. We then state the
following:

1. The Darboux frame (ê′1, ê
′
2, n̂

′) can be estimated to be located at an
Euclidean distance d̃p from p such that:

d̃p (u, v, u′, v′) = 2
1

kmax
·

√√√√√√1−
(
p̂p′ · ê2

)2

1−
(
p̂p′ · ê1

)2 (8)

The function d̃p′ (u, v, u′, v′) can be defined similarly for p′5.

5 A more detailed explanation of the derivation of this estimated Euclidean distance
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2. The triplet
( ˜̂n′, ˜̂e′1, ˜̂e′2), defined as the estimate of (n̂′, ê′1, ê

′
2), is related

to (n̂, ê1, ê2) through the following equation:

˜̂n′ (u, v, u′, v′) = Rot (n̂)(ê1,αp)˜̂e′1 (u, v) = ê1 (9)˜̂e′2 (u, v, u′, v′) = Rot (ê2)(ê1,αp)

where the notation Rot (â)(b̂,α) refers to the rotation of a vector â

around a vector b̂ of an angle of α.

The angle αp can be obtained from

αp (u, v, u′, v′) = 2 arccos
(
n̂ · p̂p′2D

)
(10)

where p̂p′2D is the projection of the vector p̂p′ onto the 3D plane
spanned by the vectors n̂ and ê2.

Similar expressions can be obtained for the estimates from p′.

Using the above estimates, we can measure the fitting of the infinitesimal
neighborhoods of p and p′ to a perfect cylinder. In a perfect cylinder, the
estimated frames at p and p′ given by Equation 9 and the true Darboux
frames should coincide. The alignment between them can be measured with
the help of a function ψalig defined as:

ψalig (u, v, u′v′) = ψaligp
ψaligp′ (11)

with

ψaligp
(u, v, u′v′) =

1

2

((
n̂ · ˜̂n + ê1 · ˜̂e1 + ê2 · ˜̂e2

3

)
+ 1

)

ψaligp′ (u, v, u′v′) =
1

2

((
n̂′ · ˜̂n′ + ê′1 · ˜̂e′1 + ê′2 · ˜̂e′2

3

)
+ 1

)
(12)

where ψalig increases when the estimated frames at p and p′ get closer to
the true Darboux frames. The dot products used in Equation 12 measure

will be provided in the annex in future reports.
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Fig. 4: Alignment between frames
( ˜̂e1, ˜̂e2, ˜̂n) and (ê1, ê2, n̂). (a): Perfect

alignment (ψaligp
=1). (b): High alignment (ψaligp

≈ 1). (c): Medium align-
ment (0 < ψaligp

< 1).

the alignment betweeen a vector in one of the estimated frames and the same
vector in the corresponding true Darboux frame. The constants in Equation
12 were set so that ψalig, ψaligp

and ψaligp′ take values in the range [0, 1].
Higher values of ψalig mean better fitness of the infinitesimals neighborhoods
of p and p′ to a cylindrical shape. Figure 4 shows graphically this idea with

several examples where the alignment between
( ˜̂e1, ˜̂e2, ˜̂n) and (ê1, ê2, n̂) is

measured6.
Similarly, the accuracy of the estimates for the Euclidean distance be-

tween the Darboux frames at p and p′ can be measured with the help of a
function ψdist defined as:

ψdist (u, v, u′v′) =
1

|d̃p − d|
1

|d̃p′ − d|
(13)

where d is the true Euclidean distance between the points p = X (u, v) and p′

= X (u′, v′); and d̃p′ is the estimated Euclidean distance defined in Equation
8. The function ψdist takes values between zero and infinite and increases
when the estimates are accurate (d̃p ≈ d, d̃p′ ≈ d), and decreases when they
are not.

6 Similar examples could be given for the alignment between
(˜̂e′

1,
˜̂e′
2,
˜̂n′
)

and (ê′
1, ê

′
2, n̂

′).
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Finally we define the function ψjoint which will be refered as the “joint-
cylindricity” and measures how the infinitesimal neighborhoods of p and p′

fit to a unique perfect cylinder based on the previous measurements:

ψjoint (u, v, u′v′) = ψalig · ψdist (14)

where ψjoint takes values between zero and infinite and is monotonically in-
creasing as the surface neighborhoods of p and p′ fit to some cylinder.

We now define an energy functional Eentire that evaluates the cilindricity
of the surface X as follows:

Eentire (X) = −
∫∫∫∫

δD

ψjoint (u, v, u′v′) dudvdu′dv′ (15)

where δD now refers to the domain of the surface X. The functional Eentire

measures the fitting of the entire surface X to a perfect cylinder. From
this point we can proceed to measure the cylindricity of the surface locally.
The idea is to measure how easily the surface could be sliced in perfect
small cylinders of varying size. For this reason we define a new function
ψinfl that will help constrain the evaluation of the joint-cylindricity to a local
neighborhood around each point. This will define a constrained region of
mutual interaction between pairs of points in the surface that can be bounded
in a geodesic-sense as follows:

Esliced (X) = −
∫∫∫∫

δD

ψkjoint (u, v, u′v′)ψjinfl (u, v, u′v′) dudvdu′dv′ (16)

where the parameters j and k are scalar values that can be defined heuristi-
cally to balance the influence between ψjoint and ψinfl in the functional Esliced.
ψinfl is a Heaviside function that can be approximated as:

ψinfl (u, v, u′, v′) =


1 dgeo < dmax − ε
0 dgeo > dmax + ε
1
2

(
1− dgeo−dmax

ε
− 1

π
sin
(
π dgeo−dmax

ε

))
otherwise

(17)
where the following parameters are defined:

• dmax: A function that gives the maximum length of the local cylinder
as a function of the average of the radii of the cylinders that best fit
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the neighborhoods of X(u, v) and X(u′, v′) respectively. It is defined
as:

dmax (u, v) = K1
1

2

(
1

kmax

+
1

k′max

)
(18)

with K1 a parameter given a priori that can be determined heuristi-
cally. The quotient 1/kmax is the radius of the cylinder that best fits the
infinitesimal neighborhood of point X (u, v). Similarly, 1/k′max is the
radius of the cylinder that best fits the infinitesimal neighborhood of
point X (u′, v′). dmax is thus the function that enables for a multiscale
shape prior. The length of the local cylinders can be typically chosen
to be twice as big as their radii (i.e. K1 ≈ 2).

• dgeo: The geodesic riemannian distance between the points p = X (u, v)
and p′ = X (u′, v′) on the surface X defined by:

dgeo (u, v, u′, v′) = inf

∫ 1

0

||C ′(t)|| dt (19)

where C(t) : R → R2 is a smooth simple curve with t ∈ [0, 1], C(0) =
X(u, v), C(1) = X(u′, v′), C ′(t) ∈ TX, with TX the tangent space of
the surface X.

• ε: A strictly positive parameter defined as ε = K2dmax that controls
the approximation of the Heaviside function ψinfl. K2 is determined
heuristically. Values for K2 of 0.01 are typically considered [Rochery,
2005].

4.1 Combination with other segmentation terms

As was mentioned in section 2, the shape prior defined in Equation 16 needs
to be combined with image terms so that it can segment the volume data.
Similarly, we can train the segmentation process with several samples through
the use of learned shape priors such as the ones introduced in [Kim et al.,
2007a] or those discussed in Subsection 2.1. Grouping the image terms in
Eimg and the learned shape priors in ELSP, we can define an energy functional
Etotal that integrates the different functional terms:

Etotal = KimgEimg +KLSPELSP +KslicedEsliced (20)
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where the regularization parameters Kimg, KLSP and Ksliced can be chosen
heuristically. The minimization of Etotal would yield the surface that extracts
the vasculature.

4.2 Energy minimization

Finding the surface that separates the vasculature from the background for
each image according to our model is equivalent to finding the surface that
minimizes the functional of Equation 20. Since this problem cannot be gen-
erally solved analytically (statically) [Osher & Paragios, 2003], the minima
is found iteratively with the method of gradient descent. This way, the sys-
tem is initialized with initial conditions X = X0, and the gradient descent
equation yields the following Euler-Lagrange Equation:

δX

δt
= − δEtotal

δX (u, v)
(21)

The derivation of the gradient descent equations for the terms Eimg and
ELSP can be found in the literature [Kimmel & Bruckstein, 2003], [Chan &
Vese, 2001], [Kim et al., 2007b]. We thus focus here on the derivation of
δEsliced/δX (u, v), also known as the Gâteaux derivative of the functional
Esliced. The Gâteaux derivative can be obtained from the computation of the
Gâteaux differential δEsliced using the inner product defined for the Hilbert
space L2 as follows:

δEsliced = 〈 δEsliced

δX (u, v)
, δX (u, v)〉 =

∫∫
δD

δEsliced

δX (u, v)
· δX (u, v) dudv (22)

Similarly, the differential δEsliced is defined as the linear component of an
infinitesimal change ∆Esliced for a perturbation ∆X of the surface X7:

∆Esliced = −
∫∫∫∫

δD

δG (u, v, u′, v′) dudvdu′dv′ + o(||∆X||)

δEsliced = −
∫∫∫∫

δD

δG (u, v, u′, v′) dudvdu′dv′ (23)

7 It should be noted that X, the surface that represents the model, is the independent
variable and therefore ∆X = δX.
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where we have that G is ψkjoint (u, v, u′v′)ψjinfl (u, v, u′v′) from Equation 16.
The differential of G is given by the following multivariate Taylor series:

δG =GX(u,v) · δX(u, v) +GX(u′,v′) · δX(u′, v′) +GXu(u,v) · δXu(u, v)+

GXu(u′,v′) · δXu(u
′, v′) +GXv(u,v) · δXv(u, v) +GXv(u′,v′) · δXv(u

′, v′)+

GXuv(u,v) · δXuv(u, v) +GXuv(u′,v′) · δXuv(u
′, v′) +GXuu(u,v) · δXuu(u, v)+

GXuu(u′,v′) · δXuu(u
′, v′) +GXvv(u,v) · δXvv(u, v) +GXvv(u′,v′) · δXvv(u

′, v′)
(24)

where the notation Ga means the derivative of G with respect to a. Fi-
nally, Equation 22 can be obtained from combining Equations 23 and 24 and
integrating by parts.

The evolution of the surface X is done using level sets. The surface is
implicitly embedded in a 4D scalar field φ as its zero level set. The Level Set
Equation takes the following form for our problem [Osher & Paragios, 2003]:

δφ

δt
= −∇φ · n̂F = −∇φ · ∇φ

|∇φ|
F = −|∇φ|F (25)

where F is the speed of the surface in its normal direction n̂. A common
option for φ is the distance field of X since that translates into |∇φ| = 1.
The function F is all it is needed to run the level sets evolution and it is
given by the following equation8:

F = − δEtotal

δX (u, v)
· n̂ (26)

5 Results

The main author of the paper has already successfully tested the image term
Eimg introduced in [Caselles et al., 1997] on some of our datasets using Matlab
and ITK9. The same author is currently working on the Gâteaux differential
of the functional G (Equation 24) and will be implementing the geometric

8 We only need the speed that is normal to the surface. The tangent component reduces
to a diffeomorphism of the surface [Kimmel, 2003].

9 ITK is an open-source library for image segmentation and registration. It can be
obtained from http://www.itk.org/
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Undersegmentation
(a)

Oversegmentation

(b)

Fig. 5: Some of the common problems with classical active contours models
that our shape prior can help overcome. The figure shows segmentation
results for four datasets obtained with the energy functional introduced in
[Caselles et al., 1997]. (a): The active contour ended up connecting adjacent
vessels due to their proximity. (b) The active contour failed to extract a
vessel with the right diameter.

shape priors introduced here using ITK during his summer intership at The
Connectome Project10.

Figures 5 and 6 show the segmentation results for 3D angiographs of the
brain vasculature of some of our patients. These results were obtained for
values KLSP=0 and Ksliced=0 in Equation 26. The image term Eimg used in
this test is the one introduced in [Caselles et al., 1997].

Figures 5(a) and 5(b) show oversegmentation and undersegmentation
problems in regions where the image information is ambiguous. In Figure
5(a), the image term ended up connecting adjacent vessels due to their spa-
tial proximity and similar intensity profiles. In Figure 5(b), the segmentation
failed to extract the boundary of one of the vessels with the right diame-
ter. The shape prior presented in this paper could help avoid both of these

10 The Connectome Project is a research project at the research center of Initiative
in Innovative Computing at Harvard University: http://iic.harvard.edu/projects/
connectome.html
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Roughness

(a)

Leaks
(b)

Fig. 6: Some of the common problems with classical active contours mod-
els that our shape prior can help overcome. The figure shows segmentation
results for four datasets obtained with the energy functional introduced in
[Caselles et al., 1997]. (a) Classical first and second derivatives-based smooth-
ing cannot yield smooth boundaries at multiple scales. (b): Ambiguous image
information and blurry edges produce leaking if only image-based functionals
are used to drive the active contours.

problems by constraining the evolution to force local cylindricity in the ex-
ctracted surface. Figure 6(a) shows a close-up of an aneurysm. The surface
shows some roughness which cannot be alleviated at all scales solely with
the use of classic first and/or second-derivatives-based smoothing terms in
the functional. The shape prior we present here could alleviate this problem
since smoother surfaces should yield an overall better alignment of Darboux
frames, which is enforced by our mutiscale functional. Finally, Figure 6(b)
shows a pronounced undersegmentation effect due to leaks in the evolution
process in areas where the image information is ambiguous. The use of our
shape prior would penalize those leaks and constrain the evolution to only
generate cylindrical surfaces.
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6 Other applications and future work

The current shape prior can also be applied to the detection of aneurysms.
Aneurysms can be interpreted as a random surface deviation from the cylin-
drical geometry of healthy vasculature. The “joint-cylindricity” measure of
Equation 14 should yield higher values of energy for the local neighborhoods
around an aneurysm. No evolution equation is needed for this process. We
expect to test this idea soon.

A problem with the current model is that the prior penalizes deviations
from straight cylindrical shapes within a local neighborhood. The current
shape prior can be extended to work on plastic cylindric models that offer
no resistance to certain deformations. We are considering giving some plas-
ticity to the “joint-cylindricity” term of Equation 14. This would let the
local cylinders bend with no energy penalization. We would ideally like to
keep the cross section of the surface rigid while allowing deformations along
the longitudinal axis. These deformations would map to iso-contours of the
energy functional. We are looking into low-order elasticity equations for rods
using Darboux frames such as those introduced in [Ignat et al., 2000]. The
addition of plasticity would hopefully relax the evolution of the surface so
that it better adapts to the natural geometry of the vasculature.

Another drawback of the current shape prior is the modeling of junctions
and branches. In its present form, the shape prior penalizes junctions when
they do not have a cylindrical appearance. We believe that this restriction
could be alleviated by letting the cross sections to be also elliptical. These
unaccuracies are currently compensated in the literature with learned shape
priors and the image terms, but we expect to be able to model this geomet-
rically.

Finally, we are considering the use of phase fields as implicit 4D scalar
fields φ in which the surfaces are embedded. Phase fields have several advan-
tages over distance fields when combined with higher order active contours
[Rochery et al., 2005], [Horvath & Jermyn, 2007]. The gradient descent of
functionals embedded inside a phase field requires no initialization or re-
initialization; and there is no need for boundary extraction nor velocity ex-
tension beyond the boundary during the minimization process.
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