Technical Reports

Display by Author: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Search by for:
A Regularized Gauss-Newton Trust Region Approach To Imaging In Diffuse Optical Tomography
Authors: de Sturler, Eric; Kilmer, Misha E.
Date:June, 2010
Download Formats: [PDF]
We present a new algorithm for the solution of nonlinear least squares problems arising from parameterized imaging problems using diffuse optical tomographic data. Such problems lead to Jacobians that have relatively few columns, are ill-conditioned, and have function and Jacobian evaluations that are computationally expensive. Our algorithm is appropriate for any inverse or imaging problem with those characteristics. In fact, we expect our algorithm to be effective for more general problems with ill-conditioned Jacobians. The algorithm aims to minimize the total number of function and Jacobian evaluations by analyzing which spectral components of the Gauss-Newton direction should be discarded. The analysis considers for each component the reduction of the objective function and the contribution to the search direction, restricting the computed search direction to be within a trust-region. The result is a Truncated SVD-like approach to choosing the search direction. However, we do not necessarily discard components in order of decreasing singular value, and some components may be scaled to maintain fidelity to the trust-region model. Our algorithm uses the basic trust-region algorithm from. We prove that our algorithm is globally convergent to a critical point. Our numerical results show that the new algorithm generally outperforms competing methods applied to the DOT imaging problem, and regularly does so by a significant factor.

Faculty: for help posting a technical report please visit the User Guide.