
CHAPTER 8 Input Devices, Interaction Techniques, and

Interaction Tasks

This is the first of three chapters on designing and implementing graphical user-computer

interfaces. As computers become cheaper and more powerful, the major bottleneck for further

progress is not so much the need for better hardware or software as the need for better com-

munication between the computer and the human. For that reason, techniques for developing

high-quality user interfaces are moving to the forefront in computer science and are becoming

the "last frontier" in providing computing to a wide variety of users—as other aspects of tech-

nology continue to improve, but the human users remain the same.

Interest in the quality of user-computer interfaces is a recent part of the formal study of

computers. The emphasis until the early 1980s was on optimizing two scarce hardware

resources, computer time and memory. Program efficiency was the highest goal. With today’s

plummeting hardware costs and powerful graphics-oriented personal computing environments

(as discussed in Chapter XXX_1_XXX), the focus turns to optimizing user efficiency rather

than computer efficiency. Thus, although many of the ideas presented in this chapter require

additional CPU cycles and memory space, the potential rewards in user productivity and satis-

faction well outweigh the modest additional cost of these resources.

The quality of the user interface often determines whether users enjoy or despise a sys-

tem, whether the designers of the system are praised or damned, whether a system succeeds or

fails in the market. Indeed, in such critical applications as air-traffic control and nuclear-



- 2 -

power-plant monitoring, a poor user interface can contribute to and even cause accidents of

catastrophic proportions.

The desktop user-interface metaphor, with its windows, icons, and pull-down menus, all

making heavy use of raster graphics, is popular because it is easy to learn and requires little

typing skill. Most users of such systems are not computer programmers and have little sym-

pathy for the old-style difficult-to-learn keyboard-oriented command-language interfaces that

many programmers take for granted. The designer of an interactive graphics application must

be sensitive to users’ desire for easy-to-learn yet powerful interfaces.

In this chapter, we discuss the three basic low-level elements of user interfaces: input

devices, interaction techniques, and interaction tasks. Input devices were introduced in Chapters

XXX_2 and 4_XXX: here we elaborate on their use. An interaction technique is a way of

using an input device to enter a particular type of value into the computer (such as a pull-down

menu, slider, or text area), whereas interaction tasks classify the fundamental types of informa-

tion entered with the interaction techniques. Interaction techniques are the primitive building

blocks from which a user interface is crafted.

In Chapter 9, we discuss the issues involved in putting together the building blocks into a

complete user-interface design. The emphasis is on a top-down design approach; first, design

objectives are identified, and the design is then developed through a stepwise refinement pro-

cess. The pros and cons of various dialogue styles—such as direct manipulation, command

language, and form fill-in—are discussed, and design guidelines, the dos and don’ts of interface

design, are described and illustrated with various positive and negative examples. Human-

computer interaction is now a field in its own right, and many of the topics in Chapters 8 and

9 are covered in much greater depth elsewhere; see the texts by Baecker and

Buxton[BAEC95A], Hutchins, Hollan, and Norman [HUTC86], Mayhew[MAYH99A], Norman

[NORM88], Preece et al.[PREE94A], Rubenstein and Hersh [RUBE84], and



- 3 -

Shneiderman[SHNE97A]; the reference books by Boff et al.[BOFF86A], Helander[HELA88A],

and Salvendy[SALV97A]; and the survey by Foley, Wallace, and Chan [FOLE84].

Chapter 10 treats user-interface software. It is one thing to design graphic user interfaces

that are easy to learn and fast to use; it is quite another to implement them. Having the right

software tools and techniques is of critical importance. This chapter reviews the input-handling

capabilities of graphics systems and the internal structures and implementation strategies of

window managers, a critical element in many high-quality user interfaces, are described.

Finally, the key concepts of toolkits, user-interface management systems (UIMSs), interface

builders, and other types of user interface software tools are presented. High-level user inter-

face tools provide a means for interface designers and implementors quickly to develop, try

out, and modify their interface concepts, and thus decrease the cost of the essential testing and

refinement steps in user-interface development.

We focus in this chapter on input devices—those pieces of hardware by which a user

enters information into a computer system. Input devices for the earliest computers were

switches and knobs, jumper wires placed in patch boards, and punched cards. These were fol-

lowed by the teletype, the text-only forerunner of today’s interactive terminals. The mouse and

keyboard now predominate, but a wide variety of input devices can be used. We have already

discussed many such devices in Chapter XXX_4_XXX. In this chapter, we introduce additional

devices, and discuss reasons for preferring one device over another. In Section

XXX_8.1.6_XXX, we describe input devices oriented specifically toward 3D interaction. We

make use of the logical device categories of locator, keyboard, choice, valuator, and pick used

in Chapter XXX_4_XXX and in various device-independent graphics subroutine packages.

More information on input devices can be found in[JACO96A].

An interaction task is the entry of a unit of information by the user. Basic interaction

tasks are position, text, select, and quantify. The unit of information that is input in a position



- 4 -

interaction task is of course a position; the text task yields a text string; the select task yields

an object identification; and the quantify task yields a numeric value. A designer begins with

the interaction tasks necessary for a particular application. For each such task, the designer

chooses an appropriate interaction device and interaction technique. Many different interaction

techniques can be used for a given interaction task, and there may be several different ways of

using the same device to perform the same task. For instance, a selection task can be carried

out by using a mouse to select items from a menu, using a keyboard to enter the name of the

selection, pressing a function key, circling the desired command with the mouse, or even writ-

ing the name of the command with the mouse. Similarly, a single device can be used for dif-

ferent tasks: A mouse is often used for both positioning and selecting.

XXX_If drop logical devices, this paragraph should be deleted_XXX Interaction tasks

are distinct from the logical input devices discussed in earlier chapters. Interaction tasks are

defined by what the user accomplishes, whereas logical input devices categorize how that task

is accomplished by the application program and the graphics system. Interaction tasks are

user-centered, whereas logical input devices are a programmer and graphics-system concept.

By analogy with a natural language, single actions with input devices are similar to the

individual letters of the alphabet from which words are formed. The sequence of input-device

actions that makes up an interaction technique is analogous to the sequence of letters that

makes up a word. A word is a unit of meaning; just as several interaction techniques can be

used to carry out the same interaction task, so too words that are synonyms convey the same

meaning. An interactive dialogue is made up of interaction-task sequences, just as a sentence

is constructed from word sequences.

Interaction Hardware

Here, we introduce some interaction devices not covered in Section XXX_4.6_XXX, ela-

borate on how they work, and discuss the advantages and disadvantages of various devices.



- 5 -

The presentation is organized around the logical-device categorization of Section

XXX_4.6_XXX, and can be thought of as a more detailed continuation of that section.

XXX_Last sentence depends on ch. 4, else delete it_XXX

The advantages and disadvantages of various interaction devices can be discussed on

three levels: device, task, and dialogue (i.e., sequence of several interaction tasks). The device

level centers on the hardware characteristics per se, and does not deal with aspects of the

device’s use controlled by software. At the device level, for example, we note that one mouse

shape may be more comfortable to hold than another, and that a data tablet takes up more

space than a joystick.

At the task level, we might compare interaction techniques using different devices for the

same task. Thus, we might assert that experienced users can often enter commands more

quickly via function keys or a keyboard than via menu selection, or that users can pick

displayed objects more quickly using a mouse than they can using a joystick or cursor control

keys.

At the dialogue level, we consider not just individual interaction tasks, but also sequences

of such tasks. Hand movements between devices take time: Although the positioning task is

generally faster with a mouse than with cursor-control keys, cursor control keys may be faster

than a mouse if the user’s hands are already on the keyboard and will need to be on the key-

board for the next task in sequence after the cursor is repositioned. Dialogue-level issues are

discussed in Chapter 9, where we deal with constructing complete user interfaces from the

building blocks introduced in this chapter. Much confusion can be avoided when we think

about devices if we keep these three levels in mind.

Important considerations at the device level, discussed in this section, are the device foot-

prints (the footprint of a piece of equipment is the work area it occupies), operator fatigue, and

device resolution. Other important device issues—such as cost, reliability, and



- 6 -

maintainability—change too quickly with technological innovation to be discussed here. Also

omitted are the details of connecting devices to computers; by far the most common means is

the serial asynchronous RS-232 terminal interface, which makes hardware interfacing simple.

However, logical protocols for interfacing different devices, even of the same general kind,

differ widely; input devices are still far less plug-compatible than, for example, the MIDI dev-

ices used for electronic musical instruments.

Today, user-computer dialogues are rather one-sided. The amount of information or

bandwidth that is communicated from computer to user, particularly with computer graphics, is

typically far greater than the bandwidth from user to computer, This is partly due to human

abilities: we can receive visual images with very high bandwidth, but we are not very good at

generating them. New input devices are helping to redress this imbalance, but, compared with

the great strides made in computer graphics, there has been less progress in this area to date.

To be effective, input devices must be tailored to match the characteristics and abilities of

humans. It is, after all, much easier to modify a computer device than the human user; the

devices must fit the users, not the other way around. The principal means of computer input

from users today is through the hands, for example keyboards, mice, gloves, and 3D trackers.

Other limb movements are also considered, along with voice, and, finally, eye movements and

other physiological measurements that may be used as input in the future.

Locator Devices

It is useful to classify locator devices according to several independent characteristics,

including the property and the number of dimensions sensed[BUXT83A], and ergonomic

differences between seemingly similar devices[MACK90A, BLES90A].

Absolute devices, such as a data tablet or touch panel, have a frame of reference, or ori-

gin, and report positions with respect to that origin. Relative devices—such as mice, track-

balls, and velocity-control joysticks—have no absolute origin and report only changes from



- 7 -

their former position. A relative device can be used to specify an arbitrarily large change in

position: A user can move a mouse along the desk top, lift it up and place it back at its initial

starting position, and move it again. A data tablet can be programmed to behave as a relative

device: The first (x, y) coordinate position read after the pen goes from "far" to "near" state

(i.e., close to the tablet) is subtracted from all subsequently read coordinates to yield only the

change in x and y, which is added to the previous (x, y) position. This process is continued

until the pen again goes to "far" state.

Relative devices cannot be used readily for digitizing drawings, whereas absolute devices

can be. The advantage of a relative device is that the application program can reposition the

cursor anywhere on the screen.

With a direct device—such as a light pen or touch screen—the user points directly at the

screen with a finger or stylus; with an indirect device—such as a tablet, mouse, or joystick—

the user moves a cursor on the screen using a device located somewhere else. New forms of

eye-hand coordination must be learned for the latter; the proliferation of computer games, how-

ever, has created an environment in which most casual computer users have already learned

these skills. However, direct pointing can cause arm fatigue, especially among casual users.

A continuous device is one in which a smooth hand motion can create a smooth cursor

motion. Tablets, joysticks, and mice are all continuous devices, whereas cursor-control keys are

discrete devices. Continuous devices typically allow more natural, easier, and faster cursor

movement than do discrete devices. Most continuous devices also permit easier movement in

arbitrary directions than do cursor control keys.

The type of motion is another characteristic of locator devices. For example, a mouse

measures linear motion (in two dimensions); a knob, rotary. Devices can also differ in the

physical property sensed. A mouse measures position; it moves when it is pushed. An

isometric joystick remains nearly stationary and simply reports the pressure being applied to it;



- 8 -

it measures force. For a rotary device, the corresponding properties are angle and torque.

Devices might operate in one, two, or three dimensions. A mouse measures two linear dimen-

sions; a knob measure one (angular) dimension; and a Polhemus tracker measures three linear

dimensions and three angular. The device can use position or rate control. Moving a mouse

changes the position of the cursor. A joystick, however, can be used to control cursor position

directly or it can control the rate of speed at which the cursor moves. Since its total range of

motion is typically fairly small compared to a display screen, position control is imprecise.

However, rate control requires a more complex relationship between the user’s action and the

result on the display and is therefore more difficult to operate. Finally, motion in several

dimensions may be integral or separable. A mouse allows easy, coordinated movement across

both dimensions simultaneously (integral); while a pair of knobs (as in an Etch-a-Sketch

XXX_(TM)?_XXXtoy) does not (separable)[JACO94A].

Speed of cursor positioning with a continuous device is affected by the control-to-display

ratio, commonly called the C/D ratio [CHAP72]; it is the ratio between the movement of the

input device and the corresponding movement of the object it controls. For example, if a

mouse (the control) must be moved one inch on the desk in order to move a cursor two inches

on the screen (the display), the device has a 1:2 control-display ratio. A large ratio is good for

accurate positioning, but makes rapid movements tedious; a small ratio is good for speed but

not accuracy and requires less desk space. For a relative positioning device, the ratio need not

be constant, but can be changed by an accelerator as a function of control-movement speed.

Rapid movements indicate the user is making a gross hand movement, so a small ratio is used;

as the speed decreases, the C/D ratio is increased. This allows more efficient use of desk

space, but it can disturb the otherwise straightforward physical relationship between mouse

movement and cursor movement[JELL90A]. Of course, with a direct input device, such as a

touch screen, the C/D ratio is always 1:1.



- 9 -

Fitts’ Law provides a way to predict the speed with which the user can move his or her

hand to a target, and is a key foundation in input design. [FITT54][CARD83A] It shows that

the time required to move is based on the distance to be moved and the size of the destination

target. The time is proportional to the logarithm of of the distance divided by the target width.

This means there is a tradeoff between distance and target width: it takes as much additional

time to reach a target that is twice as far away as it does to reach one that is half as large. Dif-

ferent manual input devices give rise to different proportionality constants in the equation.

Some thus give better overall performance, and others, better performance either for long

moves or short moves, but the tradeoff between distance and target size remains.

Precise positioning is difficult with direct devices, if the arm is unsupported and extended

toward the screen. Try writing your name on a blackboard in this pose, and compare the result

to your normal signature. This problem can be mitigated if the screen is angled close to hor-

izontal. Indirect devices, on the other hand, allow the heel of the hand to rest on a support, so

that the fine motor control of the fingers can be used more effectively. Not all continuous

indirect devices are equally satisfactory for drawing, however. Try writing your name with a

joystick, a mouse, and a tablet pen stylus. Using the stylus is fastest, and the result is most

pleasing.

Today, the mouse is the most widely used device for inputting 2D positions, but it was

not the first such device developed. It supplanted devices such as the joystick, trackball, light-

pen, and arrow keys and, in an early example of the application of HCI research to practice,

was demonstrated to give fastest performance and closest approximation to Fitts’ Law com-

pared to alternative devices at the time[CARD78A]. Despite its popularity, some specific, con-

strained situations call for alternative devices. For example, the Navy uses trackballs instead of

mice on shipboard, because the rolling of the ship makes it difficult to keep a mouse in place.

Laptop computers use small trackballs, touch-sensitive pads, or tiny joysticks because they are



- 10 -

more compact, and pocket computers typically use a stylus and touchscreen. A variant of the

mouse contains a sensor that also measures when the user’s hand is touching the mouse, to

provide additional, passive input from the user[HINC99A].

Other interesting positioning devices use other parts of the body. The mole is an experi-

mental foot-operated locator device that uses a footrest suspended on two sets of

pivots[PEAR86A]. While control is less precise than a manually-operated mouse, it leaves the

hands free for additional operations. The Personics headmouse used a head-mounted set of

three microphones to measure the distance to a sound source, translating small rotational move-

ments of the head into cursor movements, though this often requires the neck to be held in an

awkward fixed position. Another use of head movement is to perform a function more akin to

the use of head movement in the natural world—panning and zooming over a display[HIX95A]

While the main role of the eye in computer graphics is to receive output from the com-

puter. Eye trackers can determine where the eye is pointing and hence can cause a cursor to

move or the object pointed at to be selected [BOLT80; BOLT84; WARE87][BOLT81A].

Because people move their eyes rapidly and almost unconsciously, this can be very effective,

but it requires careful design of appropriate interaction techniques to avoid annoying the user

with unwanted responses to his actions, the ‘‘Midas Touch’’ problem[JACO91A]. Figure 8.1

shows an eye tracker in use, observing the user’s eye through the mirror located under the

display screen. Today these devices are less stable and more expensive than more traditional

devices, and thus would normally be considered for only hands-free applications, though the

technology is steadily improving. Finally, the 3D positioning devices discussed in Section

XXX_8.1.6_XXX can also be used for 2D positioning by ignoring one of their outputs.

Keyboard Devices

The well-known QWERTY keyboard has been with us for many years. It is ironic that

this keyboard was originally designed to slow down typists, so that the typewriter hammers



- 11 -

would not be so likely to jam. Studies have shown that the newer Dvorak keyboard

[DVOR43], which places vowels and other high-frequency characters under the home positions

of the fingers, is somewhat faster than is the QWERTY design [GREE87]. It has not been

widely accepted. Alphabetically organized keyboards are sometimes used when many of the

users are nontypists. But more and more people are being exposed to QWERTY keyboards,

and experiments have shown no advantage of alphabetic over QWERTY keyboards [HIRS70].

In recent years, the chief force serving to displace the keyboard has been the shrinking size of

computers, with laptops, notebooks, palmtops, and personal digital assistants. The typewriter

keyboard is becoming the largest component of such pocket-sized devices, and often the main

component standing in the way of reducing its overall size.

The chord keyboard has five keys similar to piano keys, and is operated with one hand,

by pressing one or more keys simultaneously to "play a chord." With five keys, 31 different

chords can be played. Learning to use a chord keyboard (and other similar stenographer style

keyboards) takes longer than learning the QWERTY keyboard, but skilled users can type quite

rapidly, leaving the second hand free for other tasks. This increased training time means, how-

ever, that such keyboards are not suitable substitutes for general use of the standard

alphanumeric keyboard. Again, as computers become smaller, the benefit of a keyboard that

allows touch typing with only five keys may come to outweigh the additional difficulty of

learning the chords.

Other keyboard-oriented considerations, involving not hardware but software design, are

arranging for a user to enter frequently used punctuation or correction characters without need-

ing simultaneously to press the control or shift keys, and assigning dangerous actions (such as

delete) to keys that are distant from other frequently used keys.



- 12 -

Valuator Devices

A hardware potentiometer, like the volume control on a radio, can be used to input a

scalar value. Some valuators are bounded, like the radio volume control—the dial can be

turned only so far before a stop is reached that prevents further turning. A bounded valuator

inputs an absolute quantity. A continuous-turn potentiometer, on the other hand, can be turned

an unbounded number of times in either direction. Given an initial value, the unbounded poten-

tiometer can be used to return absolute values; otherwise, the returned values are treated as

relative values. The provision of some sort of echo enables the user to determine what relative

or absolute value is currently being specified. The linear or slide potentiometer is inherently

bounded. Some systems use a single hardware potentiometer that can be assigned to different

input values at different times under software control. The issue of C/D ratio, discussed in the

context of positioning devices, also arises in the use of slide and rotary potentiometers to input

values.

Choice Devices

Function keys are a common choice device. These may be permanently labeled, special-

purpose pushbuttons, or they may have labels that can be changed under computer control. An

extreme, but effective use of permanently labeled function keys is found in the cash registers of

fast-food restaurants, where a large array of special-purpose function keys is provided, one for

every possible item that can be purchased. Variable labels for function keys can be provided

by placing the keys near the edge of the display and using the adjacent portion of the display

to indicate the key labels, or by providing small alphanumeric LED or LCD displays above

each key. Their placement affects their usability: keys mounted on the CRT bezel are harder

to use than are keys mounted in the keyboard or in a nearby separate unit.



- 13 -

Other Devices

Here we discuss some of the less common, and in some cases experimental, 2D interac-

tion devices. Voice recognizers, which are useful because they free the user’s hands for other

uses, apply a pattern-recognition approach to the waveforms created when we speak a word.

The waveform is typically separated into a number of different frequency bands, and the varia-

tion over time of the magnitude of the waveform. in each band forms the basis for the pattern

matching. However, mistakes can occur in the pattern matching, so it is especially important

that an application using a recognizer provide convenient correction capabilities.

Voice recognizers differ in whether or not they must be trained to recognize the

waveforms of a particular speaker, and whether they can recognize connected speech as

opposed to single words or phrases. Speaker-independent recognizers have very limited

vocabularies—typically, they include only the ten digits and 50 to 100 words. Some discrete-

word recognizers can recognize vocabularies of thousands of different words after appropriate

training. But if the user has a cold, the recognizer must be retrained. The user of a discrete-

word recognizer must pause for a fraction of a second after each word to cue the system that a

word end has occurred. The more difficult task of recognizing connected speech from a lim-

ited vocabulary can now be performed by off-the-shelf hardware and software, but with some-

what less accuracy. As the vocabulary becomes larger, however, artificial-intelligence tech-

niques are needed to exploit the context and meaning of a sequence of sentences to remove

ambiguity. A few systems with vocabularies of 20,000 or more words can recognize sentences

such as "Write Mrs. Wright a letter right now!"

Voice synthesizers create waveforms that approximate, with varying degrees of realism,

spoken words[KLAT87A, VAN95A]. The simplest synthesizers use phonemes, the basic sound

units that form words. This approach creates an artificial-sounding, inflection-free voice. More

sophisticated phoneme-based systems add inflections. Other systems actually play back digi-



- 14 -

tized spoken words or phrases. They sound realistic, but require more memory to store the

digitized speech.

Speech is best used to augment rather than to replace visual feedback, and is most effec-

tive when used sparingly. For instance, a training application could show a student a graphic

animation of some process, along with a voice narration describing what is being seen. See

[SIMP87] for additional guidelines for the effective application of speech recognition and gen-

eration in user-computer interfaces, and[SCHM94A] for an introduction to speech interfaces,

and[RABI93A] for speech recognition technology.

The data tablet has been extended in several ways. Many years ago, Herot and Negro-

ponte used an experimental pressure-sensitive stylus [HERO76]: High pressure and a slow

drawing speed implied that the user was drawing a line with deliberation, in which case the

line was recorded exactly as drawn; low pressure and fast speed implied that the line was being

drawn quickly, in which case a straight line connecting the endpoints was recorded. Some com-

mercially available tablets sense not only stylus pressure but orientation as well. The resulting

5 degrees of freedom reported by the tablet can be used in various creative ways. For example,

Bleser, Sibert, and McGee implemented the GWPaint system to simulate various artist’s tools,

such as an italic pen, that are sensitive to pressure and orientation [BLES88a]. Figure 8.2

shows the artistic creativity thus afforded.

An experimental touch tablet, developed by Buxton and colleagues, can sense multiple

finger positions simultaneously, and can also sense the area covered at each point of contact

[LEE85a]. The device is essentially a type of touch panel, but is used as a tablet on the work

surface, not as a touch panel mounted over the screen. The device can be used in a rich variety

of ways [BUXT85]. Different finger pressures correlate with the area covered at a point of con-

tact, and are used to signal user commands: a light pressure causes a cursor to appear and to

track finger movement; increased pressure is used, like a button-push on a mouse or puck, to



- 15 -

begin feedback such as dragging of an object; decreased pressure causes the dragging to stop.

Emerging Devices

A video camera and frame grabber can be used as an input device in interesting ways.

For example the computer can determine relatively easily from camera input whether the user

is still sitting in the chair, facing toward the computer or not, using the telephone, or talking to

another person in the room. With more sophisticated pattern recognition for interpreting the

images, the computer might be able to read the user’s facial expression or body posture or

determine what objects the user is holding and manipulating.

A camera can also be used to identify objects in the real world, so that when the user

manipulates a real object, the computer can make a corresponding update to the object in the

computer. Other techniques can also be used for identifying the objects, such as bar codes,

color codes, and radio frequency identification (RFID) tags. Tangible user interfaces use these

approaches to allow the user to interact with the computer by manipulating real

objects[ISHI97A, WANT99A, FITZ95A]. A camera can also view the objects on a desk and

allow them to be used as computer inputs[NEWM92A]. It can also be located behind a rear

projection screen, aimed toward the screen, to watch the user’s hands or a stylus touching the

front of the screen[MATS97A] and other ways. Figure 8.3 shows the metaDESK[ISHI97A],

on which the user can interact with the computer by moving the instruments, objects, and

lenses around on the physical desk.

Looking toward future input devices, passive measurement of various physiological

characteristics of the user can be input and used to modify the computer’s dialogue with its

user. Blood pressure, heart rate[ROWE98A], respiration rate, eye pupil diameter, and galvanic

skin response (the electrical resistance of the skin) can all be measured easily, though accurate

instantaneous interpretation within a user-computer dialogue is an open question. Some input

can also be obtained from electro-encephalogram (EEG) signals, though these are even more



- 16 -

difficult to interpret automatically. In fact, in the more distant future, the final frontier in user

input and output devices may be to measure and stimulate neurons directly, rather than relying

on the body’s transducers. The computer would be more like a mental prosthesis, where the

explicit input and output tasks disappear, and the communication is direct, from brain to com-

puter.

The decreasing costs of input devices and the increasing availability of computer power

for pattern recognition are likely to lead to the continuing introduction of novel interaction dev-

ices. However, the gestation times for these have been long. Douglas Engelbart invented the

mouse in the 1960s[ENGE68A]. It took approximately 10 years before it was found in many

other research labs and nearly 20 before it was widely used in applications outside the research

world. The input mechanisms in use 20 years from now may spring from devices and

approaches that today appear to be impractical laboratory curiosities.

3D Interaction Devices

Some of the 2D interaction devices are readily extended to 3D. Joysticks can have a

shaft that twists for a third dimension (see Fig. XXX_4.38_XXX). Trackballs can be made to

sense rotation about the vertical axis in addition to that about the two horizontal axes. In both

cases, however, there is no direct relationship between hand movements with the device and

the corresponding movement in 3-space.

The Spaceball (see Color Plate I.14) is a rigid sphere containing strain gauges. The user

pushes or pulls the sphere in any direction, providing 3D translation and orientation, like a 3D

version of a rate-controlled isometric joystick. In this case, at least the directions of movement

correspond to the user’s attempts at moving the rigid sphere, although the hand does not actu-

ally move.

A number of devices, on the other hand, can measure actual 3D hand movements. Mag-



- 17 -

netic trackers, such as the Polhemus 3Space (shown in Fig. 8.4) and Ascension Bird devices

sense three-dimensional position and orientation using electromagnetic coupling between three

transmitter antennas and three receiver antennas. The transmitter antenna coils, which are at

right angles to one another to form a Cartesian coordinate system, are pulsed in turn. The

receiver has three similarly arranged receiver antennas; each time a transmitter coil is pulsed, a

current is induced in each of the receiver coils. The strength of the current depends both on the

distance between the receiver and transmitter and on the relative orientation of the transmitter

and receiver coils. The combination of the nine current values induced by the three successive

pulses is used to calculate the 3D position and orientation of the receiver. The device func-

tions like the three-dimensional equivalent of a data tablet in that it provides the absolute posi-

tion of the receiver along three axes in space, along with its orientation, in the form of angles

of rotation about the three axes—heading, pitch, and roll. The receiver of the 3D tracker is

typically a one-inch plastic cube, which can be held in the hand, or attached to a glove, foot,

the user’s head (for virtual reality), or to passive props[HINC94A] that the user will manipu-

late. The Logitech 3D Mouse uses ultrasonic ranging for this same purpose. It typically pro-

vides less precision and fewer axes, but is less expensive and more robust in the face of mag-

netic interference, such as that from a CRT. Zhai and Milgram[ZHAI98A] evaluate and com-

pare different categories of 3D input devices.

Data glove input devices report the configuration of the fingers of the user’s hand. As

shown in Fig. 8.5, the CyberGlove device is a glove covered with small, lightweight sensors.

Each sensor is a short length of fiberoptic cable, with a light-emitting diode (LED) at one end

and a phototransistor at the other end. The surface of the cable is roughened in the area where

it is to be sensitive to bending. When the cable is flexed, some of the LED’s light is lost, so

less light is received by the phototransistor. Other glove technologies use mechanical sensors.

All of them normally incorporate a 3D position and orientation sensor records hand move-



- 18 -

ments. Wearing such a glove, a user can grasp objects, move and rotate them, and then release

them, thus providing very natural interaction in 3D [ZIMM87]. Color Plate I.15 illustrates this

concept.

These devices are typically combined for use in a virtual reality interface, a completely

computer-generated environment with realistic appearance, behavior, and interaction techniques

[FOLE87]. A 3D magnetic tracker is used to sense head position and orientation, which then

determines the position of the virtual camera, which generates the scene to be displayed in the

user’s head-mounted display, typically in stereo. The result is the illusion of a realistic, three-

dimensional world that surrounds the user wherever he or she looks. Figure 8.6 shows a user

wearing a head-mounted display with an attached 3D tracker. The user can also reach out into

this world and touch the objects in it, using a second 3D tracker attached to the hand and grasp

them using a glove. However, the user will not feel the object when his or her hand touches it.

Mechanisms for providing computer-controlled force and tactile feedback are a topic of current

research. Figure 8.7 shows one such device, the Phantom[SALI99A].

All these systems work in relatively small volumes—8 to 27 cubic feet. Optical sensors

can give even greater freedom of movement. In one system[AZUM94A], an array of tiny

flashing infrared LEDs is placed in the ceiling throughout the tracked area, and the user wears

a set of small, orthogonally arranged optical sensors that receive the light pulses and determine

the user’s location. Another approach is to use sensors that observe the user, without requiring

him or her to hold or wear anything. Camera-based locator devices offer the promise of doing

this, but today are still limited. A single-camera system is limited to its line of sight; more

cameras can be added but full coverage of an area may require many cameras and a way to

switch among them smoothly. This approach depends upon using image processing to inter-

pret the picture of the user and extract the desired hand or body position. One of the first such

systems was Krueger’s [KRUE83] sensor for recording hand and finger movements in 2D. A



- 19 -

television camera records hand movements; image-processing techniques of contrast-

enhancement and edge detection are used to find the outline of the hand and fingers. Different

finger positions can be interpreted as commands, and the user can grasp and manipulate

objects, as in Color Plate I.17. This technique could be extended to 3D through use of multiple

cameras. Maes[MAES95A] shows another example of this approach. Schmandt[SCHM83A]

built a system to allow users to manually manipulate and interact with objects in a 3D com-

puter space using a 3D wand. Again a half-silvered mirror was used to project the computer

space over the user’s hand and the input device.

Today, all of these 3D devices are still limited compared to a mouse or data tablet—in

latency, precision, stability, susceptibility to interference, or number of available samples per

second.

Device-Level Human Factors

Not all interaction devices of the same type are equivalent from a human-factors point of

view (see [BUXT86] for an elaboration of this theme). For instance, mice differ in important

ways. First, the physical shapes are different, ranging from a hemisphere to an elongated, low-

profile rectangle. Buttons are positioned differently. Buttons on the side or front of a mouse

may cause the mouse to move a bit when the buttons are pressed; buttons on the top of a

mouse do not have this effect. The mouse is moved through small distances by wrist and finger

movements, with the fingers grasping the mouse toward its front. yet the part of the mouse

whose position is sensed is often toward the rear, where fine control is least possible. In fact, a

small leftward movement of the mouse under the fingertips can include a bit of rotation, so that

the rear of the mouse, where the position sensors are, actually moves a bit to the right!

There is great variation among keyboards in design parameters, such as keycap shape,

distance between keys, pressure needed to press a key, travel distance for key depression, key

bounce, auditory feedback, the feeling of contact when the key is fully depressed, and the



- 20 -

placement and size of important keys such as "return" or "enter." Improper choice of parame-

ters can decrease productivity and increase error rates. For example, making the "return" key

too small invites errors. Fortunately, keyboards for desktop computers have largely become

standardized, but laptop and palmtop computer keyboards still vary considerably.

The tip of a short joystick shaft moves through a short distance, forcing use of a small

C/D ratio; if we try to compensate by using a longer joystick shaft, the user cannot rest the

heel of her hand on the work surface and thus does not have a steady platform from which to

make fine adjustments. Accuracy and speed therefore suffer.

The implication of these device differences is that it is not enough for a user interface

designer to specify a particular device class; specific device characteristics must be defined.

Unfortunately, not every user interface designer has the luxury of selecting devices; often, the

choice has already been made. In some situations, such as a new airplane cockpit or a surgical

teleoperator, the user interface designer can choose whatever input devices best facilitate opera-

tor performance. In many other situations, such as a software application to be used on stan-

dard workstations, the designer can not choose the devices. In this case, the designer does

decide which tasks should be assigned to the mouse and which to the keyboard and which

interaction techniques should be used for each task. If we begin our design with each interac-

tion task and then select the best interaction device and interaction technique for each one indi-

vidually, the result may be a poor overall design, with too many different or inconsistent types

of devices or dialogues. It is better not to surround the user with many infrequently-used dev-

ices, to reduce the time spent switching between devices.

Graphical Interaction Techniques

We consider next the principal interaction techniques in use in today’s graphical user

interfaces for performing basic interaction tasks using the interaction devices discussed in the

previous section. An interaction technique is a way of using a physical input/output device to



- 21 -

perform a generic interaction task in a human-computer dialogue. It represents an abstraction

of some common class of interactive task, for example, choosing one of several objects shown

on a display screen, so it is not bound to a single application.

The basic interaction tasks for interactive graphics are positioning, selecting, entering text,

and entering numeric quantities. Some interaction techniques for each are discussed, but there

are many more, and new ones continue to be developed. Where possible, the pros and cons of

each technique are discussed; remember that a specific interaction technique may be good in

some situations and poor in others.

Basic interaction tasks are indivisible; that is, if they were decomposed into smaller units

of information, the smaller units would not in themselves be meaningful to the application.

With a basic interaction task, the user of an interactive system enters a unit of information that

is meaningful in the context of the application. How large or small is such a unit? For instance,

does moving a positioning device a small distance enter a unit of information? yes, if the new

position is put to some application purpose, such as repositioning an object or specifying the

endpoint of a line. No, if the repositioning is just one of a sequence of repositionings as the

user moves the cursor to place it on top of a menu item: here, it is the menu choice that is the

unit of information.

Position

The position interaction task involves specifying an (x, y) or (x, y, z) position to the appli-

cation program. This might be done by moving a screen cursor to the desired location and

then pushing a button, or typing the desired position’s coordinates. The positioning device can

be direct or indirect, continuous or discrete, absolute or relative. In addition, cursor-movement

commands can also be typed explicitly on a keyboard, as Up, Left, and so on, or the same

commands can be spoken to a voice-recognition unit. Furthermore, techniques can be used

together—a mouse controlling a cursor can be used for approximate positioning, and arrow



- 22 -

keys can be used to move the cursor a single screen unit at a time for precise positioning.

A number of general issues transcend any one interaction technique for positioning. We

first discuss the general issues; we introduce specific positioning techniques as illustrations.

Coordinate systems

An important issue in positioning is the coordinate system in which feedback is provided.

If a locator device is moved to the right to drag an object, in which direction should the object

move? There are at least three possibilities: the object could move along the increasing x direc-

tion in the screen-coordinate system, along the increasing x direction in world coordinates, or

along the increasing x direction in the object’s own coordinate system.

The first alternative, increasing screen-coordinate x direction, is the correct choice. For the

latter two options, consider that the increasing x direction need not in general be along the

screen coordinates’ x axis. For instance, if the viewing transformation includes a 180

XXX_DEGREE_XXX rotation, then the world coordinates’ x axis goes in the opposite direc-

tion to the screen coordinates’ x axis, so that the right-going movement of the locator would

cause a left-going movement of the object. Try positioning with this type of feedback by turn-

ing your mouse 180 XXX_DEGREE_XXX! Such a system would be a gross violation of the

human-factors principle of stimulus-response compatibility (S-R compatibility), which states

that system responses to user actions must be in the same direction or same orientation, and

that the magnitude of the responses should be proportional to the actions. Similar problems can

occur if a data tablet is rotated with respect to the screen.

Resolution

The resolution required in a positioning task may vary from one part in a few hundred to

one part in millions. Clearly, keyboard typing of an (x, y) pair can provide unlimited resolu-

tion: The typed digit strings can be as long as necessary. What resolution can cursor-movement



- 23 -

techniques achieve? The resolution of tablets, mice, and so on is typically as least as great as

the 500 to 2000 resolvable units of the display device. By using the window-to-viewport

transformation to zoom in on part of the world, it is possible to arrange for one unit of screen

resolution to correspond to an arbitrarily small unit of world-coordinate resolution.

Some touch panels are accurate to 1000 units—but the user’s finger is about 1/2 inch

wide, so how can this accuracy be achieved? Using the first position the finger touches as the

final position does not work. The user must be able to drag a cursor around on the screen by

moving or rolling his finger while it is in contact with the touch panel. Because the finger

obscures the exact position being indicated, the cursor arms can be made longer than normal,

or the cursor can be offset from the actual point of contact. These strategies improve the preci-

sion attainable with a finger-operated touch screen[SEAR91A]. Nevertheless, the touch panel

is not generally recommended for frequent high-resolution positioning tasks.

Grids

An important visual aid in many positioning tasks is a grid superimposed (perhaps at low

intensity) on the work area, to help in aligning positions or objects. It can also be useful to

force endpoints of primitives to fall on the grid, as though each grid point were surrounded by

a gravity field. Gridding helps users to generate drawings with a neat appearance. To enforce

gridding, the application program simply rounds locator coordinates to the nearest grid point

(in some cases, only if the point is already close to a grid point). Gridding is usually applied

in world coordinates. Although grids often are regular and span the entire display, irregular

grids, different grids in different areas, as well as rotated grids, are all useful in creating figures

and illustrations [BIER86a; FEIN82a].

Feedback



- 24 -

Positioning tasks can be spatial or linguistic. In a spatial positioning task, the user

knows where the intended position is, in spatial relation to nearby elements, as in drawing a

line between two rectangles or centering an object between two others. In a linguistic position-

ing task, the user knows the numeric values of the (x, y) coordinates of the position. In the

former case, the user wants feedback showing the actual position on the screen; in the latter

case, the coordinates of the position are needed. If the wrong form of feedback is provided, the

user must mentally convert from one form to the other. Both forms of feedback can be pro-

vided by displaying both the cursor and its numeric coordinates, as in Fig. 8.8.

Direction preference

Some positioning devices allow unconstrained movement across all dimensions diago-

nally (integral dimensions). Others allow motion only in one dimension at a time (separable

dimensions). For example, a trackball allows integral motion, but certain joysticks and

joyswitches give more resistance to movements off the principal axes than they do to those on

the axes, forcing separable motion. The latter is useful only if the positioning task itself is

generally constrained to horizontal and vertical movements[JACO94A].

Learning time

Learning the eye-hand coordination for indirect methods is essentially the same process as

learning to steer a car. Learning time is a common concern but turns out to be a minor issue.

Card and colleagues [CARD78] studied the mouse and joystick. They found that, although

practice improved both error rates and speed, even the novices’ performance was quite good.

For instance, selection time with a mouse (move cursor to target, press button) decreased with

extensive practice from 2.2 to 1.7 seconds. It is true, however, that some users find the indirect

coordination difficult at first.



- 25 -

One specific type of positioning task is continuous positioning, in which a sequence of

positions is used to define a curve. The path taken by the locator is approximated by a con-

nected series of very short lines, as shown in Fig. 8.9. So that the appearance of smoothness is

maintained, more lines may be used where the radius of curvature is small, or individual dots

may be displayed on the cursor’s path, or a higher-order curve can be fitted through the points

(see Chapter XXX_11_XXX).

Precise continuous positioning is easier with a stylus than with a mouse, because the

stylus can be controlled precisely with finger muscles, whereas the mouse is controlled pri-

marily with wrist muscles. Digitizing of drawings is difficult with a mouse for the same rea-

son; in addition, the mouse lacks both an absolute frame of reference and a cross-hair. On the

other hand, a mouse requires only a small table area and is less expensive than a tablet.

Select—Variable-Sized Set of Choices

The selection task is that of choosing an element from a choice set. Typical choice sets

are commands, attribute values, object classes, and object instances. For example, the line-style

menu in a typical paint program is a set of attribute values, and the object-type (line, circle,

rectangle, text, etc.) menu in such programs is a set of object classes. Some interaction tech-

niques can be used to select from any of these four types of choice sets: others are less general.

For example, pointing at a visual representation of a set element can serve to select it, no

matter what the set type. On the other hand, although function keys often work quite well for

selecting from a command, object class, or attribute set, it is difficult to assign a separate func-

tion key to each object instance in a drawing, since the size of the choice set is variable, often

is large (larger than the number of available function keys), and changes quite rapidly as the

user creates and deletes objects.

We use the terms (relatively) fixed-sized choice set and varying-sized choice set. The first

term characterizes command, attribute, and object-class choice sets; the second, object-instance



- 26 -

choice sets. The "relatively" modifier recognizes that any of these sets can change as new com-

mands, attributes, or object classes (such as symbols in a drafting system) are defined. But the

set size does not change frequently, and usually does not change much. Varying-sized choice

sets, on the other hand, can become quite large, and can change frequently.

In this section, we discuss techniques that are particularly well suited to potentially large

varying-sized choice sets; these include naming and pointing. In the following section, we dis-

cuss selection techniques particularly well suited to (relatively) fixed-sized choice sets. These

sets tend to be small, except for the large (but relatively fixed-sized) command sets found in

complex applications.

Selecting objects by naming

The user can type the choice’s name. The idea is simple, but what if the user does not

know the object’s name, as could easily happen if hundreds of objects are being displayed, or

if the user has no reason to know names? Nevertheless, this technique is useful in several situa-

tions. First, if the user is likely to know the names of various objects, as a fleet commander

would know the names of the fleet’s ships, then referring to them by name is reasonable, and

can be faster than pointing, especially if the user might need to scroll through the display to

bring the desired object into view. Second, if the display is so cluttered that picking by point-

ing is difficult and if zooming would be distracting, then naming may be a choice of last

resort. If clutter is a problem, then a command to turn object names on and off would be use-

ful.

Typing allows us to make multiple selections through wild-card or don’t-care characters,

if the choice set elements are named in a meaningful way. Selection by naming is most

appropriate for experienced, regular users, rather than for casual, infrequent users.

If naming by typing is necessary, a useful form of feedback is to display, immediately



- 27 -

after each keystroke, the list (or partial list, if the full list is too long) of names in the selection

set matching the sequence of characters typed so far. This can help the user to remember just

how the name is spelled, if he has recalled the first few characters. As soon as an unambiguous

match has been typed, the correct name can be automatically highlighted on the list. Alterna-

tively, the name can be automatically completed as soon as an unambiguous match has been

typed. This technique, called autocompletion, is sometimes disconcerting to new users, so cau-

tion is advisable. A separate strategy for name typing is spelling correction (sometimes called

Do What I Mean, or DWIM)[TEIT79A]. If the typed name does not match one known to the

system, other names that are close to the typed name can be presented to the user as alterna-

tives. Determining closeness can be as simple as searching for single-character errors, or can

include multiple-character and missing-character errors.

With a voice recognizer, the user can speak, rather than type, a name, abbreviation, or

code. Voice input is a simple way to distinguish commands from data: Commands are entered

by voice, the data are entered by keyboard or other means. In a keyboard environment, this

eliminates the need for special characters or modes to distinguish data and commands.

Selecting objects by pointing

Any of the pointing techniques mentioned in the introduction to Section XXX_8.2_XXX

can be used to select an object, by first pointing and then indicating (typically via a button-

push) that the desired object is being pointed at. But what if the object has multiple levels of

hierarchy, as did the robot of Chapter XXX_7_XXX? If the cursor is over the robot’s hand, it

is not clear whether the user is pointing at the hand, the arm, or the entire robot. Commands

like Select-robot and Select-arm can be used to specify the level of hierarchy. On the other

hand, if the level at which the user works changes infrequently, the user will be able to work

faster with a separate command, such as Set_selection_level, used to change the level of hierar-

chy.



- 28 -

A different approach is needed if the number of hierarchical levels is unknown to the sys-

tem designer and is potentially large (as in a drafting system, where symbols are made up of

graphics primitives and other symbols). At least two user commands are required:

Up_hierarchy and Down_hierarchy. When the user selects something, the system highlights the

lowest-level object seen. If this is what he desired, the user can proceed. If not, the user issues

the first command: Up_hierarchy. The entire first-level object of which the detected object is a

part is highlighted. If this is not what the user wants, he travels up again and still more of the

picture is highlighted. If he travels too far up the hierarchy, he reverses direction with the

Down_hierarchy command. In addition, a Return_to_lowest_level command can be useful in

deep hierarchies, as can a hierarchy diagram in another window, showing where in the hierar-

chy the current selection is located. The state diagram of Fig. 8.10 shows one approach to

hierarchical selection. Alternatively, a single command, say Move_up_hierarchy, can skip back

to the originally selected leaf node after the root node is reached.

Some text editors use a character-word-sentence-paragraph hierarchy. In the Xerox Star

and many succeeding text editors, for instance, the user selects a character by positioning the

screen cursor on the character and clicking the mouse button once. To choose the word rather

than the character, the user double clicks. Further moves up the hierarchy are accomplished by

additional rapid clicks.

Select—Relatively Fixed-Sized Choice Set

Menu selection is one of the richest techniques for selecting from a relatively fixed-sized

choice set. Here we discuss several key factors in menu design.

Menu order

Menu elements can be organized in many different orders, including alphabetical, logi-

cally grouped by functional purpose, most frequently used first, most important first, largest



- 29 -

first, or most recently created/modified first. These orders can be combined in various ways. A

functionally grouped menu may be ordered alphabetically within group, and the functional

groups themselves ordered by frequency of use. Figure 8.11 illustrates several such possible

organizations. Consistency of organization from one menu to another is useful, so a common

strategy across all menus of an application is important. Several researchers have found func-

tional order to be the most helpful, and many menu structures reflect this result. If the items

lack a clear logical organization, alphabetical is a good choice, because it is

predictable[PERL84A].

Single-level versus hierarchical design

One of the most fundamental menu design decisions arises if the choice set is too large to

display all at once. Such a menu can be subdivided into a logically structured hierarchy, or it

can presented as a linear sequence of choices to be scrolled through using a scroll bar. In the

limit, the size of the window can be reduced to a single menu item, yielding a "slot-machine"

menu of the type shown in Fig. 8.12.

With a hierarchical menu, the user first selects from the choice set at the top of the hierar-

chy, which causes a second choice set to be available. The process is repeated until a leaf node

(i.e., an element of the choice set itself) of the hierarchy tree is selected. As with hierarchical

object selection, navigation mechanisms need to be provided so that the user can go back up

the hierarchy if an incorrect subtree was selected. Visual feedback to the user some sense of

place within the hierarchy is also needed, typically via cascading menus, as depicted in Fig.

8.13. Enough of each menu must be revealed that the complete highlighted selection path is

visible, and some means must be used to indicate whether a menu item is a leaf node or is the

name of a lower-level menu (in the figure, the right-pointing arrow fills this role).

When we design a hierarchical menu, the issue of depth versus breadth is always present.

Snowberry et al. [SNOW83] found experimentally that selection time and accuracy improve



- 30 -

when broader menus with fewer levels of selection are used. Similar results are reported by

Landauer and Nachbar [LAND85] and by other researchers. However, these results do not

necessarily generalize to menu hierarchies that lack a natural, understandable structure.

Norman[NORM91A] provides thorough coverage of the issues that arise in designing menus.

Hierarchical menu selection almost demands an accompanying keyboard or function key

accelerator technique to speed up selection for more experienced (so-called "power") users.

This is easy if each node of the tree has a unique name, so that the user can enter the name

directly, and the menu system provides a backup if the user’s memory fails. If the names are

unique only within each level of the hierarchy, the power user must type the complete path

name to the desired leaf node.

Menu placement

Menus can be shown on the display screen or on an auxiliary screen or be printed on a

tablet or on function-key labels. Onscreen menus can be static and permanently visible, or can

appear dynamically on request (tear-off, appearing, pop-up, pull-down, and pull-out menus).

A static menu printed on a tablet, as shown in Color Plate I.18, can easily be used in

fixed-application systems. Use of a tablet or an auxiliary screen, however, requires that the user

look away from the application display, and hence destroys visual continuity. The advantages

are the saving of display space, which is often at a premium, and the accommodation of a large

set of commands in one menu.

A pop-up menu is normally invisible but appears on the screen in response to a mouse

button press. The menu appears at the cursor location, which is usually the user’s center of

visual attention, thereby maintaining visual continuity. The menu can be positioned so the

most recently made selection from the choice set is nearest the cursor, ready to be selected if

the most recently selected item is more likely to be selected a second time than is another item.



- 31 -

Pop-up and other appearing menus conserve precious screen space—one of the user-

interface designer’s most valuable commodities. Their use is facilitated by a fast RasterOp

instruction, as discussed in Chapters XXX_2 and 19_XXX.

Pop-up menus are often also context-sensitive. If the cursor is over a graphic object in a

drawing program, the menu might include scale and rotate commands; if it is over a piece of

text, the menu would contain commands to change the font. This context-sensitivity may ini-

tially be confusing to the novice, but is powerful once understood.

Unlike pop-up menus, pull-down and pull-out menus are anchored in a menu bar along

an edge of the screen. While they do permanently occupy valuable screen space, they serve to

announce the availability of the menu to a novice user. The Apple Macintosh and Microsoft

Windows interfaces use pull-down menus extensively. Macintosh menus, shown in Fig. 8.14,

also illustrate accelerator keys and context sensitivity. These menus have a two-level hierar-

chy: The menu bar is the first level, and the pull-down menu is the second. Pull-down menus

can be activated explicitly or implicitly. In explicit activation, a button depression, once the

cursor is in the menu bar, makes the second-level menu appear; the cursor is moved on top of

the desired selection and the button is then released. In implicit activation, moving the cursor

into the heading causes the menu to appear; no button press is needed. Either selecting an

entry or moving the cursor out of the menu area dismisses the menu. These menus, sometimes

called "lazy" or "drop-down" menus, may also confuse new users by their seemingly mysteri-

ous appearance.

Visual representation

The basic decision on representation is whether menus use textual names or iconic or

other graphical representations of elements of the choice set. XXX_If delete the icon section,

then fix this to match_XXX Icons are discussed further in the next chapter; however, note that

iconic menus can be spatially organized in more flexible ways than can textual menus, because



- 32 -

icons need not be long and thin like text strings; see Fig. 8.15. Also, inherently graphical con-

cepts (particularly graphical attributes and geometrical primitives) are easily depicted.

Size and shape of menu items

Pointing accuracy and speed are affected by the size of each individual menu item. Larger

items are faster to select, as predicted by Fitts’ law [FITT54; CARD83]; on the other hand,

smaller items take less space and permit more menu items to be displayed in a fixed area, but

induce more errors during selection. Thus, there is a conflict between using small menu items

to preserve screen space versus using larger ones to decrease selection time and to reduce

errors.

Pop-up pie menus[CALL88A], shown in Fig. 8.16, appear at the cursor. As the user

moves the mouse from the center of the pie toward the desired selection, the target width

becomes larger, decreasing the likelihood of error. Thus, the user has explicit control over the

speed-versus-error tradeoff. In addition, the distance to each menu item is the same, only the

angle is different. This means that an expert user could operate the menu without ever seeing

it displayed, simply by making a stroke in the right direction. This is the idea behind the

marking menu, a form of pie menu where the visual feedback is optional; if the user moves

rapidly, the menu is never shown on the screen. It simply becomes a gesture command. This

can be extended to hierarchical pie menus, where the gesture for a command might be "move

upward (for the first menu pick), then right (first submenu), then diagonally downward and to

the left (second submenu)." The example in Fig. 8.16 contains a two-level marking

menu[TAPI95A].

Pattern recognition

In selection techniques involving pattern recognition, the user makes gestures or

sequences of movements with a continuous-positioning device, such as a tablet stylus or



- 33 -

mouse. The pattern recognizer automatically compares the sequence with a set of defined pat-

terns, each of which corresponds to an element of the selection set[RUBI91A]. Figure 8.17

shows one set of sketch patterns and their related commands, taken from Wallace’s SELMA

queueing analyzer [IRAN71]. Proofreader’s marks indicating delete, capitalize, move, and so

on are attractive candidates for this approach [WOLF87]. Another approach for pen-based sys-

tems is to support interaction that more closely resembles the way a person would use a regular

pen rather than a mouse, such as making circle and arrow gestures to move blocks of text or

writing text insertions directly where they should go[MORA95A]. Given a data tablet and

stylus, pattern recognition can be used with at least several dozen patterns, but it is difficult for

the user to learn a large number of different patterns.

These techniques require no typing skill and preserve tactile continuity. Furthermore, if

the command involves an object, the cursor position at the beginning of the gesture can be

used for selection. The drag command used in many graphical interfaces is a simple example:

the cursor is positioned on top of the object to be dragged and the mouse button is pressed,

selecting the object under the cursor (it is displayed in reverse video for feedback). As the user

moves the mouse (still holding down the button), the object moves also. Releasing the mouse

button detaches the object from the mouse. Skilled operators can work very rapidly with this

technique, because hand movements between the work area and a command-entry device are

eliminated.

The "toolglass" technique extends this approach by simulating a semitransparent stencil or

template, which a user can manipulate with one hand (using a trackball) while using a mouse

or stylus with the other. By placing the selected part of the stencil or toolglass over the

selected object in a drawing and clicking, a single click can specify both a command and its

target objects[STON94A, BIER93A].



- 34 -

Function keys

Elements of the choice set can be associated with function keys. (We can think of single-

keystroke inputs from a regular keyboard as function keys.) Unfortunately, there never seem to

be enough keys to go around! The keys can be used in a hierarchical-selection fashion, and

their meanings can be altered using chords, say by depressing the keyboard shift and control

keys along with the function key itself. Learning exotic key combinations, such as "shift-

option-control-L," for some commands is not easy, however, and is left as an exercise for the

regular user seeking the productivity gains that typically result. Putting a "cheat-sheet" tem-

plate on the keyboard to remind users of these obscure combinations can speed up the learning

process. Dedicated hardware function keys are beginning to appear on keyboards for web

browsing functions and for media playback functions.

In addition to using the different buttons of a mouse, rapid double or triple clicks can

provide additional functions. Chording of keyboard keys with mouse buttons (Shift-click,

Control-click) can also be used to provide the logical (but not necessarily human-factors)

equivalent of more mouse buttons.

Text

The text-string input task entails entering a character string to which the application does

not ascribe any special meaning. Thus, typing a command name is not a text-entry task. In

contrast, typing legends for a graph and typing text into a word processor are text input tasks.

Clearly, the most common text-input technique is use of the QWERTY keyboard, though small

pocket computers require more compact approaches.

Character recognition

The user writes characters with a continuous-positioning device, usually a tablet stylus,

and the computer recognizes them. This is considerably easier than recognizing scanned-in



- 35 -

characters, because the tablet measures the sequence, direction, and sometimes speed and pres-

sure of strokes, and a pattern-recognition algorithm can match these to stored templates for

each character. For instance, the capital letter "A" consists of three strokes—typically, two

downward strokes and one horizontal stroke. A recognizer can be trained to identify different

styles of block printing: the parameters of each character are calculated from samples drawn by

the user. Character recognizers have been used with interactive graphics since the early 1960s

[BROW64; TEIT64].

It is difficult to block print more than one or two characters per second (try it!), so char-

acter recognition is not appropriate for massive input of text. We write cursive letters faster

than we print the same characters, but recognition is less robust. Another technique is to use

an alphabet of characters specially designed to be easily distinguishable from one another to

facilitate computer recognition and designed so that each can be drawn with a single stroke

without lifting the pen, which makes it easier for the computer to find the boundaries between

the letters[GOLD93A], such as Graffiti XXX_(TM)_XXX. It also makes it possible to use a

very small input area, in which the input letters are written in succession, on top of one

another, for some applications. This technique is widely used in palmtop computers, where

there is no room for a keyboard.

Menu selection

XXX_Could delete this paragraph_XXX A series of letters, syllables, or other basic

units is displayed as a menu. The user then inputs text by choosing letters from the menu with

a selection device. This technique is attractive if only a short character string is to be entered

and the user’s hands are already on a pointing device. It is also useful if the character set is

large, as in Chinese and Japanese. Another strategy for such languages is to enter the word in

phonetic spelling, which string is then matched in a dictionary. For example, the Japanese use

two alphabets, the katakana and hiragana, to type phonetically the thousands of kanji characters



- 36 -

that their orthography borrows from the Chinese.

Evaluation of text-entry techniques

For massive input of text, the only reasonable substitute for a skilled typist working with

a keyboard is an automatic scanner. Figure 8.18 shows experimentally determined keying rates

for a variety of techniques. The hunt-and-peck typist is slowed by the perceptual task of finding

a key and the ensuing motor task of moving to and striking it, but the trained typist has only

the motor task of striking the key, preceded sometimes by a slight hand or finger movement to

reach it. Speech input, not shown on the chart, is slower but attractive for applications where

the hands must be free for other purposes, such as handling paperwork.

Quantify

The quantify interaction task involves specifying a numeric value between some

minimum and maximum value. Typical interaction techniques are typing the value, setting a

slider or dial to the value, and using an up-down counter to select the value. Like the position-

ing task, this task may be either linguistic or spatial. When it is linguistic, the user knows the

specific value to be entered; when it is spatial, the user seeks to increase or decrease a value by

a certain amount, with perhaps an approximate idea of the desired end value. In the former

case, the interaction technique clearly must involve numeric feedback of the value being

selected (one way to do this is to have the user type the actual value); in the latter case, it is

more important to give a general impression of the approximate setting of the value. This is

typically accomplished with a spatially oriented feedback technique, such as display of a slider

or dial on which the current (and perhaps previous) value is shown.

With continuous-scale manipulation, the user drags an indicator along a displayed slider

or gauge; a numeric echo may also be given. Figure 8.19 shows several such interaction tech-

niques and their associated feedback.



- 37 -

Another hardware technique is the potentiometer, discussed in Section XXX_8.1.3_XXX.

The decision of whether to use a rotary or linear potentiometer should take into account

whether the visual feedback of changing a value is rotary (e.g., a turning clock hand) or linear

(e.g., a rising temperature gauge). The current position of one or a group of slide potentiome-

ters is much more easily comprehended at a glance than are those of rotary potentiometers,

even if the knobs have pointers. It is important to use directions consistently: clockwise or

upward movements normally increase a value.

3D Interaction Tasks

Two of the four interaction tasks described previously for 2D applications become more

complicated in 3D: position and select. In this section, we also introduce an additional 3D

interaction task: rotate (in the sense of orienting an object in 3-space). The most straightfor-

ward way to perform these tasks in 3D is to use an actual 3D input device (like a Polhemus

tracker or Spaceball, described in Section XXX_8.1.6_XXX).

A complication arises from the difficulty of perceiving 3D depth relationships of a cursor

or object relative to other displayed objects on a 2D display screen. This contrasts starkly with

2D interaction, where the user can readily perceive that the cursor is above, next to, or on an

object. Display of stereo pairs, corresponding to left- and right-eye views, is helpful for under-

standing general depth relationships, but is of limited accuracy as a precise locating method.

Methods for presenting stereo pairs to the eye are discussed in Chapters XXX_14 and

18_XXX, and in [HODG85]. Other ways to show depth relationships are discussed in Chapters

XXX_14-16_XXX. Researchers have studied the different ways of showing depth on a 2D

screen to find out which are most useful for performing interactive 3D graphical tasks. For

example, Ware and Zhai[ZHAI96A] have conducted experiments in which subjects perform a

3D manipulation task, such as docking one 3D object with another, using conventional per-

spective 3D images, stereo images, head-motion parallax, transparency, and other effects to



- 38 -

enhance their 3D perception. In general, they have found that each of these cues helps a little,

but some are more significant than others, and some combinations are particularly effective.

Head-motion parallax is one of the strongest cues, stronger than stereo vision.

Researchers at Brown University[HERN92A] have developed another interesting tech-

nique to make 3D manipulation easier to perceive on a 2D screen. They cast imaginary sha-

dows from the 3D object onto "walls" of the surrounding "room," which are aligned with the

three coordinate axes, as seen in Fig. 8.20. These shadow images give the two-axis projections

of the 3D object, which facilitate aligning and adjusting it. The user can also manipulate the

shadows themselves. This causes the real object to move to where it should be to cast the

desired shadow.

If the application requires the user to input 3D selection, position, or rotation commands

with a 2D device like a mouse or tablet, special interaction techniques are required map move-

ments of these 2D devices into 3D. We describe some of these 2D-to-3D interaction tech-

niques, first, for positioning and selecting, which are closely related, and, second, for interac-

tive rotation.

XXX_Could delete this, except keep virtual trackball_XXX Figure 8.21 shows one

way to position in 3D. The 2D cursor, under control of, say, a mouse, moves freely among the

three views. The user can select any one of the 3D cursor’s dashed lines and drag it. If the

button-down event is close to the intersection of two dashed cursor lines, then both are selected

and are moved with the mouse (gravity, discussed in Section XXX_8.3.2_XXX, can make

picking the intersection especially easy). Although this method may appear restrictive in forc-

ing the user to work in one or two dimensions at a time, it is sometimes advantageous to

decompose the 3D manipulation task into simpler lower-dimensional tasks. Selecting as well as

locating is facilitated with multiple views: Objects that overlap and hence are difficult to distin-

guish in one view may not overlap in another view.



- 39 -

Another possibility, developed by Nielson and Olsen [NIEL86] and depicted in Fig. 8.22,

requires that all three principal axes project with nonzero length. A 3D cross-hair cursor, with

cross-hairs parallel to the principal axes, is controlled by moving the mouse in the general

direction of the projections of the three principal axes. Figure 8.23 shows how 2D locator

movements are mapped into 3D: there are 2D zones in which mouse movements affect a

specific axis. Of course, 3D movement is restricted to one axis at a time.

Both of these techniques illustrate ways to map 2D locator movements into 3D move-

ments. We can instead use buttons to control which of the 3D coordinates are affected by the

locator’s 2 degrees of freedom. For example, the locator might normally control x and y; but,

with a button depressed, it could control x and z instead.

Constrained 3D movement is effective in 3D locating. Gridding and gravity can some-

times compensate for uncertainties in depth relationships and can aid exact placement. Another

form of constraint is provided by those physical devices that make it easier to move along prin-

cipal axes than in other directions (Section XXX_8.1.6_XXX).

Context-specific constraints are often more useful, however, than are these general con-

straints. It is possible to let the user specify that movements should be parallel to or on lines or

planes other than the principal axes and planes. For example, with a method developed by

Nielson and Olsen [NIEL86], the local coordinate system of the selected object defines the

directions of movement as shown in Fig. 8.24. In a more general technique developed by Bier

[BIER86b], the user places a coordinate system, called a skitter, on the surface of an object,

again defining the possible directions of movement (Fig. 8.25).

One method of 3D picking—finding the output primitive that, for an (x, y) position deter-

mined by a 2D locator, has the maximum z value—was discussed in Chapter XXX_7_XXX.

Another method, which can be used with a 3D locator when wireframe views are shown—is to

find the output primitive closest to the locator’s (x, y, z) position.



- 40 -

As with locating and selection, the issues in 3D rotation are understanding depth relation-

ships, mapping 2D interaction devices into 3D, and ensuring stimulus-response compatibility.

An easily implemented 3D rotation technique provides slider dials or gauges that control rota-

tion about three axes. S-R compatibility suggests that the three axes should normally be in the

screen-coordinate system—x to the right, y increasing upward, z out of (or into) the screen

[BRIT78]. Of course, the center of rotation either must be explicitly specified as a separate

step, or must be implicit (typically the screen-coordinate origin, the origin of the object, or the

center of the object). Providing rotation about the screen’s x and y axes is especially simple, as

suggested in Fig. 8.26. The (x, y, z) coordinate system associated with the sliders is rotated as

the sliders are moved to show the effect of the rotation. The two-axis technique can be easily

generalized to three axes by adding a dial for z-axis rotation, as in Fig. 8.27 (a dial is prefer-

able to a slider for S-R compatibility).

Mouse movements can also be directly mapped onto object movements, without slider or

dial intermediaries. The user can be presented a metaphor in which the two sliders of Fig. 8.26

are invisibly superimposed on top of the object being rotated, so that horizontal mouse move-

ments are mapped into rotations about the screen-coordinate y axis, and vertical mouse move-

ments are mapped into rotations about the screen-coordinate x axis (Fig. 8.28a). Diagonal

motions have no effect. The sliders are not really displayed; the user imagines that they are

present. Alternatively, an imaginary 2D trackball can be superimposed on top of the object

being rotated, so that the vertical, horizontal, or diagonal motions one would make with the

trackball can be made instead with the mouse (Fig. 8.28b). Either of these methods provides

two-axis rotation in 3D.

For three-axis rotations, three methods that closely resemble real-world concepts are par-

ticularly interesting. In the overlapping-sliders method [CHEN88], the user is shown two linear

sliders overlapping a rotary slider, as in Fig. 8.28(c). Motions in the linear sliders control rota-



- 41 -

tion about the x and y axes, while a rotary motion around the intersection of the two linear

sliders controls rotation about the z axis. In a technique developed by Evans, Tanner, and Wein

[EVAN81], three successive mouse positions are compared to determine whether the mouse

motion is linear or rotary. Linear horizontal or vertical movements control rotation about the x

and y axes, a linear diagonal movement rotates about both the x and y axes, and rotary move-

ments control rotation about the z axis. While this is a relative technique and does not require

that the movements be made directly over the object being rotated or in a particular area, the

user can be instructed to use these motions to manipulate a 3D trackball superimposed on the

object (Fig. 8.28d). In the virtual-sphere method, also developed by Chen [CHEN88], the user

actually manipulates this superimposed 3D trackball in an absolute fashion as though it were

real. With a mouse button down, mouse movements rotate the trackball exactly as your finger

would move a real trackball. An experiment [CHEN88] comparing these latter two approaches

showed no performance differences, but did yield a user preference for Chen’s method.

Figure 8.29 shows an interface for viewing 3D VRML objects in a web browser that

combines several of these approaches[MOHA96A]. It provides three separate spatial controls:

the arrow pad for x-y translation, the thumbwheel for z translation, and the trackball for rota-

tion. The controls are accessible via the icons at the bottom of the screen or by using the

mouse in the main window with different shift-key combinations. The two translation controls

are straightforward. The rotation control emulates a trackball centered about the middle of the

main window. It also interprets circular motion near the edge of the trackball or window as

rotation about the z axis. It also allows the user to spin the object by releasing the mouse but-

ton while the mouse is moving; the object then continues spinning in the same direction.

It is often necessary to combine 3D interaction tasks. Thus, rotation requires a select task

for the object to be rotated, a position task for the center of rotation, and an orient task for the

actual rotation. Specifying a 3D view can be thought of as a combined positioning (where the



- 42 -

eye is), orientation (how the eye is oriented), and scaling (field of view, or how much of the

projection plane is mapped into the viewport) task. We can create such a task by combining

some of the techniques we have discussed, or by designing a fly-around capability in which the

viewer flies an imaginary airplane around a 3D world. The controls are typically pitch, roll, and

yaw, plus velocity to speed up or slow down. With the fly-around concept, the user can also be

given an overview, such as a 2D plan view, indicating the imaginary airplane’s ground position

and heading. Navigating in a 3D virtual environment is particularly difficult, since many of

the subtle cues present in the real world are lacking. Overview maps can be provided here too,

right in the head-mounted display image, as seen in Fig. 8.30[DARK96A]. Another technique

uses handheld miniature copy of the virtual environment, displayed in the head-mounted

display in addition to the conventional view; the user can manipulate the "world in miniature"

to change the viewpoint for the main display[STOA95A].

Virtual environments provide a compelling 3D effect for both viewing and interaction.

They also open up a much larger design space for new interaction techniques than conventional

interface styles. Research into inventing and testing useful interaction techniques for use in

virtual environments is expanding[HINC94B, MINE97A, WARE94A]; Fig. 8.31 shows exam-

ples of work on new interaction techniques for VR[MINE97A].

Interaction Techniques for Composite Interaction Tasks

Composite interaction tasks are combinations of basic interaction tasks described above

integrated into a unit. If one thinks of basic interaction tasks as atoms, then composite interac-

tion tasks are molecules. We describe interaction techniques for some of them in this section.

Dialogue Boxes

Dialogue boxes are used to make several selections in one operation. We often need to

select multiple elements of a selection set. For instance, text attributes, such as italic, bold,



- 43 -

underline, hollow, and all caps, are not mutually exclusive, and the user may want to select

two or more at once. In addition, there may be several sets of relevant attributes, such as

typeface and font. Some of the menu approaches useful in selecting a single element of a selec-

tion set are not satisfactory for multiple selections. For example, pull-down and pop-up menus

normally disappear when a selection is made, necessitating a second activation to make a

second selection. This problem is overcome with dialogue boxes, which remains visible until

explicitly dismissed by the user. In addition, dialogue boxes permit selection from more than

one selection set and can include areas for interaction techniques for entering text and other

values. Selections made in a dialogue box can be corrected immediately. When all the informa-

tion has been entered into the dialogue box, the box is typically dismissed explicitly with a

command. Modal dialogue boxes prevent the user from doing anything else until the dialogue

box is dismissed; these should be used sparingly, for critical tasks. Figure 8.32 shows a dialo-

gue box with several selected items highlighted.

Construction Techniques

One way to construct a line is to have the user indicate one endpoint and then the other;

once the second endpoint is specified, a line is drawn between the two points. With this tech-

nique, however, the user has no easy way to try out different line positions before settling on a

final one, because the line is not actually drawn until the second endpoint is given. With this

style of interaction, the user must invoke a command each time an endpoint is to be reposi-

tioned.

A far superior approach is rubberbanding, discussed in Chapter XXX_2_XXX. When the

user pushes a button (often a mouse or stylus button), the starting position of the line is esta-

blished by the cursor. As the cursor moves, so does the endpoint of the line; when the button

is released, the endpoint is frozen. Figure 8.33 show a rubberband line-drawing sequence. The

user-action sequence is shown in the state diagram in Fig. 8.34. Notice that the state



- 44 -

"rubberband" is active only while a button is held down. It is in this state that cursor move-

ments cause the current line to change. See [BUXT85] for an informative discussion of the

importance of matching the state transitions in an interaction technique with the transitions

afforded by the device used with the technique.

Similarly, the rubber-rectangle technique starts by anchoring one corner of a rectangle

with a button-down action, after which the opposite corner is dynamically linked to the cursor

until a button-up action occurs. The state diagram for this technique differs from that for rub-

berband line drawing only in the dynamic feedback of a rectangle rather than a line. The

rubber-circle technique creates a circle that is centered at the initial cursor position and that

passes through the current cursor position, or that is within the square defined by opposite

corners. The rubber-ellipse technique creates an axis-aligned ellipse inside the rectangle defined

by the initial and current cursor positions.

One interaction technique for creating a polyline (a sequence of connected lines) is an

extension of rubberbanding. After entering the polyline-creation command, the user clicks on a

button to anchor each rubberbanded vertex. After all the vertices have been indicated, the user

indicates completion, typically by a double click, a click on a different mouse button, or entry

of a new command. Figure 8.35 depicts a typical sequence of events in creating a polyline;

Fig. 8.36 is the accompanying state diagram.

A polygon can be drawn similarly. In some cases, the user signals to the system that the

polygon is complete by returning to the starting vertex of the polygon. In other cases, the user

explicitly signals completion using a double click or other command, and the system automati-

cally inserts the final line to close the polygon. Figure 8.37 shows one way to create polygons.

Constraints of various types can be applied to the cursor positions in any of these tech-

niques. For example, Fig. 8.38 shows a sequence of lines drawn using the same cursor posi-

tions as in Fig. 8.33, but with a horizontal constraint in effect. A vertical line, or a line at some



- 45 -

other orientation, can also be drawn in this manner. Polylines made entirely of horizontal and

vertical lines, as in printed circuit boards, VLSI chips, and some city maps, are readily created;

right angles are introduced either in response to a user command, or automatically as the cursor

changes direction. The idea can be generalized to any shape, such as a circle, ellipse, or any

other curve; the curve is initialized at some position, then cursor movements control how much

of the curve is displayed. In general, the cursor position is used as input to a constraint func-

tion whose output is then used to display the appropriate portion of the object.

Gravity is yet another form of constraint. When constructing drawings, we frequently

want a new line to begin at the endpoint of, or on, an existing line. Matching an endpoint is

easy if it was created using gridding, but otherwise is difficult without a potentially time-

consuming zoom. The difficulty is avoided by programming an imaginary gravity field around

each existing line, so that the cursor is attracted to the line as soon as it enters the gravity field.

Figure 8.39 shows a line with a gravity field that is larger at the endpoints, so that matching

endpoints is especially easy. With the snap-dragging technique, continuous visual feedback is

also provided by "snapping" the object being dragged to each successive gravity field as the

user moves the cursor [BIER86a]. An analogous idea can be used for object selection. "Smart

selection" techniques allow the user to point near, but not directly on, the desired object and

still select it, provided the user action was closer to the desired object than any other object on

the screen by at least some minimum amount, and, perhaps, closer to the desired object than

some minimum threshhold. XXX_Osga reference?_XXX The effect is similar to surrounding

each of the selectable objects with a gravity field.

Dynamic Manipulation

It is not sufficient to create lines, rectangles, and so on. In many situations, the user must

be able to modify previously created geometric entities.



- 46 -

Dragging moves a selected symbol from one position to another under control of a cur-

sor. A button-down action typically starts the dragging and selects the symbol under the cursor

to be dragged; then, a button-up freezes the symbol in place, so that further movements of the

cursor have no effect on it. Rekimoto[REKI97A] extends this idea to allow drag and drop

operations across different computers and to and from wall displays, PDAs, and other devices.

Dynamic rotation of an object can be done in a similar way, except that we must be able

to identify the point or axis about which the rotation is to occur. A convenient strategy is to

have the system show the current center of rotation and to allow the user to modify it as

desired. Figure 8.40 shows one such scenario. Note that the same approach can be used for

scaling, with the center of scaling, rather than that of rotation, being specified by the user.

The concept of handles is useful to provide scaling of an object, without making the user

think explicitly about where the center of scaling is. Figure 8.41 shows an object with eight

handles, displayed as small squares at the corners and on the sides of the imaginary box sur-

rounding the object. The user selects one of the handles and drags it to scale the object. If the

handle is on a corner, then the corner diagonally opposite is locked in place. If the handle is in

the middle of a side, then the opposite side is locked in place. The handles normally appear

only when the object is selected to be operated on; they thus provide a unique visual code to

indicate that an object is selected, since other visual codings (e.g., line thickness, dashed lines,

or changed intensity) might also be used as part of the drawing itself. (Blinking is another

unique visual code, but tends to be distracting and annoying.)

Dragging, rotating, and scaling affect an entire object. What if we wish to be able to

move individual points, such as the vertices of a polygon? Vertices could be named, and the

user could enter the name of a vertex and its new (x, y) coordinates. But the same point-and-

drag strategy used to move an entire object is more attractive. In this case, the user points to a

vertex, selects it, and drags it to a new position. The vertices adjacent to the one selected



- 47 -

remain connected via rubberband lines. To facilitate selecting a vertex, we can establish a grav-

ity field to snap the cursor onto a nearby vertex or we can superimpose handles over each ver-

tex. For smooth curves and surfaces, handles can also be provided to allow the user to mani-

pulate points that control the shape, as discussed further in Chapter XXX_11_XXX.

Zooming

Many graphics programs allow the user to zoom in and out to see an expanded or con-

tracted view of the graphic workspace. Zooming by fixed steps with discrete commands is

easiest to implement. Continuous zooming of a complex picture requires more powerful graph-

ics hardware. The PAD[PERL93A] and PAD++[BEDE94A] systems extend this notion

further. They provide the user an infinitely-zoomable 2D workspace, on which she can draw or

place objects at any magnification. Some objects may be invisible or collapsed to a single

pixel in the high-level view, but the user can zoom in as far as desired to see the object. She

can continue zooming in and even place an entire other object inside a punctuation mark or

within the width of a narrow line in its parent object. Figure 8.42 shows the PAD++ system in

operation.

These systems also extend this technique to use semantic zooming: as an object grows to

different sizes in the zoomed image, it not only expands in size but changes the way in which

it is displayed. For example, at low magnification, a document might be represented as a solid

rectangle; as the user zooms in, the main headings would appear, but not the full text; still

further, the full text of the document would appear. Furnas provides a visual formalism for

describing and programming this kind of non-geometric zooming operation[FURN95A].

In the next chapter, we discuss design issues involved in combining basic and composite

interaction techniques into an overall user-computer dialogue.



- 48 -

EXERCISES

EXERCISE 00. Examine a 2D graphical user-computer interface with which you are familiar.

List each interaction task used. Categorize each task into one of the basic interaction techniques

of Section XXX_8.2_XXX. If an interaction does not fit this classification scheme, try decom-

posing it further.

EXERCISE 00. Implement adaptive C/D ratio cursor tracking for use with a mouse or other

relative-positioning device. Experiment with different relationships between mouse velocity v

and the C/D ratio r: r = kv and r = k v XXX_(SQUARED)_XXX. You must also find a suit-

able value for the constant k.

EXERCISE 00. Conduct an experiment to compare the selection speed and accuracy of any of

the following pairs of techniques:

• a. Mouse and another pointing device selecting from a static, onscreen menu

• b. Mouse and accelerator keys selecting from a static, onscreen menu

• c. Wide, shallow menu and narrow, deep menu

• d. Pull-down menus that appear as soon as the cursor is in the menu bar, and pull-

down menus that require a mouse-button depression.

EXERCISE 00. Extend the state diagram of Fig. 8.10 to include a "return to lowest level"

command that takes the selection back to the lowest level of the hierarchy, such that whatever

was selected first is selected again.

EXERCISE 00. Implement an autocompletion text-entry technique to use with an arbitrary list

of words. Experiment with different word sets, such as the UNIX commands and proper names.

Decide how to handle nonexistent matches, corrections typed by the user after a match has

been made, and prompting for the user.



- 49 -

EXERCISE 00. Implement cascading hierarchical menus for a series of command or for file-

system subdirectories. What issues arise as you do this? Implement an alternative selection

technique, and informally compare the speed of the two.

EXERCISE 00. Implement pop-up menus that allow multiple selections prior to dismissal,

which the user accomplishes by moving the cursor outside the menu. Alternatively, use a but-

ton click for dismissal. Which dismissal method do you prefer? Explain your answer. Ask five

people who use the two techniques which dismissal method they prefer.

EXERCISE 00. Implement a menu package on a color display such that the menu is displayed

in a strong, bright but partially transparent color, and all the colors underneath the menu are

changed to a subdued gray.

EXERCISE 00. Implement any of the 3D interaction techniques discussed in this chapter.

EXERCISE 00. For each of the locating techniques discussed in Section XXX_8.2.6_XXX,

identify the line or plane into which 2D locator movements are mapped.

EXERCISE 00. Draw the state diagram that controls pop-up hierarchical menus.

Figure 1. A subject using an eye tracker. The eye tracker camera (on the left) observes the
user’s eye through the servo-controlled mirror located under the display screen, and reports
where on the screen the user is looking every 1/60 second. XXX_ GRAPHIC: eye.tiff (place-
holder) SOURCE: NRL _XXX

Figure 2. Numeral 2, a drawing in the spirit of Jasper Johns, by Teresa Bleser. Drawn with
the GWPaint program using a GTCO pressure- and tilt-sensitive tablet. (Courtesy of T. Bleser,
George Washington University.) XXX_ GRAPHIC: old8.1 _XXX

Figure 3. The metaDESK tangible user interface. The user can manipulate the physical
objects on the desk to interact with the computer and see the results on the display projected
onto the desktop. XXX_ GRAPHIC: metadesk.bmp (placeholder) SOURCE: figure 10
(metaDESK, with instrument, phicons, and lenses) (all labeled) from[ISHI97A]: _XXX

Figure 4. The Polhemus 3SPACE XXX_(TM)_XXX FASTRAK XXX_(TM)_XXX 3D mag-
netic tracker. It sends 6 numbers, containing the position and orientation in 3D of each of the
four sensors (the small white cubes in the foreground), using a magnetic signal sent from the
transmitter (the larger black cube on the right). XXX_ GRAPHIC: polhemus.tiff (place-
holder) SOURCE: From my CRC article, which was from Polhemus, Inc., Colchester, Vt.
_XXX

Figure 5. The Virtual Technologies CyberGlove XXX_(TM)_XXX, showing the 18 sensors
on each hand that are used to sense finger movements, and the 3D magnetic sensor on the
wristband that senses the position and angle of the hand itself. XXX_ GRAPHIC: glove.tiff
(placeholder) SOURCE: From my CRC article, which was from Virtual Technologies,



- 50 -

Inc., Palo Alto, Calif. _XXX

Figure 6. A head-mounted display in use for virtual reality. The 3D tracker attached above
the user’s left eye reports the position and orientation of the head. The computer uses this
information to update the viewpoint of the display constantly. This unit also measures the
position of the user’s eye, by monitoring it through the mirror located in front of the left eye.
XXX_ GRAPHIC: hmd.tiff SOURCE: Tufts photographer _XXX

Figure 7. The Phantom haptic feedback device. As the user moves the end of the arm, he can
feel forces pushing back against his hand, giving the sensation of touching an object. XXX_
GRAPHIC: haptic.jpg (placeholder) SOURCE: Phantom model 1.5, web site of Sensable
Technology, Cambridge, Ma. _XXX

Figure 8. Numeric feedback regarding size of an object being constructed, The height and
width are changed as the cursor (+) is moved, so the user can adjust the object to the desired
size. XXX_ GRAPHIC: old8.4 _XXX

Figure 9. Continuous sketching. XXX_ GRAPHIC: old8.5 _XXX

Figure 10. State diagram for an object-selection technique for an arbitrary number of hierar-
chy levels. Up and Down are commands for moving up and down the hierarchy. In the state
"Leaf object selected," the Down_hierarchy command is not available. The user selects an
object by pointing at it with a cursor, and pressing and then releasing a button. XXX_
GRAPHIC: old8.6 _XXX

Figure 11. Three menu organizations. (a) Menu using an alphabetical sequence. (b) Menu
using functional grouping, with alphabetical within-group order as well as alphabetical-
between-group order. (c) Menu with commands common to several different application pro-
grams placed at the top for consistency with the other application’s menus; these commands
have heavier borders. Menu items are some of those used in Card’s menu-order experiment
[CARD82]. XXX_ GRAPHIC: old8.7 _XXX

Figure 12. A small menu-selection window. Only one menu item appears at a time. The scroll
arrows are used to change the current menu item, which is selected when the Accept button is
chosen. XXX_ GRAPHIC: new8.9.bmp SOURCE: Visual Basic run-time _XXX

Figure 13. A pop-up hierarchical menu. (a) The first menu appears where the cursor is, in
response to a button-down action. The cursor can be moved up and down to select the desired
typeface. (b) The cursor is then moved to the right to bring up the second menu. (c) The pro-
cess is repeated for the third menu. XXX_ GRAPHIC: new8.10[abc].bmp SOURCE: Visual
Basic run-time _XXX

Figure 14. A Macintosh pull-down menu. The last menu item is gray rather than black, indi-
cating that it is currently not available for selection (the currently selected object, an arc, does
not have corners to be rounded). The Undo command is also gray, because the previously exe-
cuted command cannot be undone. Abbreviations are accelerator keys for power users. (Copy-
right 1988 Claris Corporation. All rights reserved.) XXX_ GRAPHIC: old8.13 _XXX

Figure 15. Iconic and textual menus for the same geometric primitives. The iconic menu
takes less space than does the textual menu. (Icons XXX_(C)_XXX 1988 Claris Corporation.
All rights reserved.) XXX_ GRAPHIC: old8.15 _XXX

Figure 16. A pie menu, with a second submenu appearing above it. The optional marking
menu gesture command is also shown. XXX_ GRAPHIC: marking.bmp (placeholder)
SOURCE: fig. 2 of[TAPI95A]: _XXX

Figure 17. Motions, indicated as dotted lines, that are recognized as commands. From
Wallace’s SELMA queuing analyzer [IRAN71]. XXX_ GRAPHIC: old8.18 _XXX



- 51 -

Figure 18. Data-input speeds, in keystrokes per minute, of various techniques for entering text
and numeric information. (Adapted from [VANC72, p. 335] and [CARD83, p. 61].) XXX_
GRAPHIC: old8.20 _XXX

Figure 19. Several dials that the user can use to input values by dragging the control pointer.
Feedback is given by the pointer and, in two cases, by numeric displays. XXX_ GRAPHIC:
new8.21.bmp SOURCE: VERTICAL SLIDERS: SwingSet demo applet and Visual Basic
run-time _XXX

Figure 20. Using interactive shadows to make 3D manipulation easier. The user can manipu-
late the 3D object itself or any of its 2D shadows. XXX_ GRAPHIC: shadows1.bmp OR
shadows2.bmp (placeholder) SOURCE: Figure 2 or 3 from UIST’92 3D shadows paper
_XXX

Figure 21. 3D positioning technique using three views of the same scene (a house). The 2D
cursor (+) is used to select one of the dashed 3D cursor lines. XXX_ GRAPHIC: old8.23
_XXX

Figure 22. Movement of the 3D cursor is controlled by the direction in which the 2D cursor
is moved. XXX_ GRAPHIC: old8.24 _XXX

Figure 23. The six regions of mouse movement, which cause the 3D cursor to move along the
principal axes. XXX_ GRAPHIC: old8.25 _XXX

Figure 24. The displayed local coordinate system of the house, which shows the three direc-
tions in which any translated object will move. To preserve stimulus-response compatibility,
we can use the direction of mouse movements to determine the axes chosen, as in Fig. 8.23.
XXX_ GRAPHIC: old8.26 _XXX

Figure 25. The displayed coordinate system, placed interactively so that its (x, y) plane coin-
cides with the plane of the roof, shows the three directions in which any translated object will
move. XXX_ GRAPHIC: old8.27 _XXX

Figure 26. Two slider dials for effecting rotation about the screen x and y axes. XXX_
GRAPHIC: new8.28.bmp SOURCE: Visual Basic run-time _XXX

Figure 27. Two slider dials for effecting rotation about the screen x and y axes, and a dial for
rotation about the screen z axis. The coordinate system represents world coordinates and shows
how world coordinates relate to screen coordinates. XXX_ GRAPHIC: new8.29.bmp
SOURCE: Visual Basic run-time _XXX

Figure 28. Four methods of 3D rotation. In each case, the user makes movements with a 2D
device corresponding to those that would be made if the actual devices were superimposed on
the object. A 3D trackball can be twisted to give z-axis rotation, whereas a 2D trackball pro-
vides only two-axis rotation. XXX_ GRAPHIC: old8.31 _XXX

Figure 29. An interface for navigation through 3D VRML worlds with in a web browser.
Several navigation controls are provided, along the bottom of the screen, including the arrow
pad for x-y translation, the thumbwheel for z translation, and the trackball for rotation. XXX_
GRAPHIC: cosmo.gif SOURCE: SGI WebSpace online documentation _XXX

Figure 30. View through a virtual reality head-mounted display, showing a ship on the ocean
in the distance. A map of the same area is shown in the foreground, to aid in navigation.
XXX_ GRAPHIC: darken.bmp (placeholder) SOURCE: fig 1 B, p. 145, of[DARK96A]
_XXX

Figure 31. Sketches of two interaction techniques for virtual reality: A pop-up "look-at"
menu and a two-handed flying technque, where the relative positions of the user’s two hands
determine the speed and direction of flight. XXX_ GRAPHIC: brooksa.bmp AND
brooksb.bmp (placeholder) SOURCE: fig. 4 AND 5 from[MINE97A]: _XXX



- 52 -

Figure 32. A text-attribute dialogue box with several different attributes selected. As the user
chooses items in the lists, a sample of the resulting text font is shown in the "Sample" field.
XXX_ GRAPHIC: new8.32.bmp SOURCE: MS Works _XXX

Figure 33. Rubberband line drawing. XXX_ GRAPHIC: old8.33 _XXX

Figure 34. State diagram for rubberband line drawing. XXX_ GRAPHIC: old8.34 _XXX

Figure 35. Rubberband polyline sketching. XXX_ GRAPHIC: old8.35 _XXX

Figure 36. State diagram for rubberband creation of a polyline. XXX_ GRAPHIC: old8.36
_XXX

Figure 37. Rubberband drawing of a polygon. XXX_ GRAPHIC: old8.37 _XXX

Figure 38. Horizontally constrained rubberband line drawing. XXX_ GRAPHIC: old8.38
_XXX

Figure 39. Line surrounded by a gravity field, to aid picking points on the line: If the cursor
falls within the field, it is snapped to the line. XXX_ GRAPHIC: old8.39 _XXX

Figure 40. Dynamic rotation. XXX_ GRAPHIC: old8.41 _XXX

Figure 41. Handles used to reshape objects. XXX_ GRAPHIC: old8.42 _XXX

Figure 42. The PAD++ system. From left to right, top to bottom, the user is zooming into
the image, revealing additional information. XXX_ GRAPHIC: pad.bmp (placeholder)
SOURCE: Figure 1 of Bederson UIST 94 _XXX

NEW REFERENCES

azum94a.R. Azuma and G. Bishop, ‘‘Improving Static and Dynamic Registration in an Optical

See-through HMD,’’ Proc. ACM SIGGRAPH’94 Conference, pp. 197-204, Addison-

Wesley/ACM Press, 1994.

baec95a.R.M. Baecker, J. Grudin, W.A.S. Buxton, and S. Greenberg, Readings in Human-

Computer Interaction: Toward the Year 2,000, Morgan Kaufmann, San Francisco, 1995.

bede94a.B.B. Bederson and J.D. Hollan, ‘‘Pad++: A Zooming Graphical Interface for Explor-

ing Alternate Interface Physics,’’ Proc. ACM UIST’94 Symposium on User Interface

Software and Technology, pp. 17-26, Addison-Wesley/ACM Press, Marina del Rey,

Calif., 1994.

bier93a.E.A. Bier, M.C. Stone, K. Pier, W. Buxton, and T. DeRose, ‘‘Toolglass and Magic

Lenses: The See-Through Interface,’’ Proc. ACM SIGGRAPH’93 Conference, pp. 73-80,

Addison-Wesley/ACM Press, 1993.



- 53 -

bles90a.T.W. Bleser and J.L. Sibert, ‘‘Toto: A Tool for Selecting Interaction Techniques,’’

Proc. ACM UIST’90 Symposium on User Interface Software and Technology, pp. 135-

142, Addison-Wesley/ACM Press, Snowbird, Utah, 1990.

boff86a.K.R. Boff, L. Kaufman, and J. Thomas, Handbook of Perception and Human Perfor-

mance, John Wiley, New York, 1986.

bolt81a.R.A. Bolt, ‘‘Gaze-Orchestrated Dynamic Windows,’’ Computer Graphics, vol. 15, no.

3, pp. 109-119, August 1981.

buxt83a.W. Buxton, ‘‘Lexical and Pragmatic Considerations of Input Structures,’’ Computer

Graphics, vol. 17, no. 1, pp. 31-37, 1983.

call88a.J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman, ‘‘An Empirical Comparison

of Pie vs. Linear Menus,’’ Proc. ACM CHI’88 Human Factors in Computing Systems

Conference, pp. 95-100, Addison-Wesley/ACM Press, 1988.

card78a.S.K. Card, W.K. English, and B.J. Burr, ‘‘Evaluation of Mouse, Rate-controlled

Isometric Joystick, Step Keys, and Text Keys for Text Selection on a CRT,’’ Ergonom-

ics, vol. 21, no. 8, pp. 601-613, 1978.

card83a.S.K. Card, T.P. Moran, and A. Newell, The Psychology of Human-Computer Interac-

tion, Lawrence Erlbaum, Hillsdale, N.J., 1983.

dark96a.R.P. Darken and J.L. Sibert, ‘‘Wayfinding Strategies and Behaviors in Large Virtual

Worlds,’’ Proc. ACM CHI’96 Human Factors in Computing Systems Conference, pp.

142-149, Addison-Wesley/ACM Press, 1996.

enge68a.D.C. Engelbart and W.K. English, ‘‘A Research Center for Augmenting Human Intel-

lect,’’ Proc. 1968 Fall Joint Computer Conference, pp. 395-410, AFIPS, 1968.

fitz95a.G.W. Fitzmaurice, H. Ishii, and W. Buxton, ‘‘Bricks: Laying the Foundations for Gras-

pable User Interfaces,’’ Proc. ACM CHI’95 Human Factors in Computing Systems



- 54 -

Conference, pp. 442-449, Addison-Wesley/ACM Press, 1995.

furn95a.G.W. Furnas and B.B. Bederson, ‘‘Space-Scale Diagrams: Understanding Multiscale

Interfaces,’’ Proc. ACM CHI’95 Human Factors in Computing Systems Conference, pp.

234-241, Addison-Wesley/ACM Press, 1995.

gold93a.D. Goldberg and C. Richardson, ‘‘Touch-Typing with a Stylus,’’ Proc. ACM INTER-

CHI’93 Human Factors in Computing Systems Conference, pp. 80-87, Addison-

Wesley/ACM Press, 1993.

hela88a.M. Helander, Handbook of Human-Computer Interaction, Amsterdam, Elsevier North-

Holland, 1988.

hern92a.K.P. Herndon, R.C. Zeleznik, D.C. Robbins, D.B. Conner, S.S. Snibbe, and A. van

Dam, ‘‘Interactive Shadows,’’ Proc. ACM UIST’92 Symposium on User Interface

Software and Technology, pp. 1-6, Addison-Wesley/ACM Press, Monterey, Calif., 1992.

hinc94a.K. Hinckley, R. Pausch, J.C. Goble, and N.F. Kassell, ‘‘Passive Real-World Interface

Props for Neurosurgical Visualization,’’ Proc. ACM CHI’94 Human Factors in Comput-

ing Systems Conference, pp. 452-458, Addison-Wesley/ACM Press, 1994.

hinc94b.K. Hinckley, R. Pausch, J.C. Goble, and N.F. Kassell, ‘‘A Survey of Design Issues in

Spatial Input,’’ Proc. ACM UIST’94 Symposium on User Interface Software and Technol-

ogy, pp. 213-222, Marina del Rey, Calif., 1994.

hinc99a.K. Hinckley and M. Sinclair, ‘‘Touch-Sensing Input Devices,’’ Proc. ACM CHI’99

Human Factors in Computing Systems Conference, pp. 223-230, Addison-Wesley/ACM

Press, 1999.

hix95a.D. Hix, J.N. Templeman, and R.J.K. Jacob, ‘‘Pre-Screen Projection: From Concept to

Testing of a New Interaction Technique,’’ Proc. ACM CHI’95 Human Factors in Com-

puting Systems Conference, pp. 226-233, Addison-Wesley/ACM Press, 1995.



- 55 -

http://www.cs.tufts.edu/˜jacob/papers/chi95.pdf [PDF].

ishi97a.H. Ishii and B. Ullmer, ‘‘Tangible Bits: Towards Seamless Interfaces between People,

Bits, and Atoms,’’ Proc. ACM CHI’97 Human Factors in Computing Systems Confer-

ence, pp. 234-241, Addison-Wesley/ACM Press, 1997.

jaco91a.R.J.K. Jacob, ‘‘The Use of Eye Movements in Human-Computer Interaction Tech-

niques: What You Look At is What You Get,’’ ACM Transactions on Information Sys-

tems, vol. 9, no. 3, pp. 152-169, April 1991.

jaco94a.R.J.K. Jacob, L.E. Sibert, D.C. McFarlane, and M.P. Mullen, Jr., ‘‘Integrality and

Separability of Input Devices,’’ ACM Transactions on Computer-Human Interaction, vol.

1, no. 1, pp. 3-26, March 1994. http://www.cs.tufts.edu/˜jacob/papers/tochi.txt [ASCII];

http://www.cs.tufts.edu/˜jacob/papers/tochi.pdf [PDF].

jaco96a.R.J.K. Jacob, ‘‘Input Devices and Techniques,’’ in The Computer Science and

Engineering Handbook, ed. by A.B. Tucker, pp. 1494-1511, CRC Press, 1996.

http://www.cs.tufts.edu/˜jacob/papers/crc.html [HTML];

http://www.cs.tufts.edu/˜jacob/papers/crc.pdf [PDF].

jell90a.H.D. Jellinek and S.K. Card, ‘‘Powermice and User Performance,’’ Proc. ACM CHI’90

Human Factors in Computing Systems Conference, pp. 213-220, Addison-Wesley/ACM

Press, 1990.

klat87a.D.H. Klatt, ‘‘Review of text-to-speech conversion for English,’’ Journal of the Acousti-

cal Society of America, vol. 82, no. 3, pp. 737-793, 1987.

mack90a.J.D. Mackinlay, S.K. Card, and G.G. Robertson, ‘‘A Semantic Analysis of the Design

Space of Input Devices,’’ Human-Computer Interaction, vol. 5, pp. 145-190, 1990.

maes95a.P. Maes, ‘‘Artificial Life Meets Entertainment: Lifelike Autonomous Agents,’’ Com-

munications of the ACM, vol. 38, no. 11, pp. 108-114, November 1995.



- 56 -

mats97a.N. Matsushita and J. Rekimoto, ‘‘HoloWall: Designing a Finger, Hand, Body, and

Object Sensitive Wall,’’ Proc. ACM UIST’97 Symposium on User Interface Software and

Technology, pp. 209-210, Addison-Wesley/ACM Press, Banff, Canada, 1997.

mayh99a.D.J. Mayhew, The Usability Engineering Lifecycle, Morgan Kaufmann, San Fran-

cisco, 1999.

mine97a.M.R. Mine, F.P. Brooks, and C.H. Sequin, ‘‘Moving Objects in Space: Exploiting

Proprioception in Virtual-Environment Interaction,’’ Proc. ACM SIGGRAPH’97 Confer-

ence, pp. 19-26, Addison-Wesley/ACM Press, 1997.

moha96a.M. Mohageg, R. Myers, C. Marrin, J. Kent, D. Mott, and P. Isaacs, ‘‘A User Inter-

face for Accessing 3D Content on the World Wide Web,’’ Proc. ACM CHI’96 Human

Factors in Computing Systems Conference, pp. 466-472, Addison-Wesley/ACM Press,

1996.

mora95a.T.P. Moran, P. Chiu, W. van Melle, and G. Kurtenbach, ‘‘Implicit Structure for Pen-

based Systems Within a Freeform Interaction Paradigm,’’ Proc. ACM CHI’95 Human

Factors in Computing Systems Conference, pp. 487-494, Addison-Wesley/ACM Press,

1995.

newm92a.W. Newman and P. Wellner, ‘‘A Desk Supporting Computer-based Interaction with

Paper Documents,’’ Proc. ACM CHI’92 Human Factors in Computing Systems Confer-

ence, pp. 587-592, Addison-Wesley/ACM Press, 1992.

norm91a.K. Norman, The Psychology of Menu Selection, Ablex Publishing Co., Norwood, N.J.,

1991.

pear86a.G. Pearson and M. Weiser, ‘‘Of Moles and Men: The Design of Foot Control for

Workstations,’’ Proc. ACM CHI’86 Human Factors in Computing Systems Conference,

pp. 333-339, 1986.



- 57 -

perl93a.K. Perlin and D. Fox, ‘‘Pad: An Alternative Approach to the Computer Interface,’’

Proc. ACM SIGGRAPH’93 Conference, pp. 57-64, Addison-Wesley/ACM Press, 1993.

perl84a.G. Perlman, ‘‘Making the Right Choices with Menus,’’ Proc. IFIP INTERACT’84

Conference on Human-Computer Interaction, pp. 317-321, 1984.

pree94a.J. Preece, Y. Rogers, H. Sharp, and D. Benyon, Human-Computer Interaction,

Addison-Wesley, Reading, Mass., 1994.

rabi93a.L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Engle-

wood Cliffs, N.J., 1993.

reki97a.J. Rekimoto, ‘‘Pick-and-Drop: A Direct Manipulation Technique for Multiple Com-

puter Environments,’’ Proc. ACM UIST’97 Symposium on User Interface Software and

Technology, pp. 31-39, Addison-Wesley/ACM Press, Banff, Canada, 1997.

rowe98a.D.W. Rowe, J. Sibert, and D. Irwin, ‘‘Heart Rate Variability: Indicator of User State

as an Aid to Human-Computer Interaction,’’ Proc. ACM CHI’98 Human Factors in Com-

puting Systems Conference, pp. 480-487, Addison-Wesley/ACM Press, 1998.

rubi91a.D. Rubine, ‘‘Specifying Gestures by Example,’’ Proc. ACM SIGGRAPH’91 Confer-

ence, pp. 329-337, Addison-Wesley/ACM Press, 1991.

sali99a.J.K. Salisbury, ‘‘Making Graphics Physically Tangible,’’ Communications of the ACM,

vol. 42, no. 8, pp. 75-81, August 1999.

salv97a.G. Salvendy, Handbook of Human Factors and Ergonomics, John Wiley, New York,

1997.

schm83a.C. Schmandt, ‘‘Spatial Input/display Correspondence in a Stereoscopic Computer

Graphic Workstation,’’ Computer Graphics, vol. 17, no. 3, pp. 253-259, 1983.

schm94a.C. Schmandt, Voice Communication with Computers, Van Nostrand Reinhold, New

York, 1994.



- 58 -

sear91a.A. Sears and B. Shneiderman, ‘‘High Precision Touchscreens: Design Strategies and

Comparison with a Mouse,’’ International Journal of Man-Machine Studies, vol. 43, no.

4, pp. 593-613, April 1991.

shne97a.B. Shneiderman, Designing the User Interface: Strategies for Effective Human-

Computer Interaction, Third Edition, Addison-Wesley, Reading, Mass., 1997.

stoa95a.R. Stoakley, M.J. Conway, and R. Pausch, ‘‘Virtual Reality on a WIM: Interactive

Worlds in Miniature,’’ Proc. ACM CHI’95 Human Factors in Computing Systems

Conference, pp. 265-272, Addison-Wesley/ACM Press, 1995.

ston94a.M.C. Stone, K. Fishkin, and E.A. Bier, ‘‘The Movable Filter as a User Interface

Tool,’’ Proc. ACM CHI’94 Human Factors in Computing Systems Conference, pp. 306-

312, Addison-Wesley/ACM Press, 1994.

tapi95a.M.A. Tapia and G. Kurtenbach, ‘‘Some Design Refinements and Principles on the

Appearance and Behavior of Marking Menus,’’ Proc. ACM UIST’95 Symposium on User

Interface Software and Technology, pp. 189-195, Addison-Wesley/ACM Press, Pitts-

burgh, Pa., 1995.

teit79a.W. Teitelman, ‘‘A Display Oriented Programmer’s Assistant,’’ International Journal of

Man-Machine Studies, vol. 11, pp. 157-187, 1979.

van95a.J. Van Santen, R. Sproat, J. Olive, and J. Hirshberg, Progress in Speech Synthesis,

Springer Verlag, New York, 1995.

want99a.R. Want, K.P. Fishkin, A. Gujar, and B.L. Harrison, ‘‘Bridging Physical and Virtual

Worlds with Electronic Tags,’’ Proc. ACM CHI’99 Human Factors in Computing Sys-

tems Conference, pp. 370-377, Addison-Wesley/ACM Press, 1999.

ware94a.C. Ware and R. Balakrishnan, ‘‘Reaching for Objects in VR Displays: Lag and Frame

Rate,’’ ACM Transactions on Computer-Human Interaction, vol. 1, no. 4, pp. 331-356,



- 59 -

December 1994.

ware97a.C. Ware and K. Lowther, ‘‘Selection Using a One-eyed Cursor in a Fish Tank VR

Environment,’’ ACM Transactions on Computer-Human Interaction, vol. 4, no. 4, pp.

309-322, December 1997.

zhai98a.A. Zhai and P. Milgram, ‘‘Quantifying Coordination in Multiple DOF Movement and

its Application to Evaluating 6 DOF Input Devices,’’ Proc. ACM CHI’98 Human Factors

in Computing Systems Conference, pp. 320-327, Addison-Wesley/ACM Press, 1998.

zhai96a.S. Zhai, W. Buxton, and P. Milgram, ‘‘The Partial-occlusion Effect: Utilizing Semi-

transparency in 3D Human-computer interaction,’’ ACM Transactions on Computer-

Human Interaction, vol. 3, no. 3, pp. 254-284, September 1996.


