A UIMS Architecture for Focus Processing
in a Graphical User Interface

Manuel A. Pérez
Robert J. K. Jacob

Code 5534
Human-Computer Interaction Laboratory
Naval Research Laboratory
Washington, DC 20375-5337
{perez | jacob} @itd.nrl.navy.mil

ABSTRACT

Today's graphical user interfaces remember little from one
transaction to the next; each command exists nearly inde-
pendently. Humans, however, typically draw on previous
elements of a dialogue in their communications. We are
seeking to add some of the characteristics of human dia-
logues to graphical interfaces. This paper describes our
research into this problem and our initial results in answer-
ing three questions: What are the appropriate analogues of
conversational focus in a graphical human-computer con-
versation? Where does this type of processing best fit within
a user interface management system paradigm? What mech-
anisms can be used to realize it?

NATURAL DIALOGUE IN A DIRECT MANIPULATION IN-
TERFACE

In a direct manipulation or graphical interface, each com-
mand or brief transaction exists as a nearly independent
utterance, unconnected to previous and future ones from the
same user. Real human communication rarely consists of
such individual, unconnected utterances, but rather each
utterance can draw on previous ones for its meaning. It may
do so implicitly, embodied in a conversational focus, state,
or mode, or explicitly (“Do the same sorting operation you
did before, but on these new data”).

Our goal is to connect these properties of human dialogue to
direct manipulation or graphical interaction styles. While
some natural language human-computer interfaces attempt
to exploit these characteristics of human dialogue, they have
been notably absent from graphical interfaces. Natural dia-
logue is by no means restricted to natural language. Most
research on the processes needed to conduct such dialogues
has concentrated on natural language, but some of them can

be applied to any human-computer dialogue conducted in
any language. A direct manipulation dialogue is conducted
in a rich graphical language using powerful and natural
input and output modalities. The user’s side of the dialogue
may consist almost entirely of pointing, gesturing, and
pressing buttons, and the computer's, of animated pictorial
analogues of real-world objects. A dialogue in such a lan-
guage could nevertheless exhibit useful dialogue properties,
such as following focus.

In natural language, focus represents the attentional space of
the participants in a dialogue [14], and it is a property of a
dialogue between two (or more) participants. It contains the
objects and actions that are most relevant to the conversa-
tion [3, 4]. Natural language processing systems use focus
to resolve ambiguous utterances. Focus contributes to the
connectedness of dialogue by allowing economy of expres-
sion (e.g. pronoun references and anaphora). One approach
to focus processing in the computational linguistics field [3,
4] uses a semantic net partition to represent those items
from a conversation that are in focus. The net is partitioned
into spaces, classified as explicit or implicit. Explicit focus
spaces contain objects and actions that have been used in a
conversation. Implicit focus spaces contain items that are
closely related to the items in the explicit focus spaces. For
example, while talking about cars, the concept car would be
in an explicit focus space, while the parts of the car would
be in an implicit focus space. This type of focus partitioning
is used to resolve pronoun referents, and to detect topic
shifts initiated by references to items outside of the current
focus.

The work described in this paper is part of a collaborative
project at NRL, see submission by Marsh and Wauchope
[13].

Focus and Direct Manipulation Dialogue

The most popular design for today’s graphical interfaces is
an object-action paradigm. These interfaces require the user
to select an object followed by the selection of the action to
be performed on the object. Because objects have to be

selected for an action to be performed, this dialogue design
is called the current-selection paradigm [2]; all actions are
performed on the currently selected objects. The structure of
a dialogue in these systems is very simple. At any point in
the dialogue, you have two choices: select an object, or per-
form an action on the selected objects. This dialogue struc-
ture has some advantages. First, selection of objects for
actions is always done the same way, thus making that part
of the interface simple and consistent. Second, current-
selection paradigm benefits from the use of recognition of
valid commands instead of recollection. Invalid actions
(based on the contents of the selection) are disabled; and
only those that apply to the current selected objects can be
performed. Thus the user can see what actions apply in the
current context.

The advantages of a simple dialogue structure come at a
price. First of all, current-selection works best for applica-
tions with homogenous objects and actions. These applica-
tions are often elaborated by permitting current selection to
be a set with one or more objects. Management of the selec-
tion set can be cumbersome, especially if the application has
many different types of objects that do not share the same
types of actions.

Second of all, when an action requires two parameters of
different types, it is not clear how the CSO paradigm should
handle this situation. Take for example, the duplicate com-
mand in most drawing programs. The duplicate command
requires two parameters: the object to be duplicated, and the
location where the duplicate will be placed. Current selec-
tion does not allow for a simple implementation of the
selection of the two parameters. One solution is to split the
duplicate command into two separate commands, copy and
paste, as it is done on the Macintosh [1].

Another limitation of current-selection dialogues is that the
only information maintained from one action to the next is
the selection itself. There is no mechanism for actions to use
other information that spans more than one exchange {10].
The current-selection provides only one level of focus, and
must be explicitly specified by the user every time, even
though sometimes there is only one object of interest based
on the current context.

The graphical user interface could keep a history of the
user’s current focus, tracking brief digressions, meta-con-
versations, major topic shifts, and other changes in focus.
Unlike a natural language interface, the graphical interface
would use inputs from a combination of graphical or manip-
ulative modes to determine focus. Pointing and dragging of
displayed objects, user gestures and gazes as well as the
objects of explicit queries or commands all provide input to
determine and track focus [14]. Moreover, focus would not
be maintained as a single object, but rather a history of the
course of the user-computer dialogue. It is necessary to
track excursions or digressions in the dialogue so focus

could be restored as necessary. In addition, it would be help-
ful to track focus by categories. This would allow the user
to refer to “the ship” even though the current focus is
another object. In that case, the recent history of focus
would be searched to find a ship of the appropriate category.
Finally, focus is not necessarily a concrete object; it might
be a class or category of objects (“all blue ships™) or a more
abstract entity (“the previous command™).

As a simple example of the use of such focus information,
the user might give a command (verb) without specifying its
object, and the interface would supply the object based on
the user’s current focus. A more sophisticated approach
would deduce the object of the command based on the
recent history of the user’s focus, rather than its single latest
manifestation. The nature of the command might constrain
the possible objects, For example, “display hull speed”
might apply only to ships. If the current focus were not such
a ship, the interface would backtrack through recent focus
objects to find the last applicable ship and use it as the
inferred object of the command. Further, a “retrieve data”
command might indicate a shift from a digression back to
the main dialogue; hence the appropriate object of this com-
mand would be not the current (digression) focus but the
previous (main dialogue) focus.

Human dialogue often combines inputs from several modes.
Deixis often involves a pointing gesture that does not pre-
cisely specify its object; the listener deduces the correct
object from the context of the dialogue and, possibly, from
integrating information from the hand gesture, the direction
of the user’s head, tone of his or her voice, and the like [5].
A user could, similarly, give a command and point in a gen-
eral direction to indicate its object. The interface would dis-
ambiguate the pointing gesture based on the recent history
of its dialogue with the user and, possibly, by taking into
account other information about the user from physical sen-
sors. An imprecise pointing gesture in the general direction
of a displayed region of a map could be combined with the
knowledge that the user’s recent commands within that
region referred principally to one of three specific locations
(say, river R, island /, and hill H) within the region and the
knowledge that the user had previously been looking prima-
rily at islands displayed all over the map. By combining
these three imprecise inputs, the interface could narrow the
choice down so that (in this example) island I is the most
likely object of the user’s new command.

This example combined inputs in several modes and inter-
action history to disambiguate an imprecise pointing ges-
ture. The same approach applies in the absence of a pointing
gesture. The user might simply ask for “that” without point-
ing. Recent history and focus plus physical information
about the user may still be adequate to disambiguate the ref-
erent of “that.”

The problem of selecting an appropriate referent is usefully

UI N
Syntactic+Lexical

Application
(gemantic)

% ﬁﬂ PP ” RSt
Lexical Syntax
Appli-
Executive
% Lﬁgﬁ?l «— cation
< @ .@ interface
@M Lexical
output 10

el g

*10 = Interaction Object

oo

**Eocus Stack or Network
Implementation

Discourse Module**

<

Figure 1. UIMS Software Architecture with Discourse Module

constrained if the user asks for “the aircraft carrier” rather
than simply “that.” History, focus, and other information
may then be combined with the restriction that aircraft carri-
ers are the only pertinent objects to search for the last-refer-
enced aircraft carrier (rather than the last-focused object in
general) and thereby determine unambiguously the correct
object of the user’s command.

A FRAMEWORK FOR HUMAN-COMPUTER DIALOGUE
Human-computer interface design, following Foley and van
Dam’s methodology [2], is decomposed into three levels:
semantic, syntactic, and lexical.

¢ The semantic level describes the functions performed by
the system. This corresponds to a description of the
functional requirements of the system, but it does not
address how the user will invoke the functions.

* The syntactic level describes the sequences of inputs and
outputs necessary to invoke the functions described.

¢ The lexical level determines how the inputs and outputs
are actually formed from primitive hardware operations
or lexemes.

Extending the linguistic analogy, we add another level to the
interface design:

e The discourse level is concemned with the flow of the
interactions over the course of more than one transac-
tion. The semantic, syntactic, and lexical levels are con-
cerned with a single user-computer transaction or brief
interaction. The discourse level introduces elements that
relate one transaction to another, such as dialogue focus.

Discourse Module in a UIMS Architecture

To incorporate discourse level issues into a user interface
management system (UIMS), we extended the typical
UIMS software architecture by adding a discourse module.
The discourse module’s responsibility is to keep track of the
focus of the dialogue (i.e. keep track of all objects and
actions used in the dialogue). This information is organized
in a way that allows the definition of new interaction tech-
niques and new user interface actions.

Figure 1 above shows the components of the UIMS devel-
oped at NRL [9, 7], extended with a discourse module. The
discourse module works as follows. Tokens from the syntax
module that have communicative intent [10] are passed to
the discourse module. For example, most of the time mov-
ing the mouse pointer around has no communicative intent.
In such cases, mouse-move tokens are not passed to the dis-
course module. But if the mouse pointer is used in a deictic
reference not requiring a mouse click (as described in [12]),
then mouse-move tokens must be processed by the dis-
course module. We must decide as part of the design of the
interface, which tokens could have communicative intent,
so they can be processed by the discourse module.

To use the information stored in the discourse module, we
define interaction techniques and user interface actions that
request information from the module. Section describes an
application used to test the discourse module interface. It
also gives examples of how a focus stack implementation is
used. Section describes the design for a more complex
focus representation (network) and gives some indications
of how it will be used, once it is completed.

last item top of stack

manipulated

least recently
manipulated item

Figure 2. Focus Stack

IMPLEMENTATIONS

‘We have built two implementations to test some of the ideas
presented above. The goal of the first implementation was to
test the modularization of the software architecture pre-
sented in Figure 1. For this version, we used a simple focus
stack as the mechanism to represent focus. The second
implementation uses a more complete focus tracking mech-
anism. This implementation is in the early stages of devel-
opment; the algorithm and data structures have been tested,
but not yet incorporated into the UIMS. The next two sec-
tions provide more detail about the two implementations.

Focus Stack Representation

Our first implementation was designed to test the discourse
module in the UIMS software architecture described above.
The contribution of the first implementation was the clean
decomposition of the discourse module and its placement in
our existing UIMS software architecture. The implementa-
tion of the focus module itself used a simple stack that
recorded the objects referenced in user interactions. No rep-
resentation for user interface actions was provided.

Focus was represented with a stack. The stack contained
only application domain objects, with the top of the stack
containing the object most recently referenced. When new
objects are created, they are added to the top of the stack.
Existing objects that are manipulated by the user also move
to the top of the stack. Thus, at any point in time, the stack
has a list of application objects ordered from top to bottom

User’s View

based on how recently they were manipulated (referenced).
Figure 2 shows how the focus stack is organized.

To test this implementation, we designed a simple drawing
program (a screen shot is shown in Figure 3) that used focus
as an alternative to current-selection interaction. This pro-
gram can create three types of shapes (using the buttons Tri-
angle, Square, and Circle). Any two circles can be
connected with a line using the Connect button. Any square
can be filled using the Fill button. All shapes can be deleted,
duplicated, and aligned by their top edges using the Delete,
Duplicate, and Align Tops buttons correspondingly. In a cur-
rent-selection interface, all of these actions would required
(at least) one selected shape. In our focus-based interface,
the parameters to the actions are taken from the focus stack.

For actions that require one parameter, with no type restric-
tion on the parameter, the item at the top of the stack was
used for the parameter to the action. Other actions require a
specific type of object as a parameter, for example the Fill
command in our interface. This action requires a square
shape as a parameter. For this action, we use the most
recently manipulated square, taken from the focus stack. In
Figure 3, the Fill button would use the shape
square=0x0010.

It is interesting to consider how far down the stack we can
move searching for an object. The restriction might be
based on time elapsed since the object was last used (a form
of forgetting [11]), or we might use task structure to restrict
the search (for example see [4]). Currently, our stack has no
limit, but we will investigate time-based focus decay in our
future work.

The last example involves actions that require more than
one parameter, such as the Connect and Align Tops buttons
in our interface. For these actions, we pick the highest two
objects in the stack that satisfy the command’s type restric-

Focus Stack

Quit

Square

Triangle
Circle
Connect
Duplicate
Delete

Fill O

Align Tops

circle=0x0044
circle=0x0038

clrcle=0x0024
square=0x0010
square=0x0018

connection=0x0032

triangle=0x10104

Figure 3. Prototype Application Using Focus Stack

tions. The Connect action requires two circles. The result of
the action is to draw a line between the two circles, as
shown in Figure 3. The difference between the Connect and
Align Tops, aside from their semantic differences, resides in
the result in the focus stack. The Align Tops uses the top two
items from the stack, and leaves the stack unaltered. The
Connect uses the top-most two circles, creates a connection
object (shown in the figure as connection=0x0032), and
then places this object (the connection) at the top of the
stack. The two circles do not change position in the focus
stack, since they were not manipulated directly by the Con-
nect command. (This is a design decision for this particular
interface to show the usage of the stack.)

This implementation provided us with a quick test of the use
of focus in a graphical user interface and for the software
architecture. The interface worked as an extended current-
selection interface, with selection being implicit and multi-
leveled, based on object types and categories. The focus-
based interface subsumes the current-selection paradigm.
Current-selection still can be achieved by clicking on the
object (or objects) of interest before performing the action.
We do not claim that this particular drawing program and
the examples presented above are better than a current-
selection based interface, but rather that we have a software
architecture that allows us to design interaction techniques
using focus.

Network Representation
The goal of our second implementation was to develop a

general design that will manage focus tracking for situations
more complex than the simple focus stack described above.
Previous work on focus [3] used a semantic net and parti-
tioning of the net to represent focus. We begin with a net-
work representation, similar to the semantic net approach.
We divided the focus tracking process in two parts: accumu-
lation of focus-relevant events (also called conversation-rel-
evant in [11]), and determination of focused item(s) based
on a given criterion of interest.

The network representation contains nodes and links. Nodes
represent objects in the domain and categories (semantic
and conceptual). Each node holds an accumulated value
indicating the “number” of mentions for the object it repre-
sents. Links connect objects to categories forming a directed
graph (no cycles are allowed). Each link has a value repre-
senting the strength of association between the two nodes it
connects.

As items are manipulated in the interface, “points” get accu-
mulated for the objects and categories involved in the inter-
action. Later, to find a focused item, the user interface
software must specify a criterion of interest. This is a repre-
sentation of critical categories for the focus computation.
Depending on a given criterion, different items will be in
focus. For example, if a user interface action requires a
parameter of type triangle and of color red (from the exam-

ple in Figure 3, then the criterion of interest for the action
would be (triangle = 1.0, red = 1.0, all others = 0.0). This
criterion of interest is propagated through the network using
a backward propagation constraint-based algorithm similar
to the one described in [6]. The result is an accumulation of
“focus” or “interest” on the objects in the network based on
the given criterion. From the accumulated value, we can
find a focused object (that is the object with the highest
accumulated value). The criterion of interest can include
multiple categories, with each category having a value
between O and 1. Note that it is possible to have more than
one object with the same accumulated value for a given cri-
terion; this would be the result of an ambiguous reference.

We chose a network representation because it will support a
far more sophisticated notion of the graphical analogue of
focus. Our network representation:

¢ combines application (semantic) representation with a
representation of user’s attention.

® is easy to integrate information from several input
devices into one representation (very important for
multi-modal interaction techniques).

¢ js flexible and domain independent.

¢ is computationally easy to implement. Many existing
algorithms for constraint propagation and graph tra-
versal apply to our problem.

¢ will allow us to combine several imprecise indicators of
attention (eye-gazes, interaction techniques, natural lan-
guage mentions) into one integrated representation. The
result is a flexible, multi-level representation of focus,
driven by (possibly) different dialogue-specified criteria
of interest. It avoids having discrete classifications
(explicit/implicit focus) as in previous approaches. All
items that are manipulated (or mentioned) get “points”
each time they are used. The accumulated points com-
bine with a specific criteria of interest and propagate
through the network, to represent focus in a very flexible
manner.

In the near future, we will finish the network implementa-
tion described in section . It will allow us to combine multi-
ple sources of possibly imprecise information, for example,
focus from previous commands, eye movements, other
measurements, domain-determined importance or rele-
vance. Such a network would support time-integrated selec-
tion (selects the item you have spent 75% of the last few
minutes looking at or 75% if the last few commands refer-
ring to -- even though they were not consecutive).

FUTURE WORK

For the past year, we have been researching how to incorpo-
rate human dialogue properties into the dialogue of a graph-
ical user interface. We have described a UIMS software
architecture that allows for focus processing in a graphical

_user interface. We have shown a prototype of interaction
techniques based on focus and discussed how these tech-
niques subsume CSO interaction techniques. Our research
so far has concentrated on the following three questions:

(1) Where does discourse level processing best fit within a
user interface management system paradigm?

(2) What are the appropriate analogues of conversational
focus in a graphical human-computer conversation?

(3) What mechanisms can be used to realize it?

We have answered (1). Our first implementation allowed us
to test the extended software architecture successfully. We
can partially claim (2) as well, since our implementation
will create behavior that is not exactly like existing human-
human linguistic dialogue, but is the graphical analogue to
it. Further testing is required. For (3), we have already
implemented a focus stack, and we are currently implement-
ing the network representation discussed in this paper.

ACKNOWLEDGMENTS
We want to thank Linda Sibert for her collaboration on this

research, our colleagues in the Dialogue Research Program
at NRL for helpful debates and discussions on these issues,
John Sibert for his cooperation and interest on this research,
and Mark Elsom-Cook helpful discussions concemning net-
works and the spreading activation approach. This work
was sponsored by the Office of Naval Research.

REFERENCES

1. Buxton, B. (1991). The “Natural” Language of
Interaction: A Perspective on Nonverbal Dialogues. In
B. Laurel (Eds.), The Art of Human-Computer Interface
Design Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc.

2. Foley, J. D., Dam, A. v., Feiner, S. K., & Hughes, J. F.
(1990). Computer Graphics: Principles and Practice.
Reading, Massachusetts: Addison-Wesley Publishing
Company, Inc.

3. Grosz, B. J. (1978). Focus Spaces: A Representation of
the Focus of Attention of a Dialogue. In D. E. Walker
(Eds.), Understandin (pp. 269-285).
New York: North-Holland.

4. Grosz, B. J. (1986). The Representation and Use of
Focus in a System for Understanding Dialogues. In B. J.
Grosz, K. S. Jones, & B. L. Webber (Eds.), Readings in.

Natural Language Processing (pp. 353-362). Los Altos,
California: Morgan Kaufmann Publishers, Inc.

S. Hill, W. C., & Hollan, J. D. (1991). Deixis and the
Future of Visualization Excellence. In Proceedings of
IEEE Vi nference. San Diego, CA

6. Hudson, S. E., & King, R. (1988). Semantic Feedback in
the Higgens UIMS. IEEE Tran
Engineering, 14(8), 1188-1206.

7. Jacob, R.J. K. (1983). Executable Specifications for a
Human-Computer Interface. In A. Janda (Ed.), CHI'83

Systems, (pp. 28-34). Boston: ACM Press.

8. Jacob, R.J. K. (1983). Using Formal Specifications in
the Design of a Human-Computer Interface.

Communications of the ACM, 26(4), 259-264.

9. Jacob, R.J. K. (1986). A Specification Language for
Direct-Manipulation User Interfaces. ACM Transactions

on Graphics, 5(4), 283-317.

10.Jacob, R. J. K. (1994). Natural Dialogue in Modes Other
Than Natural Language. In R.-J. Beun (Eds.), Natural
. v .
Amsterdam: Springer-Verlag, in press.

11. Luperfoy, S. (1992). The Representation of Multimodal
User Interface Dialogues Using Discourse Pegs. In
ings of the Association for Com ional
inguistics.
12. Mac Aogéin, E., & Reilly, R. (1990). Discourse theory
and interface design: The case of pointing with the

mouse. Intern f Man-Machin
32(May), 591-602.

13. Marsh, E., & Wauchope, K. Human-Machine Dialogue
for Multi-Modal Decision Support Systems. In this
proceedings.

14.Pérez, M. A., & Sibert, J. L. (1993). Focus on Graphical
User Interfaces. In B. Hefley (Ed.), Proceedings of the

International Workshop on Intelligent User Interfaces,
(pp. 255-257). Orlando, Florida: ACM Press.

