
USING FORMAL SPECIFICATIONS
IN THE DESIGN OF A HUMAN-COMPUTER INTERFACE

Robert J.K. Jacob

Naval Research Laboratory

Washington, D.C. 20375

INTRODUCTION

Formal and semiformal specification techniques
have been applied to many aspects of software

development. Their value is that they permit a
designer to describe precisely the external
behavior of a system without specifying its inter-

hal implementation. In the Military Message Sys-
tems (MMS) Project at the Naval Research Laborato-

ry, the external behavior of a family of message
systems has been described using semiformal
specification techniques [5,6]. Currently, the
human-computer interfaces for such systems are be-

ing specified using similar techniques. These

specifications will be used in the construction of

a prototype military message system.

The design of the user interface for a military
message system has special importance because of
its role in maintaining the security of classified

messages. Enforcement of system security requires
that the user understand the security-related
consequences of his or her actions, but often such
consequences are not intuitively obvious. Recent

experimental results indicate that communicating
the security implications of an action and obtain-
ing meaningful approval or disapproval from a user
can be very difficult [16].

This paper surveys specification techniques
that can be applied to human-computer interfaces,
provides examples of specifications, and presents
some conclusions drawn from the author's experi-
ence using the techniques for specifying the user

interface of the message system.

THE MILITARY MESSAGE SYSTEM

Each member of the MMS family consists of
several components. Two are of interest here: the
User Agent and the Data Manager. The user commun-
icates with the User Agent via a User Command

Language (UCL). Once it receives a command from
the user, the User Agent translates the command
into a standard form, a statement in the Inter-
mediate Command Language (ICL), and passes that to
the Data Manager. Information returned by the
Data Manager in response to user requests is
delivered to the User Agent, which is responsible
for displaying it to the user. This division per-

01981 ASSOCIATION FOR COMPUTING MACHINERY
Permission ~ copy without f ~ all or part of t ~ s material is ~ a n t e d p r o ~ d ~ that
the copies ~ e not m a ~ or ~s t~buted for direct ~mmerical advan~ge, t ~ ACM
~pyr ight not i~ and t ~ t i t~ of the pubH~tion and i ~ d a ~ appear, and no t i~ is
~ven that ~ p y m g is by permismon of t ~ Associa~on for Computing Machine~.
To copy o t~rwi~ , or to r~ubtish, r~uires a f ~ an~or specific permission.

mits new systems with different user interfaces to
be constructed from an existing system with rela-

tive ease. For most changes to the user inter-
face, only the User Agent must be modified so that

it will translate from the new UCL into the stan-
dard ICL; the Data Manager and other system com-
ponents need not be changed. Separating the user
interface in this way makes it possible to experi-

ment with different user interfaces and to evalu-

ate them from their specifications (as Reisner
[13] and Embley [2] do) as well as from a proto-
type (as Hanau and Lenorovitz [4] do).

This division also makes the specification of

the user interface clearer. Previous user inter-
face specifications have suffered because they

lacked an acceptable language for describing the

"semantics" of the interface, ~.~., the actions
that the system performs in response to the user's
commands. Since a complete description of such
actions is in fact a specification of the entire
system, putting it in the user interface specifi-
cation clutters that specification with detail
that belongs at another level. What is needed is

a high-level model that describes the operations
that the system performs. Then, the user inter-
face specification describes the user interface in
terms of the model, while the internal details of

the model are described in a separate specifica-

tion.

The design used in the Military Message System
Project provides one solution to this problem.

The ICL is an abstract model of the services per-
formed by a message system, and it is formally
described in a separate specification [6]. The

user interface specification, then, needs only to
describe the syntax of the UCL with a language
specification technique and the semantics of the

UCL with ICL statements.

PROPERTIES OF A SPECIFICATION TECHNIQUE

In selecting a technique for specifying a
human-computer interface, one should seek the fol-

lowing properties:

• The specification of a user interface
should be easy to understand. In par-
ticular, it must be easier to under-
stand (and take less effort to pro-
duce) than the software that imple-

ments the user interface.

• The specification should be precise.

315

It should leave no doubt as to the

behavior of the system for each possi-
ble input.

• It should be easy to check for con-
sistency.

• The specification technique should be
powerful enough to express nontrivial

system behavior with a minimum of com-
plexity.

• It should separate what the system
does (function) from how it does it
(implementation). The technique
should make it possible to describe

the behavior of a user interface,

without constraining the way in which
it will be implemented.

• It should be possible to construct a
prototype of the system directly from
the specification of the user inter-
face.

The structure of the specification

should be closely related to the

user's mental model of the system it-
self. That is, its principal con-

structs should represent concepts that

will be meaningful to users (such as
answering a message or examining a

file), rather than internal constructs
required by the specification
language.

SURVEY OF SPECIFICATION TECHNIQUES

Much of the work applicable to techniques for

specifying human-computer interfaces has been con-
cerned with static, rather than interactive,

languages [7]. In a static language, an entire
text in the input language is (conceptually)

present before any processing begins or any out-
puts are produced; all of the outputs are then
produced together, usually after a fairly long in-

put text (such as a program) has been processed.
In an interactive language, the computer may take
actions and produce outputs at any point in a dia-

log. Hence, a specification for such a language
must capture not only the system actions and out-

puts but also their timing.

Most specifications for both static and in-
teractive languages have been based on one of two

formal models: Backus-Naur Form (BNF) [13] and

state transition diagrams [12]. Each of these

methods provides a syntax for describing legal

streams of user inputs. In order to be used to
specify interactive languages, the tec)miques must
be modified to describe, in addition to user in-

puts, system actions and their timing.

BNF

For BNF, the necessary modification consists of
associating an action with each grammar rule.
Whenever that rule applies to the inlet language
stream (so far), the associated action occurs.

(As mentioned, for the MMS family members, these
system actions can be described as ICL statements
issued by the User Agent to the Data Manager.)

Reisner [13] provides an example of how BNF can

be used to describe a user interface. Unlike

several other published specifications, this one
specifies a nontrivial, real-world system. It

does leave out the system actions and responses,
however, since Reisner did not need them for her

purposes. She uses the BNF specifications of two
systems to predict differences in the performance
of their users. More complex or inconsistent BNF

rules lead to predictions of user errors. Several
predictions are then verified empirically.

Schneiderman [14] also examines the use of BNF

for describing interactive user interfaces and
proposes a modified form of BNF in which each non-
terminal symbol is associated with either the com-

puter or the user. This type of grammar can be
mapped into a conventional state transition di-

agram (with the exception of one rarely-occurring
nondeterministic case).

A BNF specification can also be used as input
to a compiler-compiler, such as that described in
[9]. Given a specification in which an executable

action is associated with each BNF rule, such a
program can automatically construct a prototype of

the system being specified.

One general problem that arises with BNF-based

techniques is that it is sometimes difficult to
specify exactly when something occurs (that is,
after exactly what input tokens have been recog-

nized). This makes it awkward to specify interac-
tive prompting, help messages, and error handling,
which must occur at particular points in a dialog.
Often, it requires the introduction of many other-

wise irrelevant nonterminal symbols into the
specification.

State Transition Diagrams

To represent interactive languages, state tran-
sition diagrams are modified in a way similar to
that for BNF-based techniques. Each transition is

associated with an action; whenever the transition

occurs, the system performs the associated action.
Since the concept of time sequence is explicit in

a state diagram (while it is implicit in BNF), the
former is more suited to specifying the times when

events occur.

Conway [I] presents an early use of a notation,
based on state transition diagrams, in which an
action is associated with each transition. His

goal, however, was to specify and construct a com-
piler for a static language, so he did not address

the problems of interactive user interfaces.

Woods [17] also describes a notation, based on
state transition diagrams, for analyzing a static
language. His notation includes an extension to

conventional state transition diagrams--a global
data structure. The actions associated with each
transition manipulate this structure, and the con-
ditions for making a state transition can include
arbitrary Boolean expressions that depend on the
data structure.

Both investigators introduce into their state
diagrams a feature analogous to BNF nonterminal

symbols. With this feature, instead of labeling a
state transition with a single input token, the

316

transition may be labeled with the name of a non-
terminal symbol. That symbol is, in turn, defined

in a separate state transition diagram. This
makes it possible to divide c~nplex diagrams into
more manageable pieces.

Parnas [12] proposes the use of state diagrams
to describe user interfaces for interactive

languages. He differentiates "terminal state"
from "complete state" in a way analogous to the
separation of syntax from semantics in other

specifications. The paper contains some very sim-
ple examples but does not address how the scheme

would be extended for real-world systems.

Foley and Wallace [3] also advocate the use of

a state diagram to represent the user interface of
an interactive system. While their notation is
clear and easy to understand, they, too, do not
examine the problem of specifying real-world sys-

tems.

The standard for the MUMPS interactive computer
language [10] provides an example of a specifica-

tion of a complex system that uses a notation
based on state diagrams. The specification uses
nonterminal symbols extensively and gives a pre-

cise description of the rules for interpreting

them (since their use can otherwise require a non-
deterministic automaton). The actions associated
with the transitions in this specification

comprise a complete specification of the semantics

of the MUMPS language.

Singer [15] presents a state diagram-based
specification of a nontrivial system. His nota-
tion is more precise and more general than most
other versions of state diagrams, but it is also

more complex and difficult to understand. It Uses
separate diagrams for nonterminal symbols and a

global data structure, which is set by arbitrary
semantic-domain actions. Transitions are then
selected by examining values in this data struc-
ture, rather than the input tokens directly.
While the two notations appear quite different,

most aspects of Singer's can be mapped into that

of the MUMPS specification.

Moran [11] provides a notation for describing
the user's view of a computer system at several
levels, from the overall tasks performed to indi-

vidual key presses. This notation results in an
unusually long and detailed specification. At the

"Interaction Level," Moran's specification can be
mapped onto a state diagram. His notation does

not contain a state diagram representation of the
Interaction Level of the user interface, but it
does record a number of properties such a diagram
would have. These properties are sufficient to

generate a state diagram specification or (in
cases where only a few properties are specified) a
set of diagrams.

EXAMPLES OF SPECIFICATIONS

To illustrate the use of some specification

techniques, two commands from an hypothetical mil-
itary message system are specified here.

The "Login" command prompts the user to enter
his or her name. If it does not recognize that
name, it asks the user to re-enter it, until he

enters a valid name. Then, the system requests a
password; if the password entered is incorrect,
the user gets one more try to enter a correct one

and proceed; otherwise, he must begin the whole
command again. Next, the system requests a secu-
rity level for the session, which must be no
higher than the user's security clearance. If he
enters a level that is too high, he is prompted to
re-enter it, until he enters an appropriate level.
If he does not enter an appropriate security lev-

el, he is given the default level "Unclassified."

The "Reply" command permits a user to send a

reply to a message he has received. The user can
give an optional input indicating to which message
he wants to reply; otherwise, the default is
"CurrentMsg." He then enters the text of his re-
ply. Following this, he can enter some optional

lists containing additional addressees to which he

wants this reply to be sent (in addition to those
on the distribution list of the message to which

he is replying). Each of these lists consists of
the word "To" or "Cc" (depending on how the reply

should be addressed to these people) followed by
one or more addressees.

State Diagram

In Figure I, the "Login" command is specified
using state transition diagrams; the "Reply" com-

mand is specified in Figure 2. The notation used

follows widely used conventions. Each state is
represented by a circle. The "start" and "end"

states are so named inside the circles. Each
transition between two states is shown as a la-
beled, directed arc. The arc is labeled with the
name of an input token, in capital letters, plus,

in some cases, a footnote containing Boolean con-
ditions, system responses, and actions. A given

state transition will occur if the input token is

received and if the condition is satisfied; when
the transition occurs, the system displays the
response and performs the action.

Instead of an input token, a transition may be
labeled with the name of another diagram (in lower

case). Such a transition will be made if the
named diagram is traversed successfully at this
point in the input. This notation permits break-
ing the specification up for clarity; otherwise,

the text of the called diagram could simply have
been inserted at this point in the calling diagram

(provided one assumes that the diagrams are deter-
ministic).

In the actions, function names in upper case

denote ICL functions, but their specific meaning
is not material to this discussion. A token name
preceded by a dollar sign stands for the value
most recently read in for that input token.
(E.~., $USER stands for the actual name the user
typed.)

The special token "ANY" is defined such that if
no other transition can be made, the transition

labeled with "ANY" is made, and the current input
token is scanned again when the new state is

reached. If the system reaches a state from which
no transition can be made, given the current in-
put, then there is an error in the input, and a
transition would be made to an error-handling pro-

317

cedure. For clarity, such procedures have not

been included in these examples. (Clearly this
cannot arise in a state from which there is a
transition with the token "ANY.")

The tokens themselves can be defined in a
separate specification, which captures lower-level
details of the user-computer interaction. For ex-

ample, the token "LOGIN" could represent the typed
string "Login," a function key, or a hit of a
graphic input device on a menu display, without
affecting the specification shown here. Similar-

ly, the definition of "TEXT" would include a
specification of the delimiter used to indicate

the end of an input string.

Text Representation of State Diagram

Figures 3 and 4 show how the specifications
above can be represented in text form. This is

often more convenient for computer input and out-
put than the graphical diagrams. The text

representation consists of a list of the transi-
tions that comprise the diagram, each represented

by a line of the form

st: INP resp: "Hello" ->s2

denoting a transition from state sl to state s2,
which expects input token INP and displays
response "Hello." Conditions or actions are

specified in a way similar to the response. In-
stead of an input token, the name of another di-

agram could be given (in lower case), meaning that

that diagram would be traversed, and, upon exit
from it, a transition to state s2 would be made.

Other features of this notation are the same as
for the state diagrams above.

BNF

Figures 5 and 6 show the same commands in BNF
notation. Lower case names denote nonterminal
symbols, which are subsequently defined in terms

of terminal symbols. Upper case names are termi-
nal symb31s, which would be defined in a lower-
level specification. Some definition rules are
annotated with Boolean conditions, system
responses, or actions, all placed in brackets. If
a rule contains a condition, that condition must

be true at the point in the input stream
corresponding to its position in the rule, for the
rule to be matched. When a rule is matched, the
system will display the response and perform the

action, if any are given.

The special token "NULL" represents no input.

A token or nonterminal name followed by an aster-

isk stands for "zero or more instances of" that
symbol. The other conventions used in the actions
are the same as those for the state diagrams

above.

CONCLUSIONS

From examining these and other examples [8],
one can observe that, while techniques based on

BNF and those based on state transition diagrams
are formally equivalent, their surface differences
have an important effect on the comprelhensibility
of the specifications. In particularr notations

based on state transition diagrams explicitly con-
tain the concept of a state and £he transition
rules associated with it, while it is implicit in
BNF-based notations. Since this concept is impor-

tant in representing sequence in the behavior of
an interactive system, state diagrams are prefer-
able to BNF in this regard.

Existing techniques based on state diagrams

vary considerably in their syntax and expressive
ability, although it is possible to combine the
desirable features of several such notations into

a new technique. The state diagrams shown above

represent such a synthesis.

While the text representations of the state di-

agrams are somewhat more difficult to read than
the graphical ones, they are a more convenient

form of computer input. They do contain suffi-
cient information to generate the graphic diagrams

automatically and also to drive a fairly straight-

forward simulator of a user interface.

In either state diagram or BNF notation, the
judicious use and choice of meaningful nonterminal

symbols is important to the overall clarity of the

specification, often more so than the choice of
notation. The principal difference between the
two types of notations is that a BNF-based specif-
ication with very few nonterminals (with respect

to the complexity of the system) is generally more
difficult to understand than the corresponding
state diagram. Thus a direct translation of a

typical BNF specification into state diagram nota-

tion is likely to contain many very simple di-

agrams; while a typical state diagram translated
into BNF will contain only a few, very complicated
rules. BNF, then, requires more nonterminals to
make it readable.

A synthesis of the features of several state

diagram-based notations is being used to specify
the user interface for the prototype military mes-
sage system. The explicit description of states
in this notation makes the sequence of actions
clearer than in BNF. In addition, some of the

states correspond to users' own notions of what a
system does ("text entry" state, "logged-out"
state). The state diagram examples above show how
a portion of the User Agent can be specified in

this manner. The specification can then be used
to produce a system that implements the specified
user interface and issues ICL commands to the rest

of the message system.

REFERENCES

I. Conway, M.E. Design of a Separable

Transition-Diagram Compiler. Comm. ACM, 1963, 6,

396-408.

2. Embley, D.W. Empirical and Formal Language

Design Applied to a Unified Control Construct for

Interactive Computing. Int. J. Man-Machine Stu-

dies, 1978, ~, 197-216.

3. Foley, J.D. and Wallace, V.L. The Art of
Graphic Man-Machine Conversation. Proc. IEEE,

1974, 62, 462-471.

4. Hanau, P.R. and Lenorovitz, D.R. Prototyping
and Simulation Tools for User/Computer Dialogue

318

Design. Proc. ACM SIGGRAPH, 1980, 62, 462-471.

5. Heitmeyer, C.L. and Wilson, S.H. Military
Message Systems: Current Status and Future Direc-
tions. IEEE Transactions on Communications, 1980,
COM-28, 1645-1654.

6. Heitmeyer, C.L. An Intermediate Command
Language (ICL) for the Family of Military Message
Systems. Technical Memorandum 7590-450:CH:ch, Na-
val Research Laboratory, 13 November 1981.

7. Jacob, R.J.K. Survey of Specification Tech-
niques for User Interfaces. Technical Memorandum
7590-303:RJ:rj, Naval Research Laboratory, 21 Au-
gust 1981.

8. Jacob, R.J.K. Examples of Specifications of
User Interfaces. Technical Memorandum 7590-
008:RJ:rj, Naval Research Laboratory, 6 January
1982.

9. Johnson, S.C. Language Development Tools on
the Unix System. Computer, 1980, 13, 16-21.

10. MUMPS Development Committee. MUMPS Language
Standard. New York: American National Standards
Institute, 1977.

11. Moran, T.P. The Command Language Grammar: A
Representation for the User Interface of Interac-
£ive Computer Systems. Int. J. Man-Machine stu-
dies, 1981, 15, 3-50.

12. Parnas, D.L. On the Use of Transition Di-
agrams in the Design of a User Interface for an
Interactive Computer System. Proc. 24th National
ACM Conference, 1969, 15, 379-385.

13. Reisner, P. Formal Grammar and Human Factors
Design of an Interactive Graphics System. IEEE
Transactions on Software Engineering, 1981, SE-Z,
229-240.

14. Schneiderman, B. Multi-Party Grammars and
Related Features for Defining Interactive Systems.
IEEE Transactions on Systems, Man, and Cybernet-
ics, 1981, SE-7, 229-240.

15. Singer, A. Formal Methods and Human Factors
in the Design of Interactive Languages. Ph.D.
dissertation, Computer and Information Science,
Univ. Massachusetts, September 1979.

16. Wilson, S.H., Kallander, J.W., III, N.M. Tho-
mas, Klitzkie, L.C., and Bunch, J.R. Jr. MME
Quick Look Report. Memorandum Report 3992, Naval
Research Laboratory, 1979.

17. Woods, W.A. Transition Network Grammars for
Natural Language Analysis. Comm. ACM, 1970, 13,
591-606.

Login

(I) resp: "Enter name"

(2) cond: not EXISTS USER($USER) resp: "Incorrect user name--reenter it"
(3) cond: EXISTS_USER($USER) resp: "Enter password"
(4) cond: SPASSWORD=GETPASSWDUSER($USER) resp: "Enter security level"
(5) cond: SPASSWORD~GETPASSWDUSER($USER) resp: "Incorrect password--reenter it"
(6) cond: $PASSWORD~GETPASSWD USER($USER) resp: "Incorrect password--start again"
(7) cond: $SECLEVEL>GETCLEARANCE USER($USER) resp: "Security level too high--reenter it"
(8) cond: $SECLEVEL<=GETCLEARANCEUSER($USER) act: CREATE SESSION($USER,$PASSWORD,$SECLEVEL)
(9) resp: "Your security level is Unclassified" act: CREATE_SESSION($USER,$PASSWORD,Unclassified)

Figure 1. State Diagram Specification of the "Login" Command

319

extratos

Reply (

exl ~CCS

extratos ~f(5)~ E

extraccs 7 ~ S E ~

(I
(2
(3
(4
(5
(6

resp: "Enter text field" act: repiyid:=REPLY_MSG($MSGID); replybuf:=OPENFOREDITMSG(replyid)
resp: "Enter text field" act: replyid:=REPLY MSG(CurrentMsg); replybuf:=OPENFOREDIT MSG(replyid)
act: SETTEXTMSG($TEXT,replybuf)
act: UPDATE MSG(replyid,replybuf); CLOSEEDITMSG(repiyid)
act: SETTOMSG(replybuf,GETTOMSG(replybuf)+$ADDRESSEE)
act: SETCC_MSG(replybuf,GETCCMSG(repiybuf)+$ADDRESSEE)

Figure 2. State Diagram Specification of the "Reply" Command

start: LOGIN resp: "Enter name" ->getu

getu: USER cond: not EXISTS USER($USER) resp: "Incorrect user name--reenter it" ->getu
getu: USER cond: EXISTS USER($USER) resp: "Enter password" ->getpw

getpw: PASSWORD cond: $PASSWORD=GETPASSWDUSER($USER) resp: "Enter security level" ->getsl
getpw: PASSWORD cond: SPASSWORD~GETPASSWD USER($USER)

resp: "Incorrect password--~eenter it" ->badpw

badpw: PASSWORD cond: $PASSWORD=GETPASSWD_USER($USER) resp: "Enter security level" ->getsl
badpw: PASSWORD cond: SPASSWORD~GETPASSWDUSER($USER)

resp: "Incorrect password--start again" ->start

getsl:

gets1:

getsl:

SECLEVEL cond: $SECLEVEL>GETCLEARANCEUSER($USER)
resp: "Security level too high--reenter it" ->getsl

SECLEVEL cond: $SECLEVEL<=GETCLEARANCE USER($USER)
act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL) ->end

ANY resp: "Your security level is Unclassified"
act: CREATE_SESSION($USER,$PASSWORD,Unclassified) ->end

Figure 3. Text Representation of Figure I

320

Reply start: REPLY ->getid

extratos

extraccs

Figure 4.

getid:

getid:

gettext:

getextras:
getextras:
getextras:

start:
t1:
t2:
t2:

MSGID resp: "Enter text field" act: replyid:=REPLY_MSG($MSGID);
replybuf:=OPENFOREDITMSG(replyid) ->gettext

ANY resp: "Enter text field" act: replyid:=REPLY MSG(CurrentMsg);
replybuf:=OPENFOREDITMSG(replyid) ->gettext

TEXT act: SETTEXTMSG($TEXT,repiybuf) ->getextras

extratos ->getextras
extraccs ->getextras
ANY act: UPDATE MSG(replyid,replybuf); CLOSEEDITMSG(repiyid) ->end

TO ->tl
ADDRESSEE act: SETTOMSG(replybuf,GETTOMSG(replybuf)+$ADDRESSEE)
ADDRESSEE act: SETTO_MSG(replybuf,GETTOMSG(replybuf)+$ADDRESSEE)
ANY ->end

start: CC ->ci
ci: ADDRESSEE
c2: ADDRESSEE
c2: ANY ->end

->t2
->t2

act: SETCCMSG(replybuf,GETCCMSG(replybuf)+$ADDRESSEE) ->c2
act: SETCCMSG(replybuf,GETCCMSG(repiybuf)+$ADDRESSEE) ->c2

Text Representation of Figure 2

Lo~in::=

badpw::=

goodpw::=

I

loguser::=

getuser::=

baduser::=

onetry::=

getseclevel::=

I

badsl::=

Figure 5.

badpw* goodpw [resp: "Enter security level"] getseclevel

loguser onetry PASSWORD [cond: $PASSWORD~GETPASSWDUSER($USER)
resp: "Incorrect password--start again"]

loguser PASSWORD [cond: $PASSWORD=GETPASSWD USER($USER)]
loguser onetry PASSWORD [cond: $PASSWORD=GE~PASSWDUSER($USER)]

LOGIN [resp: "Enter name"] getuser [resp: "Enter password"]

baduser* USER [cond: EXISTS USER($USER)]

USER [cond: not EXISTS USER($USER) resp: "Incorrect user name--reenter it"]

PASSWORD [cond: $PASSWORD~GETPASSWDUSER($USER) resp: "Incorrect password--reenter it"]

badsl* [resp: "Your security level is Unclassified"
act: CREATE SESSION($USER,$PASSWORD,Unclassified)]

badsl* SECLEVEL [cond: $SECLEVEL<=GETCLEARANCE USER($USER)
act: CREATE SESSION($USER,$PASSWORD,$SECLEVEL)]

SECLEVEL [cond: $SECLEVEL>GETCLEARANCEUSER($USER)
resp: "Security level too high--reenter it"]

BNF Specification of the "Login" Command

Reply::=

getid::=

extras::=

extratos::=
toaddressee::=

extraccs::=
ccaddressee::=

Figure 6.

REPLY getid [resp: "Enter text field" act: replybuf:=OPENFOREDIT MSG(replyid)]
TEXT [act: SETTEXT MSG($TEXT,replybuf)]
extras* [act: UPDATE MSG(replyid,replybuf); CLOSEEDIT MSG(replyid)]

MSGID [act: replyid:=REPLY MSG($MSGID)] I NULL [act: replyid:=REPLY MSG(CurrentMsg)]

ex~ratos I" extrraccs

TO toaddressee toaddressee*
ADDRESSEE [act: SETTOMSG(replybuf,GETTOMSG(replybuf)+$ADDRESSEE)]

CC ccaddressee ccaddressee*
ADDRESSEE [act: SETCCMSG(replybuf,GETCCMSG(replybuf)+$ADDRESSEE)]

BNF Specification of the "Reply" Command

321

