
CHI 98 l 18-23 APRIL 1998 ACM ISBN l-581 13-028-7 STUDENT POSTERS 

A Specification Paradigm for Design and 
Implementation of Non-WIMP User Interfaces 

Stephen A. Morrison 
Department of Electrical Engineering 

and Computer Science 
Tufts University 

16 1 College Avenue 
Medford, MA 02 1555528 

(617) 627-3217 
smorrisn@eecs.tufts.edu 

ABSTRACT 
The SHADOW System is a user interface management system 
designed to address the specific needs of non-WIMP interfaces 
such as virtual environments, gesture recognizers and other 
interactions that involve highly parallel, continuous 
interaction. The proposed UIMS consists of a graphical 
specification language based on augmented transition 
networks and data flow graphs, a code translation system 
which supports dynamic constraint binding, modular design 
and code reuse, and a run time engine designed to optimize 
the use of processing resources within a time sensitive 
environment while preserving a layer of platform 
independence for the application. 

Keywords 
Constraint progr amming, interface specification, non-WIMP, 
SHADOW, software engineering, state transition diagram, 
user interface description language (UIDL), user interface 
management system (UIMS), virtual reality (VR), visual 
progrannning . 

INTRODUCTION 
Most current user interface specification languages and 
toolkits are based on serial, discrete, token exchange 
paradigms which, in general, perform an acceptable job of 
implementing traditional WIMP (Window, Icon, Menu, 
Pointer) interfaces commonly found in todays’ office 
automation software. Unfortunately, these tools are ill suited 
to address the needs of emerging non-WIMP interaction styles 
such as virtual environments. This limitation stems from the 
general characteristics of non-WIMP user interfaces. These 
emerging interaction styles commonly rely upon: full duplex, 
asynchronous, interrelated dialogues; a blend of continuous 
and discrete inputs and responses; and, implicit commands 
and probabilistic input events. Additionally, some forms of 
non-WIMP interactions, such as immersive virtual reality, 
must also contend with real time processing constraints and 
deadline-based computations [Z, 31. 

Robert J. K. Jacob 
Department of Electrical Engineering 

and Computer Science 
Tufts University 

16 1 College Avenue 
Medford, MA 02 155-5528 

(6 17) 627-32 17 
jacob@eecs.tufts.edu 

The lack of applicable software tools has forced many 
interface developers to resort to using ad-hoc, low-level 
programming approaches when dealing with non-WIMP 
system. These approaches are usually adequate for the task 
at hand from a functional standpoint but drastically add to 
the complexity of the development while hindering efforts at 
code reuse, platform independence, and long term 
maintenance. 

The Specification Problem 
From a designer’s perspective, a system of techniques and 
abstractions needs to be developed which allows both the 
behavior and semantic meaning of all interface elements to 
be clearly defined in a reusable fashion. Such a specification 
should allow conceptual continuity between our cognitive 
understanding of an object or phenomenon and our description 
of it. Thus, an action which a typical user would percieve to 
be a discrete event, such as a mouse click, can be handled as 
a singular event token while a continuous force, such as 
gravity, may be described as a permanent constraint effecting 
all object with mass. 

The lack of standards and emerging nature of the domain of 
non-WIMP interfaces further complicates the specification 
problem in that new input and output devices are constantly 
being introduced as are novel interaction techniques 
themselves. Any tool or language seeking to service this 
domain must be extensible or risk rapid obsolescence both 
for the tool and any system developed with it. 

Many proposed solutions to the specification problem offered 
to date have explored many of the conceptual issues described 
above on a smaIl scale [1,3,4] but have done little to address 
the problems of scale which arise when trying to specify an 
entire interface rather than the individual behavior of an 
element within an interface. As interfaces grow in size and 
complexity, support for good software engineering practices 
such as modular design and traceability become vital to the 
success of the system. 

357 



Implementation Issues 
In addition to the cognitive issues of describing semantic 
behavior, non-WIMP systems must also deal with very 
practical issues of performance, portability, and 
maintainability. Any UlMS targeted at a non-WIMP domain 
needs to be sensitive to these issues and should provide 
mechanisms which allow run time performance criteria and 
deadline contingency plans to be specilied in a manner which 
is easily discernible and platform independent. 

A LANGUAGE MODEL 

The SHADOW System seeks to address these concerns by 
providing a graphical specification language consisting of a 
data flow graph and an augmented transition network and is 
based on the PMIW model proposed by Jacob 133. This 
language is highly declarative in nature, supports loosely 
coupled, modular design and relies upon a run time engine to 
resolve constraints and to manage conceptually parallel tasks 
within uniprocessing environments. 

The data flow graph consists of a network of links and 
variables. Links are conceptually continuous, modular data 
transforms or user defined I/O channels which can be 
selectively activated or deactivated in response to discrete 
tokens or performance restrictions. Variables serve as data 
repositories and conduits. By selectively controlling the 
topology of the data flow graph, the designer may specify 
both permanent behaviors (such as the force of gravity) as 
well as temporary relationships (such as the location of an 
object with respect to one’s hand while being tied). 

The augmented transition network is designed for servicing 
discrete event tokens (raised by links) and uses these tokens 
to dynamically alter the topology of the data flow graph based 
on system status information flags. In this fashion, both 
discrete events and parallel, conthmous relationships may be 
modelled in a way that is both segregated and interrelated. 

UIMS RUN-TIME CONSIDERATIONS 
The SHADOW System run time engine provides the 
infrastructure which allows the interface designer to address 
conceptual and semantic issues of design without becoming 
bogged down in the details of implementation. The engine is 
responsible for internal task management, event propagation, 
and constraint binding. Additionally, the engine provides 
facilities which allow the designer to statically specify both 
real time performance criteria and contingency plans to help 
the system automatically adjust processing loads to meet those 
criteria should CPU processing time consumption become a 
problem. 

CURRENT WORK 
To date, the SHADOW System consists of the SHADOW- 
Talk visual language specification, the SHADOW-Script text 
language, an initial version of the code translator used to 
generate C++ from SHADOW-Script specifications, and a 
prototype run time engine. A visual editor for the SHADOW- 
TALK language is under development and will be added to 
the UIMS to complete the graphical programming 
environment. 

As an on going effort, the SHADOW System is being applied 
to a variety of tasks to explore and define the limits of its 
ability to meet the needs of non-WIMP interface designers. 
Areas under investigation include: automated support for 
decimation policies; event abstraction; gesture recognition and 
other probabilistic inputs, generic constraint specification and 
physical law simulation; and, support for large scale 
development. 

ACKNOWLEDGEMENTS 
This work was supported by National Science Foundation 
Grant W-9625573, Office of Naval Research Grant NOOO14- 
95-l-1099, abd Naval Research Laboratory Grant NOOO14- 
95I-G014. Additionally, I would like to thank Quan Lin 
and Leonidas Deligiannidis for their ideas and suggestions 
regarding the implementation of the SHADOW UIMS itself 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

Abowd, G. D. and Dix, A. J., “Integrating Status and 
Event Phenomena in Formal Specifications of Interactive 
Systems,” Proceedings of the ACM SIGSOFT’94 
Symposium on Foundations of Sofrware Engineering, 
1994 

Green, M. and Jacob R. J. K., “Software Architectures 
and Metaphors for Non-WIMP User Interfaces,” 
Computer Graphics, ~0125, no. 3, pp 229-235, July 1991. 

Jacob, R. J. K., “A Visual Language for Non-WIMP 
Interfaces,” Proceedings IEEE Symposium on Visual 
Languages, pp. 231-238, IEEE Computer Society 
Press (1996). 

Jacob, R. J. K., “A Specification Language for Direct 
Manipulation User Interfaces,” ACM Transactions on 
Graphics, vol. 5, no. 4 pp 238-317, 1986. 

Newman, W. M., “A System for Interactive Graphical 
Programming,” Proceedings Spring Joint Computer 
Conference, pp 47-54, AFlPS, 1968. 

358 


