To appear in:
Intelligent Interfaces: Theory, Research, and Design,
ed. M.H. Chignell, P.A. Hancock, and A. Loewenthal, Amsterdam: North-Holland, 1986.

Direct Manipulation in the Intelligent Interface

Robert J. K. Jacob

Naval Research Laboratory
Washington, D.C.

Direct Manipulation user interfaces were first identified by Ben Shneiderman [2].
The concept of direct manipulation crystallized a collection of principles and techniques
shared by a number of innovative user interfaces that were widely regarded as easy --

and enjoyable -- to learn and use.

This chapter examines the nature of direct manipulation user interfaces and some
issues associated with them. It distinguishes interfaces that operate directly on con-
crete visual objects from those that use visual metaphors to operate in more abstract
domains. It then examines two direct manipulation systems in more detail. Some
benefits and drawbacks characteristic of direct manipulation user interfaces are con-
sidered, and some empirical evidence of the importance of the choice of visual represen-
tation is provided. The problem of formally describing or specifying a direct manipula-
tion interface is also investigated. It is concluded that, while the prospects for combin-
ing direct manipulation with "intelligent” user interfaces are promising, little research

has been conducted in this area to date.

WHAT IS A DIRECT MANIPULATION USER INTERFACE?

Shneiderman identified the defining characteristics of direct manipulation user

interfaces [2]:
o Continuous representation of the object of interest.

o Physical actions (movement and selection by mouse, joystick, touch screen,

etc.) or labeled button presses instead of complex syntax.

o Rapid, incremental, reversible operations whose impact on the object of

interest is immediately visible.

-92.-

o Layered or spiral approach to learning that permits usage with minimal

knowledge.

The essence of such a user interface is that the user seems to operate directly on the
objects in the computer rather than carrying on a dialogue about them. Instead of
using a command language to describe operations on objects, the user "manipulates”
objects visible on a display. For example, to delete a file named FOO in a command
language system, the user would ask the computer to delete the file whose name is FOO.
In a direct manipulation system, he or she would find a representation of the file on the
screen and "delete” it directly (perhaps with a delete button, a mouse gesture, or the
like). The effect would be apparent immediately on the display. Further, the user
could apply the same delete command to any other object that he sees on the display

(provided the system permits its deletion); he does not have to learn new commands for

them.

Another important characteristic of direct manipulation user interfaces is the
complementarity of input and output. Whenever the user requests output, the objects
shown in the resulting display on the screen are acceptable inputs to subsequent com-
mands. QOutput is thus not a fixed, passive display, but a collection of dynamic, mani-
pulable objects. A typical user command or input is synthesized from objects already
on the screen, the outputs of previous commands. For example, if one had displayed a

directory with a traditional system:

% 1s
all

my
files
%
he would normally then delete a particular file by re-entering its name:

% rm my

In contrast, the comparable output of a direct manipulation directory listing command,

e.g.

=

would be "active” or manipulable. To delete the second file, the user would point to it

in the output display and then give the delete command.

Hutchins, Hollan, and Norman [15] carefully examine the cognitive factors that
underlie direct manipulation user interfaces and divide them into two separate areas.
They find two different ways in which such user interfaces are "direct.” One is direct
engagement, the sense of manipulating objects directly on a screen rather than convers-
ing about them. "There is a feeling of involvement directly with a world of objects
rather than of communicating with an intermediary. The interactions are much like
interacting with objects in the physical world. Actions apply to the objects, observa-
tions are made directly upon those objects, and the interface and the computer become
invisible.” [15]

The other form of directness is found in a reduction of cognitive distance, the men-
tal effort needed to translate from the input actions and output representations to the
operations and objects in the problem domain itself. Using a display screen, the visual
images chosen to depict the objects of the problem or application domain should be
easy for the user to translate to and from that domain. Conversely, for input, the
actions required to effect a command should be closely related to the meaning of the
command in the problem domain. The transparency of these representations, or reduc-
tion of cognitive distance, is thus a second form of directness in the direct manipulation
interface. The problem of choosing an appropriate representation for the objects and
actions of the problem domain is crucial to the effective use of the direct manipulation

approach.

The most visible characteristic of a direct manipulation user interface is, then,
direct engagement -- the ability to manipulate displayed objects. A direct manipulation
user interface typically comprises a set of objects presented on a display and a standard
repertoire of manipulations that can be performed on them. There is no command
language for the user to remember beyond the set of manipulations, and generally any
of them can be applied to any visible object. The displayed objects are active in the
sense that they are affected by each command issued; they are not the fixed outputs of

one execution of a command, frozen in time. They are also usable as inputs to

-4-

subsequent commands. However, the ultimate success of a direct manipulation inter-
face requires more than this manipulability; it hinges on the choice of a good metaphor

for representing the world of the application in terms of screen objects and input

actions.

EXAMPLES OF DIRECT MANIPULATION INTERFACES

The problem domains with which direct manipulation user interfaces must deal
can be divided into two classes. In the first, the underlying problem is concerned with
static, concrete objects; examples include menus, screen layouts, printed forms,
engineering drawings, typeset reports, and fonts of type. A direct manipulation user
interface for operating in such a domain can simply use a picture of the concrete object
in a "what you see is what you get" style of editor. The choice of representation is
straightforward, since there is already an agreed-upon concrete visual form for the
objects of the problem area. Unfortunately, this approach is only possible where there
can be a one-to-one correspondence between the problem domain and the visual

representation.

A more difficult problem arises in the second class of direct manipulation user
interface. Here, the domain involves abstract objects, which do not have a direct
graphical image, such as time sequence, hierarchy, conditional statements, frame-based
knowledge, or data in a data base. To provide a direct manipulation interface for such
a domain, it is necessary first to devise a suitable graphical representation or visual
metaphor for the objects. "What you see is what you get" is still helpful, but not

sufficient to solve this problem, since the objects are abstract.

Interfaces for Concrete Objects

Examples of direct manipulation user interfaces for problem domains in the first
class, where a concrete representation is available, often involve systems for creating
and manipulating graphical images. A screen editor is a good example [31]. A more
elaborate example can be found in a typical direct manipulation editor for a typeset-
ting system, which displays a mockup of the final printed page on a high-resolution
display [16]. It permits the user to manipulate the displayed page and, as he or she
does, it immediately redisplays the portions of the page affected by the change. Since

-5-

the system is designed for producing printed pages, the visual representation chosen for

the direct manipulation interface is simply a high-resolution picture of such a page.

Other examples of this class of direct manipulation user interface include:

(o]

Font editors, where the visual representation is a picture of the character

being edited.

Computer-aided design or drafting systems based on standard engineering
drawings, where the problem domain is that of paper drawings and the visual
representation is a screen image of (portions of) the same drawings. (Note
however that a modern computer-aided manufacturing system might not
have a paper drawing as its final goal. It could, for example, drive a machine
tool directly. The problem domain then becomes the operation of the tool or
the creation of three-dimensional objects. As with interfaces in the second
class, discussed below, the drawing may still serve as a convenient visual
representation for the tool operation, but it is no longer the compelling choice

it is for a simple drafting system.)

Systems for designing printed forms, where, again, the visual representation is

simply a screen picture of the form.

The objects represented in these direct manipulation interfaces are concrete physi-

cal objects, and most of the manipulations available to the user are based on common

physically-understandable actions such as moving, copying, changing size, or removing.

These systems therefore generally have small cognitive distances between the problem

domain and the objects and operations of the user interface.

Interfaces for Abstract Domains

More difficult problems arise where the problem domain is abstract. It is helpful if

a reasonable concrete representation for the abstract problem domain is already in use,

perhaps in pencil-and-paper form, and it can be exploited by the user interface designer.

For example:

o

A system for manipulating a geographic data base might use choropleth
("patch”) maps as its visual representation for the data and allow the user to

manipulate the maps to view the data [4].

-6-

A computer-aided manufacturing system that drives machine tools directly
can use conventional mechanical drawings as its visual representation, as

described above.

Similarly, consider a system for handling forms-based data in a computer
(i.e., a system that stores and retrieves forms-like computer data, without
necessarily creating any printed forms). An hypothetical printed form might
be used as a convenient and widely-understood visual representation of the

internal computer data [32]; but it is not the only possible representation.

A matrix or spreadsheet calculator. The visual metaphor widely chosen for
such systems is the accountant’s paper worksheet, with its rows and columns
of figures. It is a concrete visual representation of an abstract domain
(matrices). The rapid acceptance of direct manipulation spreadsheet systems
shows that the paper spreadsheet was a particularly fortuitous choice of

visual metaphor for this abstract object.

STEAMER [14] allows its user to operate a simulated steam engine. The
problem domain is the sequence of operations for running a steam engine, and
the visual representation is an image of an engine control panel, with some

extensions not available on conventional panels.

The Xerox Star desktop manager [30] and its numerous philosophical descen-
dants, such as Apple Macintosh, handle a domain of computer files and direc-
tories. For their visual metaphor they use a stylized picture of a desk surface
with papers, file folders, trays, and even a waste basket to represent the com-
puter file domain. A familiar operation, like moving a paper from a file
folder to the waste basket, corresponds in an intuitively plausible way to

deleting an item from a data file.

Query-by-example [35] deals with a problem domain of obtaining information
from a computer data base, a task typically accomplished through a rela-
tively abstract query language. Instead, it uses an image of a printed report
containing specific information from the data base as its metaphor for the
data base domain. The user manipulates the image of the report (without
real data) until it looks like the report he wants; then the system produces a

similar report with actual data.

-7-

o Finally the system for designing user interfaces described later in this chapter
has as its problem domain the time sequence or syntax of input and output
operations performed by a system and its user. The visual metaphor chosen
here is the state transition diagram, already used to represent user interface
designs on paper. The designer manipulates a picture of a state transition
diagram to describe and effect changes in the behavior of the user interface

being constructed.

In each of these systems, an abstract problem domain was represented by a concrete
visual metaphor. The visual metaphors used in these examples were all existing con-
crete objects, rather than newly-invented representations. Each representation was
chosen to minimize cognitive distance between problem and representation, so that
when the user manipulates the objects in the representation, his operations are closely
allied to those of the problem domain. The most successful direct manipulation user
interfaces thus far have depended on a fortuitous or perspicacious choice of visual meta-

phor.

It 1s also possible to design a direct manipulation interface by inventing a new
visual object and teaching it to users as the representation of some abstract domain.
Inventing good representations is a difficult problem, and there are relatively few exam-

ples of this class of direct manipulation system:

o The Spatial Data Management System [13] uses an hierarchical collection of
icons arrayed in a map-like layout to depict data in a data base. The user
examines the data base by panning across the layout or zooming up or down
in the hierarchy. The visual metaphor for the data base data is thus a new
pictorial representation. The original icons in the system were individually
sketched; methods for generating graphics directly from the data were also
studied [7].

o DMDOS is a user interface to the IBM PC-DOS operating system command
language developed by Ben Shneiderman and Osamu Iseki at the University
of Maryland. It uses a tabular representation of directories, disks, peri-
pherals, and other objects of interest and permits the user to operate directly

on the items shown in the display.

-8-

o Hutchins, Hollan, and Norman [15] outline a design for a statistical analysis
system in which sequences of mathematical operations on data are

represented by a flow graph or circuit diagram, which the user can manipu-

late.

A Direct Manipulation Military Message System

The Secure Military Message System project at the Naval Research Laboratory is
building a family of prototype military message systems [12]. Such a message system is
much like a conventional electronic mail system, except that each message (actually,
each field of each message), each file, and each user terminal has a security
classification. The user can compose and send messages, display them, create files to
hold them, move or copy messages among the files, delete or un-delete messages and
files, and the like. All these operations must be performed within the constraints of the

security rules. For example, a user is not permitted to store a SECRET message in an

UNCLASSIFIED file.

The first set of prototypes built for this project had a user interface based on an
abstract intermediate command language, combined with extensive use of menus [3]. It
was designed principally for novice users. It led the user through a series of menus and
prompts that helped him assemble a command and all of its arguments, which was then
executed. Figures 1 through 3 show a portion of such a sequence, in which the user is

going to display a message from one of his files.

The system has been easy to learn and self-documenting, but sometimes frustrat-
ing and indirect. For example, if the user displayed a set of his message summaries on
the screen and then decided to display the full text of one of the messages, he would
have to go through the full Display command sequence again to identify the message
he wanted to see, even though he was already staring at a citation to it. It would seem
more direct for him to point and say display that message than to refer to it by re-
typing its full name. (In the actual system, constantly-updated default values for the

command arguments mitigate this problem.)

An alternate version of the message system prototype was built to test this idea.
It provides a new, direct manipulation user interface for the same underlying applica-

tion. It was also designed to demonstrate the principle of dialogue independence[10] --

-9-

that, by proper modularization of the user interface code, application code can remain
unchanged in the face of alternative user interfaces, provided they all translate user
commands into the same form. Of particular interest here is the opportunity to com-

pare two user interfaces to the identical underlying application system.

The basic visual metaphor chosen for the direct manipulation version of the mes-
sage system is simple: a paper message. A message is represented by a screen image
that is similar to a traditional paper military message. A new object, a file of mes-
sages, is also introduced. This is represented by a display of a list of the summaries
(called citations) of the messages in the file. Some elements of each message citation in
such a display can be changed directly by typing over them; they are indicated by bord-
ers around their labels. Other elements are fixed because the application requires it
(e.g., the user cannot change the date of a message that has already been sent). In
addition, each citation contains some screen buttons, or small, labeled boxes. Pressing a
mouse button while pointing to such a box causes the action indicated in the box to
occur. All the commands that the user could apply to a given message are shown on its
citation as buttons. If the user sees a message on the screen, he does not need to refer

to a manual to find out what commands he could apply to it.

Figure 4 shows a display from this system. The large window in the upper right
contains a display of a message, and the other large window contains the list of message
citations with their corresponding buttons and modifiable fields. The upper right win-
dow displays the message through a text editor, so that its contents can be manipulated
with editing commands. If the message has already been sent, all editor commands
except scrolling and searching are blocked. The lower window shows the citations of
the messages in the user’s file called inbox. It also contains an upper area with com-
mands and fields that pertain to the file as a whole. Note that the second message in
the file ("Subj: Important information”) has been tentatively deleted (the user can still
get it back by undelete-ing it). Most of the command buttons are not shown for that
message because those commands are not permitted on tentatively deleted messages.
The Undelete command is shown for that message but no others, because it can be
applied only to deleted messages. Figure 5 shows some of the other windows and com-

mands available in this system.

In comparing the two versions of the message systems, it is interesting to examine

-10 -

the number of arguments needed for each command (that is, the number of operations
needed to invoke the command). In the first system, displaying a message required a
series of menu picks or entries for: the Display command (Figure 1), the type of object
to display (Message-from-file; Figure 2), the file name (Figure 3), and the number of
the message within the file (not shown). The user is led through a sequence of menus
and prompts to help him enter these data. For the duration of that sequence, he can-
not do anything else (except abort the sequence). Considering the entire set of com-
mands, there is thus a considerable number of distinct states or modes the system can
be in, and the user must keep track of where he is at all times. In contrast, in design-
ing the direct manipulation version, it became apparent that most of the explicit argu-
ments to each command are used to identify a single object to which the command is to
be applied. They can be avoided if the user is simply permitted to find the object on
the screen (perhaps from some previous Display command) and point to it. For exam-
ple, every message citation on the screen now contains a Display screen button. To
display a message, the user simply chooses its Display button. The message is
displayed in the message window, and the system immediately returns to the top-level
command state, waiting for any new command. The user does not have to keep track
of any state changes or remember "where he is" at any point in this command. Of
course, to display a message whose citation is not on the screen, he would first have to
display the appropriate file of citations and/or scroll to the right point in the citation
display. But each of those operations is performed from the top-level command state
and returns to that state immediately. The user does not have to go through a long,
fixed sequence of states and remember his place in it; instead he performs a sequence of
independent "rapid, incremental, reversible operations whose impact on the object of
interest is immediately visible,"” [28] all within the same top-level state. The burden on

the user’s short-term memory is greatly reduced.

Similarly, to change the classification of a message, the user finds the message on
the screen (either in a citation or the full message display) and types over the
classification shown. Again, a command sequence involving several arguments and state
changes (Reclassify, Message-from-file, file-name, message-number, new-
classification) becomes a single-state command. Changing the classification of other
displayed objects, including the terminal screen itself (seen in the top right corner of the

display), is done analogously.

- 11 -

Of course, there are some commands that require additional arguments, beyond
simply identifying one object. An example is the Create message command, which, for
security checking purposes, requires that the classification of the new message be
entered before the command is executed. (The file in which to place the new message is
determined by the location of the selected Create message screen button.) When the
button for this command is selected, a type-in area appears and the user is prompted to
enter the new classification in it. Two new screen buttons, OK and Abort also appear.
The first terminates the typed input and executes the command, while the second
aborts the command. Both buttons and the type-in area disappear when the user
selects either of the two buttons. This command thus involves one new state. The
Create message command is selected from the top-level state, but then moves to a
new state in which the system awaits the typed input. When the user selects the OK
or Abort button, the system returns to the top-level state. Which of the two states

the system is in is apparent from the presence or absence of the two buttons and type-

in area.

In examining all the commands of the direct manipulation version of this message
system, it was found that most of them involve no state changes or explicit arguments
at all, as with the Display command described above. A minority of the commands
involve one additional state, like Create message above; and only two of the com-
mands (Create text file and Create message file) involve two states. In contrast, a
typical command in the previous message system required four states in addition to the
top level state from which the command itself was selected (e.g., Reclassify,
Message-from-file, file-name, message-number, new-classification). An additional
state was required for all commands not in the main menu (there were four additional

sub-menus).

Thus, with the direct manipulation user interface, the system is nearly always in
the same (top-level command) state and only occasionally in one of a small set of alter-
native states (waiting for a command argument). The advent of the alternative states
is clearly indicated on the screen, and they are always one keystroke (the OK or Abort
screen button) away from the top-level state. The user interface has a more direct feel-
ing in that the user can perform almost any command at any time, rather than spend-
ing much of his time traversing long, fixed sequences from which few alternatives are

possible. Of course there is a limit to this approach. If the system had hundreds of

-12-

different commands, buttons for them would not all fit on the screen, and it would be
necessary to introduce some sort of levels, states, or sub-dialogues. But the complexity
of the corresponding non-direct manipulation interface would increase comparably, and

it would continue to have still more levels or states.

A Direct Manipulation System for Designing User Interfaces

The next example involves an abstract domain: the design of user interfaces (not
necessarily direct manipulation ones). That is, the design of the sequence of inputs and
outputs, or syntax, of a user-computer dialogue. The visual representation chosen for
this abstract domain is one already in use outside the realm of direct manipulation,
The state transition diagram has been found to be a good -- pencil and paper --
representation of the user’s view of the user interface of a computer system because of

several of its properties:

o In each state, the diagram makes explicit the interpretations of all possible

user inputs.

o It shows clearly what the user can do to change to another state (in which

such interpretations would be different).

o It emphasizes the temporal sequence of user and system actions in the dialo-

gue.

State transition diagrams have been discussed and used for this purpose for several
years [5,25] and have been found preferable to other languages for describing user inter-
faces [9,19]. They are thus an appropriate choice for use in a direct manipulation user

interface as the concrete visual representation for the abstract notion of syntax.

The specific language chosen for use here is an extended version of state transition
diagrams. It has been used to specify and directly implement user interfaces for several
prototype systems [21,22], including the non-direct manipulation prototype message sys-
tem described above; similar languages have also been used by others for this purpose
[6,33]. The state transition diagram language used here is part of a methodology for
designing and specifying user interfaces [20,21]; the direct manipulation version of it
described below is currently being implemented [23]. The language is based on the con-
ventional graphical diagrams used to describe finite state automata. A diagram in this

language consists of a set of nodes (states) and links between them (state transitions).

-13 -

Each state transition is associated with a token in the user input language. From any
state, the next input token received causes the transition labeled with that token to
occur. A transition may also be associated with an output token, which provides out-
put to the user, or a processing action, which is performed by the system whenever that

transition is taken.

An interactively editable picture of this state transition diagram is used as the
visual representation of the user interface syntax. The programmer enters the state
diagrams with a graphical editor and affixes the necessary labels and actions. He draws
a separate diagram for each nonterminal, token, and lexeme, each in a separate window
on the display screen so that the individual graphical objects being edited do not
become too complicated. The diagrams are connected to each other by their names;
each diagram is given a name, and it may be called by that name from a transition in
another diagram. One diagram is designated the top-level diagram, and all the rest are

called directly or indirectly by it.

As the diagrams are edited, they can be directly executed, since this state diagram
notation is an executable language [21]. Thus the direct manipulation interface pro-
vides two types of windows. One shows a demonstration of the sequence being pro-
grammed, while the other allows the user to manipulate the visual representation of its
syntax. As shown in Figure 6, the simulator window on the left shows the newly-
designed user interface (of a simple line-oriented desk calculator program) as it would
appear to the user and allows the programmer to interact with it in the role of its user.
The programming windows on the right show the state diagrams themselves and allow
the programmer to modify them as desired. During execution, the programmer can edit
any of the diagrams with a graphical editor and thereby "manipulate” the syntax of the
user interface through the state diagram representation while the system is running.
He or she can also point to a state in a diagram and thereby cause the interpreter to

move directly to that state.

Unix and Direct Manipulation

While not providing a direct manipulation user interface, the original Unix (trade-
mark of ATT Bell Laboratories) operating system is worth noting here, because it took

an essential first step in the direction of direct manipulation. It was one of the earliest

-14 -

systems to emphasize the complementarity of input and output. A basic tenet in the
design of Unix programs was that the output of a program should be suitable as input
to other programs. The system permitted a user to save the output of a program (in a
file), edit it, and use it as input to another program or as a command script. It let him
or her do this by providing redirection of all command input and output as an operat-
ing system primitive, rather than an option that could be provided or not by individual
programmers. It encouraged him to do it by making the output of most commands sim-
ple and straightforward (sometimes at the risk of being cryptic and terse to human
users) and thus usable for input without extensive processing. It further facilitated this
by allowing outputs and inputs of command to be combined into pipes, saving the user

from having to manipulate the intermediate files. For example:

% 1s -1 | grep Jan | sort
% date | tr '[a-z]' '[A-Z]'
% ls | grep '\.oo*' | sed 's/~/rm /' | sh

Unix still provided a command language-based user interface, not a direct manipulation
interface, but it took a first step toward making output usable as input, which is now a
cornerstone of the direct manipulation approach. The common medium chosen for
interchange between program output and input was the unformatted text file or stream

of characters, rather than any visual representation.
CHARACTERISTICS OF DIRECT MANIPULATION INTERFACES

Memory Load

The principal advantages of direct manipulation user interfaces are psychological:
they decrease the demands on the user’s short- and long-term memory. For long-term
memory, they require remembering only a few generic commands in the form of
general-purpose manipulations, which can be applied to most visible objects. Once the
users memorizes this set, most specific operations can be derived from it, in contrast to

traditional systems with many specific commands to remember.

Short-term memory load is reduced in two ways. First, most commands that
change the values of objects are reflected immediately in changes in the display of those

objects. The system thus continuously displays much of its internal data, rather than

-15-

requiring the user to remember them and ask specific questions about them. A second
benefit was exemplified by the message system. The direct manipulation version of the
user interface led the user through fewer different states or modes. Long, sequential
dialogues were reduced to one or two simple actions; commands with typically four
mode changes were reduced to direct commands with no, or occasionally one or two,
mode changes. Again, the user has less to keep in short-term memory about "where the
system is" and fewer "places” (modes) it could be in. Having different modes permits
different interpretations to be applied to the same user inputs. Reducing the number of

possible modes the user must distinguish and remember reduces his work load.

Visual Representations

Direct manipulation user interfaces also introduce some difficulties. As seen above,
they are easiest to apply to problem domains that have concrete graphical representa-
tions. For more abstract domains, inventing an appropriate visual metaphor to
represent the objects in the domain is difficult; and using a poor representation ham-
strings the resulting user interface. The representations currently in use have typically
been designed for specific purposes and are not more widely applicable. Since direct
manipulation user interfaces are new, there is not yet a sufficient basis in theory for
developing graphical representations of abstract objects. A better understanding of
visual perception is needed, which will permit a designer to devise natural graphical

representations for a wide variety of objects, in a less ad hoc manner than presently.

Fixed Level of Abstraction

Another more subtle problem is that direct manipulation user interfaces, both for
concrete and abstract objects, are more rigidly fixed at a single level of abstraction
than command language systems. For example, consider a desktop manager like that
of the Xerox Star [30]. It deals with an underlying file system at a particular -- though
generally appropriate -- level of abstraction. Low-level details, such as allocating space
for new files, reclaiming free space, determining disk layout, and reading and writing
directories, are handled conveniently by the system and are invisible to its user. The
user operates at the level of whole files and directories, not their component bits,
tracks, or sectors. It is, however, difficult for the user to move further up smoothly in

abstraction within the same language -- perhaps to operate on aggregates of files from

- 16 -

different directories or to operate on commands about files. For example, the system
makes it easy to move file foo to folder bar without worrying about lower-level details.
But it would be difficult to move all files whose contents contain the string "Star" from
one folder to another. The problem is that, while direct manipulation interfaces
abstract away a host of irrelevant details up to a particular level, they remain stuck at
that level; it is difficult to move up any further. This makes them convenient for users
who happen to want to operate at the level provided but cumbersome at either higher
or lower levels. By contrast, command language user interfaces encourage such
abstraction because they provide a natural means to express it. Many command
languages have good, almost intrinsic facilities for abstraction, control structures, for-
mal parameters, combining individual commands, and the like. For example, with the

Unix shell, the command to move a file

% mv /x/y/foo /bar

is less natural than pointing to and moving the image of the file; but it extends with

less discontinuity to a higher level of abstraction to solve the problem posed above:
% mv “grep -1 Star /x/y/*> /bar

If a direct manipulation interface is designed for the level of abstraction its user
wants to use, he or she will indeed find it convenient. For both direct manipulation and
command language user interfaces, that level can be as high or low as desired. The
problem arises when the user wants to change levels smoothly. Command languages
make it easier to move up or down in level; they encourage abstraction. Direct manipu-

lation interfaces are often stuck at one level of abstraction, be it high or low.

One possible solution is to provide a facility to create, save, and name direct
manipulation "programs” or scripts, as described below, and then provide a way to use
such programs as objects in further higher-level manipulations [15]. But such a facility
is typically absent from current direct manipulation interfaces and difficult to incor-
porate cleanly into their visual worlds. By contrast, it is usually quite easy and natural

(or at least commonplace) to incorporate this facility into a command language.

Another related criticism is that direct manipulation suggests manual operations,

the antithesis of automation [24]. A user presumably wants a machine to do work for

-17 -

him, not to do it himself "manually” on the screen. The unifying idea between these
two approaches is the level of abstraction. If a direct manipulation system requires the
user to perform lou-level operations manually, it provides little advantage. But if it
uses direct manipulation operations to let him select, in a convenient way, which high-

level operations he wants the machine to perform, it can be helpful.

Command Procedures

Providing the user a method for creating and using scripts or command procedures
is a more difficult problem in direct manipulation interfaces than traditional ones. The
purpose is to record, save, and re-use a specific sequence of input operations or, more
usefully, a generalized or parameterized sequence. With direct manipulation, the user’s
normal input language is inherently dynamic and ephemeral. The meaning of an action
upon the screen depends on the particular object that lies under it at the time. The
direct manipulation interface deals with things and not names; but it is easier to cap-
ture and operate on names in order to make a script. In recording a direct manipula-
tion command procedure it is thus difficult to distinguish the formal parameters of the
procedure from constants. For example, if the user points to object x in the top left of
the screen, does he mean to record a procedure that always operates on whatever
object appears in that position, always operates on object x, or to record a general
sequence of operations, here performed on x, and apply it to other objects? Adequate
graphical notation for this problem is lacking, but some intermediate approaches can be

considered:

o The system can save and precisely replay a sequence of input actions. This is

provided in some versions of the EMACS editor [31].

o It can save a sequence of input actions but provide a special notation to indi-
cate dummy or formal parameter objects within that sequence. Query-by-

example [35] illustrates this general idea.

o The system can have an underlying "intermediate” command language, into
which all direct manipulation inputs are translated. This language is nor-
mally invisible to the user, but he or she could be permitted to write com-
mand procedures in it. This is a powerful approach, but it requires that the

user switch to a second user interface language to write programs. He

- 18-

cannot write even a simple command procedure without leaving the direct

manipulation interface.

o A further refinement of the intermediate language approach is to provide a
facility by which a sequence of direct manipulation input actions can be
translated automatically to and saved in the intermediate command
language as the user performs them. He can then examine the resulting tran-
script and edit it to produce the final command procedure. In particular, he

can edit it to replace specific objects with appropriate parameter identifiers.

Programming Direct Manipulation Interfaces

Another drawback applies to the user interface programmer rather than the user.
While direct manipulation can make a system easy to learn and to use, such a user
interface is generally difficult to construct. Most existing examples have required con-
siderable highly machine-specific, low-level programming. Higher-level abstractions for
dealing with this new interaction technique are not yet available. Instead, the user
interface is typically programmed in an ad-hoc way, making it difficult to modify or re-
use. What is needed is a set of appropriate software engineering abstractions for direct
manipulation user interfaces and a specification technique to describe them precisely in
high-level terms. Such techniques are beginning to become available for traditional user
interfaces, to describe the user-visible behavior of an interface without reference to
implementation details [19,27,33]. Direct manipulation user interfaces have some
important differences, and these must be understood before such techniques can be

adapted to them. Work is beginning in this area, and some is discussed further below.

Conclusion

While the disadvantages cited above are more numerous, they are in essence
technical problems, which are likely to yield to future research, particularly since direct
manipulation interfaces are relatively new. The advantages are more fundamental,

rooted in users’ psychological characteristics, less likely to change, and thus decisive.

- 19 -

EFFECT OF CHOICE OF REPRESENTATION ON TASK PERFOR-
MANCE

In designing a direct manipulation user interface for an abstract problem domain,
choosing an appropriate visual representation for the objects of the domain was seen to
be critical to the success of the system. A poor choice makes the resulting direct mani-
pulation interface difficult to learn and use, despite its appealing surface features. To
investigate the significance of the choice of graphical representation on performance of
a task, an experiment involving a clustering task in an abstract domain was undertaken
[17,18].

Subjects were given a set of 50 points in a nine-dimensional space, which were to
be organized into 5 groups. The points had originally been generated in 5 clusters, each
normally distributed around a center point, named the prototype. The subject’s task
was to look at the 5 prototypes and then assign each of the 50 deviants to a cluster sur-
rounding one of the prototypes. The correct answers were those that put deviants with
the prototypes from which they had been generated and to which they were closest in
Euclidean distance. The 55 data points to be presented to the subjects were
represented using several alternative visual representations, and subjects performed the
same task with each of the different representations. First, each nine-dimensional data
point was represented as a matrix of nine digits, representing the (rounded) values of its
nine coordinates. Figure 7 shows the prototypes (top row) and some examples of their
deviants (succeeding rows), with each point represented as a digit matrix. Second, each
point was represented by a polygon, produced by making the lengths of nine equally-
spaced radii each proportional to one of the nine data coordinates and then connecting
the ends of the radii to form the outline of a nonagon. Only the outline was then
retained. Figure 8 shows the same data as Figure 7, but represented by the polygons.
Finally, each point was represented by a Chernoff face [2]. This is a cartoon face, in
which variation in each of the nine coordinates of the data is represented by variation
in one characteristic of some feature of the face image. For example, a component of
the data might be represented by the length of the nose or the curvature of the mouth.
The overall value of one nine-dimensional point is then represented by a single face.

Figure 9 shows the same data represented in this fashion.

Results were computed by tabulating the number of errors each of the 24 subjects

- 920 -

made in classifying the 50 points. Chance performance would give 40 errors out of 50.
Figure 10 shows the mean number of errors they made and the mean time (in minutes)
they took to sort the 50 points. The faces were found clearly to be superior to both the
polygons and the digits at p < 0.001. No significant difference was found between the
polygons and digits. While the polygons were sorted as quickly as the faces, they were
not sorted correctly. Although subjects were performing the identical clustering task,
their performance differed markedly as they were given different visual representations

for the task.

One reason the faces were thought to be superior is that people are highly skilled
at the specialized task of recognizing and processing human faces. Another reason is
that faces encourage their observer to synthesize the various elements of the graphical
display into a single memorable expression, a coherent gestalt. Other common types of
displays also contain variable elements and can thus be used for graphing multivariate
data; but often such displays predispose toward a piecemeal, sequential mode of pro-
cessing, which obscures the recognition of relationships among elements. Faces induce
their observer to integrate the display elements into a meaningful whole. In any event,
they were observed to be a particularly good representation for clustering multidimen-
sional data, and the effect of choosing a good representation over a bad one for this

task was found to be marked.

MODES IN THE USER INTERFACE

Modes or states refer to the varying interpretation of a user’s input. In each
different mode, a user interface may give different meanings to the same input opera-
tions. Some use of modes is necessary in most user interfaces, since there are generally
not enough distinct brief input operations (e.g., single keystrokes) to map into all the
commands of a system. A moded user interface requires that the user remember (or
system remind him) of which mode it is in at any time, and he must remember the
different commands or syntax rules applicable to each mode. Modeless systems do not
require this; the system is always in the same mode, and inputs always have the same
interpretation. Modern editors [31] and document processing systems [30] have
attempted to reduce the number of modes the user must remember. The designers of
the Xerox Star argue that this makes them significantly easier to use [30]. Some infor-

mal evidence is provided by a consumer testing comparison of "modeless" (Apple

-91 -

Macintosh) and a moded (IBM-PC) system, which found the former easier to learn [1].

Formal comparison has thus far been less conclusive [26].

Direct manipulation user interfaces appear to be modeless. Many objects are visi-
ble on the screen; and at any time the user can apply any of a standard set of com-
mands to any object. The system is thus always in the same "universal" or "top-level”
mode. This is approximately true of some screen editors, but for most other direct
manipulation systems, where the visual representation contains more than one type of
component, this is a misleading view. It ignores the input operation of moving the cur-
sor to the object of interest. A clearer view suggests that such a system has many dis-
tinct modes. Moving the cursor to point to a different object is the command to cause
a mode change, because once it is moved, the range of acceptable inputs is reduced and
the meaning of each of those inputs is determined. This is precisely the definition of a
mode change. For example, moving the cursor to the Display screen button in the
message system example should be viewed as putting the system into a mode where the
meaning of the next mouse button click is determined (it displays that message) and the
set of permissible inputs is circumscribed (for example, keyboard input could be illegal

or ignored). Moving the cursor somewhere else would change that mode.

If direct manipulation user interfaces are not thus really modeless, why do they
appear to have the psychological advantages over moded interfaces that are usually
ascribed to modeless ones? The reason is that they make the mode so apparent and so
easy to change that it ceases to be a stumbling block. The mode is always clearly visi-
ble (as the location of a cursor), and it has an obvious representation (simply the echo
of the same cursor location just used to enter the mode change command), in contrast
to some special flag or prompt. Thus, the input mode is always visible to the user. The
direct manipulation approach makes the output display (cursor location to indicate
mode) and the related input command (move cursor to change mode) operate through
the same visual representation (cursor location). At all times, the user knows exactly
how to change modes; he can never get stuck. It appears, then, that direct manipula-
tion user interfaces are highly moded, but they are much easier to use than traditional
moded interfaces because of the direct way in which the modes are displayed and mani-

pulated.

-99-

FORMAL DESCRIPTION OF DIRECT MANIPULATION USER INTER-
FACES

It is useful to be able to write a precise specification of the user interface of a com-
puter system before building it, because the interface designer can thereby describe and
study a variety of possible user interfaces without actually having to code them. Such
a specification should describe precisely the user-visible behavior of the interface, but
should not constrain its implementation. A state transition diagram-based notation has
proven an effective and powerful medium for formally specifying traditional user inter-
faces [19,20], but it is necessary to modify this approach to handle direct manipulation
interfaces. State diagrams tend to emphasize the modes or states of a system and the
sequence of transitions from one state to another. While direct manipulation user
interfaces initially appear to be modeless and thus unsuited to this approach, they were
seen in fact to have a particular, highly regular kind of moded structure. This struc-

ture can be exploited in devising a formal specification technique for direct manipula-

tion interfaces.

The top level of a typical direct manipulation interface can be viewed as a large
state diagram with one top-level state and a branch (containing a cursor motion input)
leading from it to each mode. Each such branch continues through one or more addi-
tional states before returning to the top-level state. There is typically no crossover
between these branches. The top-level state diagram is thus a large, regular, and rela-
tively uninteresting diagram with one start state and a self-contained (no crossover)
path to each mode and thence back to start state. It is essentially the same for any

direct manipulation system and need not be specified for each new system.

The individual paths generally correspond to the manipulable objects on the
screen. There may also be some remembered state information within each of these
paths, which can be suspended when the cursor leaves that field and resumed when it
re-enters. For example, if the user moves the cursor to a type-in field and types a few
characters, moves it somewhere else and performs other operations, and then returns to
the type-in field, the dialogue within that field would be resumed with the previously-
entered characters intact. Similarly, if the user had begun an operation that prompted
for and required him to enter some additional arguments, he could move to another

screen area and do something else before returning to the first area and resuming entry

-93-

of the arguments where he had left them. Each of the individual objects on the screen
thus has a particular syntax or dialogue associated with it. Each such dialogue can be
suspended (typically if the user moves the cursor away) and later resumed at the point
from which it was suspended. The relationship between the individual dialogues or

branches of the top-level diagram is that of coroutines.

Given this structure, a direct manipulation user interface is best described as a
collection of objects[8], organized around the manipulable objects and the loci of remem-
bered state in the dialogue. These objects will often coincide with screen regions or
windows, but need not. A typical object might be a screen button, individual type-in
field, scroll bar, or the like. Each such object will be specified separately, and then a
standard executive will be defined for the outer dialogue loop. Thus, to describe a

direct manipulation user interface, it will be necessary to:
1. define a collection of interaction objects;
2. specify their internal behaviors; and
3. provide a mechanism for combining them into a coordinated user interface.

Note that in devising a specification method the goal is not strictly ease of program-
ming or compactness, but rather capturing the way the user sees the dialogue. The
underlying claim is that the user indeed sees the direct manipulation dialogue as a col-
lection of small, individual, suspendable, coroutine-like dialogues, joined by a straight-

forward executive.

1. How should the user interface be divided into individual objects? An interaction
object will be the smallest unit with which the user conducts a meaningful, step-by-step
dialogue, that is, one that has continuity or syntax. It can be viewed as the smallest
unit in the user interface that has a state that is remembered when the dialogue associ-
ated with it is interrupted and resumed. In that respect, it is like a window, but in a
direct manipulation user interface it is generally smaller -- a screen button, a single
type-in field on a form, a command line area. It can also be viewed as the largest unit
of the user interface over which disparate input events should be serialized into a single
stream, rather than divided up and distributed to separate objects. Thus, an interac-

tion object is a locus both of maintained state and of input serialization.

2. How should an input handler for each interaction object be specified? Observe

that, at the level of individual objects, each such object conducts only a single-thread

- 94 -

dialogue, with all inputs serialized and with a remembered state whenever the indivi-
dual dialogue is interrupted by that of another interaction object. Thus a conventional
single-thread state diagram is the appropriate representation for the dialogue associ-
ated with an individual interaction object. The input handler for each interaction

object is specified as a simple state transition diagram.

8. How should the specifications of the individual objects be combined into an "outer
loop" or overall direct manipulation user interface? As noted, a direct manipulation
interface could be described with a single, large state diagram, but, since the user sees
the structure of the user interface as a collection of many semi-independent objects,
that is not a particularly perspicuous description. Instead, a built-in executive will be
defined that embodies the basic structure of direct manipulation dialogue and includes
the ability to make coroutine calls between individual state diagrams. This executive
operates by collecting all of the state diagrams of the individual interaction objects and
executing them as a collection of coroutines, assigning input events to them and arbi-
trating among them as they proceed. To do this, a coroutine call mechanism for
activating state diagrams must be defined. This means that whenever a diagram is
suspended by a coroutine call to another diagram, the state in the suspended diagram is
remembered. Whenever a diagram is resumed by coroutine call, it will begin executing
at the state from which it was last suspended. The executive causes the state diagram
of exactly one of the interaction objects to be active at any one time. As the active
diagram proceeds, it reaches each state, examines the next input event, and takes the
appropriate transition from that state. It continues in this way until it reaches a state
from which no outgoing transition matches the current input. Then, the executive
takes over, suspending the current diagram but remembering its state for later resump-
tion. The executive examines the diagrams associated with all the other interaction
objects and looks at their current (i.e., last suspended from) states to see which of them
can accept the current input. It then resumes (with a coroutine call) whichever
diagram has a transition to accept the input. Typically there will be only one such
diagram. In fact, since entering and exiting disjoint screen regions will be important
input tokens in a typical direct manipulation interface, this is straightforward to
arrange when the interaction objects correspond to screen regions. Depending on the
overall system design, an input token acceptable to no diagrams could be discarded or

treated as a syntax error.

-95-

An Example Specification

Figure 11 shows a specification of a single screen button as an individual interac-

tion object using this approach and a simple Ada-based notation. This particular but-

ton is highlighted whenever the cursor is inside it. If the user presses the left mouse

button while pointing to it, the message file inbox is displayed. An interaction object

such as the one in Figure 11 is an object in the sense of Smalltalk [8] or Flavors [34]. It

comprises a collection of variables, methods, and other impedimenta, most of which are

subject to inheritance. Specifically, the specification of an interaction object can con-

tain the following components:

FROM:

IVARS:

METHODS:
TOKENS:

SYNTAX:

A list of other interaction objects from which this one inherits ele-

ments, with ordering rules similar to those for Flavors.

A list of the instance variables for this object and their initial
values. These may also include other, lower-level interaction

objects that will be used as component parts of this one.
Procedure definitions unique to this object.

Definitions of each of the input and output tokens used in the
syntax diagram for this interaction object. The tokens are the
low-level input and output operations, which can be associated
with transitions in the state diagrams. Examples for input are
button clicks (both down and, where supported, up), cursor enter-
ing or exiting regions, and keyboard characters; for output, they
include highlighting or dehighlighting regions, displaying or eras-
ing graphical objects, and "rubber band"” or other continuous
"dragging" feedback. The internal details of these tokens would
be specified here, separately from the state diagram that calls

them. In the figure, they are given in English.

The input handler for this interaction object, expressed as a con-
ventional state transition diagram, which will be called by the
executive as a coroutine. In the diagram, each state transition
can have an input or output token, the name of another diagram
to be called as a subroutine, or an action to be performed.

Names of input tokens begin with i, and output tokens begin with

- 926 -

o. Further details of this notation are found in [20,21]. An
action, such as DisplayMf(inbox) in the example, calls a pro-
cedure that is defined in the application (semantic) code, which is
separate from the user interface. This diagram could also have
been entered in a text form, rather than the graphical form

shown in the figure.

SUBS: Additional state diagrams, called as subroutines by the syntax

diagram above.

STATES: A list of "mixin" [34] or "kernel” [29] states, which are used to
define standard sets of behaviors, such as sensitivity to abort or
help keys, and which can be applied to states in the above
diagrams, so that such descriptions do not have to be repeated

for each state.

Discussion of Example

How does the syntaz diagram given for this interaction object operate with the ezecu-
tive? When the cursor enters the screen area for this button, the locally-defined input
token iENTER is generated. Since no other interaction object will have state transi-
tions that accept iENTER as defined here (i.e., as the cursor entering this particular
position), the diagram for this object will be called as a coroutine by the executive.
This diagram will take over, accept the input, highlight the button, then wait for more
input (in the state marked with a "+"). If the next input is the button press (iLEFT),
this object performs its action. If the next input is the cursor exiting this region
(iIEXIT), this object dehighlights itself and returns to its start state. There it waits
only for another iENTER. and ignores other inputs. (In particular an iLEFT or other
button click will no longer be accepted by this object but would probably be accepted
by some other object.) Returning to the state marked "+", if the next input received in
that state is anything other than iLEFT or iEXIT (for example, a keyboard key),
another diagram that has a transition that can accept that input will be called by the
executive. As soon as another input that this diagram can accept occurs, it will be

resumed in the same state (the one marked "+").

-97.

Why does the state diagram look so complex for an operation that seems intuitively
simple to describe? The reason is that there are several possible plausible alternative
behaviors for the precise handling of sequences of clicks and mouse motions in a screen
button. There are other ways in which the exiting and dehighlighting could be handled.
Or, the screen button could be highlighted when the mouse button is depressed and per-
form the action when it is released. The user interface designer must be able to indi-
cate exactly which of these possibilities he intends. It is not sufficient to have him
describe the user interface imprecisely and leave the details up to a coder. Nor is it
sufficient to supply one standard version of a screen button and prevent the designer
from changing it. Given that the user interface designer must provide this precision,

state transition diagrams are a reasonable notation for doing so.

Inheritance

The remaining problem with this notation is that the interaction object descrip-
tions for a non-trivial direct manipulation system are going to become bulky, numerous,
and repetitive. The solution is inheritance of the parts of the interaction objects.
Specifically, an interaction object inherits all of the IVARS, METHODS, TOKENS,
SUBS, and STATES of its parents and adds them to any that the object itself
declares. If the object declares an IVAR, METHOD, TOKEN, SUB, or STATE of
the same name, it overrides the inherited one. In turn, all of an object’s own and inher-
ited IVARS, METHODS, TOKENS, SUBS, and STATES are inherited by its chil-
dren. The entire SYNTAX diagram is also inherited and may be overloaded as a unit;

a notation for selectively overloading parts of it is under consideration.

Figure 12 shows the same object as Figure 11, but here the availability of a library
of generic objects, from which components can be inherited, is assumed. The library
object Genericltem defines a set of procedures and tokens that are applicable to a
wide range of screen items. In particular, it defines the tokens iLEFT, iIENTER,
iEXIT, oHIGHLIGHT, and o DEHIGHLIGHT. The latter four are defined generi-
cally, in terms of an unspecified instance variable, position, which is to be supplied by
the inheriting object. Like a "mixin" flavor, it is not expected that Genericltem will
be instantiated by itself, but will contribute tokens, methods, and the like to other,
more specific objects by inheritance. GenericButton defines a generic screen button,

again as a mixin, not expected to be instantiated by itself. It defines the Draw

- 98-

procedure generically, in terms of an instance variable legend instead of a constant,
and it provides an inheritable syntax diagram that describes a "standard” screen but-
ton. The action in the syntax diagram calls a procedure named DoAction, which each
inheriting object can define in its own way. Given these primitives, the particular but-
ton defined above can now be written more compactly by inheriting the aspects that
are common to all items and all screen buttons and defining only those specific to this
particular button. The specification in Figure 12 defines the same object as that of Fig-
ure 11, taking advantage of the generics. It inherits the components of Genericltem
and GenericButton. It defines only the instance variables position (which is used by
the tokens in Genericltem) and legend (used by Draw in GenericButton) and the
procedure DoAction (called by the syntax diagram in GenericButton). Everything
else is inherited from the generics, including the syntax diagram itself from Generic-
Button. If a user interface designer did want this particular screen button to be
different from the standard ones, he would simply overload those aspects of the generic

objects that he wanted to change.

In the specification language introduced here, then, each locus of dialogue 1is
clearly and appropriately described as a separate object with a single-thread state
diagram, which can be suspended and resumed, but always retains state. The overall
direct manipulation user interface is defined implicitly by the coroutine-based behavior
of a standard executive, rather than inappropriately as a large, highly regular state
transition diagram. Given a library of generic interaction objects and an inheritance
mechanism, the collection of interaction object specifications need not become cumber-

some or repetitive,

THE INTELLIGENT USER INTERFACE

An "intelligent" user interface should be able to describe and reason about what
its user knows and conduct a dialogue with the long-term flow and other desirable pro-
perties of dialogues between people. It maintains and uses information about the user
and his or her current state of attention and knowledge, the task being performed, and
the tools available to perform it [11]. It can use this information to help interpret a
user’s inputs and permit them to be imprecise, vague, slightly incorrect (e.g., typograph-
ical errors) or elliptical. It can control the presentation of output based on its model of

what the user already knows and is seeking and remove information irrelevant to his

-929-

current focus. Knowledge-based techniques can also be applied to improve the selec-

tion, construction, and layout of graphical outputs.

Most research to date on the processes needed to conduct such "intelligent" dialo-
gues has been applied to natural language, but it is important to remember that such
techniques of the intelligent user interface are by no means restricted to natural
language. There is no reason why such ideas could not be used in a direct manipulation
dialogue. The user’s side of such a dialogue can consist almost entirely of pointing and
pressing mouse buttons, and the computer’s, of animated pictorial analogues.
Nevertheless, a dialogue in such a language could exhibit the intelligent user interface
properties cited -- following focus, inferring goals, correcting misconceptions. This com-
bination of such intelligent user interface techniques with a direct manipulation type of
language holds promise for providing a highly effective form of man-machine communi-

cation.

CONCLUSIONS

This chapter has examined direct manipulation interfaces and divided them into
two classes: those that operate in a domain of concrete visual objects and those that
use such visual objects as proxies to operate in a more abstract problem domain. The
importance of choosing a good visual representation for interfaces in the second class
was discussed and demonstrated. Some advantages and disadvantages of direct mani-
pulation were also considered. While more numerous, the disadvantages were seen to
be largely technical and likely to yield to further research; while the advantages were
based on fundamental characteristics of the users. Despite their surface appearance,
direct manipulation interfaces were seen to have a peculiar, highly moded structure.
The overall organization of a direct manipulation interface was found to be a collection
of coroutines, and this observation formed the basis for a formal specification technique
for such user interfaces. Finally, the future possibilities offered by combining "intelli-

gence” with direct manipulation were seen to be promising.

-30-

ACKNOWLEDGMENTS

I want to thank Ben Shneiderman for introducing me to the idea of direct manipu-
lation and helping me understand it and Don Norman for his ideas and comments on
this work, which have helped to clarify the idea. Discussions with my colleagues on the
WIS Command Language Task Force -- Phil Hayes, Ken Holmes, Joe Hrycyszyn, Tom
Kaczmarek, Jon Meads, and Brad Myers -- helped me to define the specification
language for direct manipulation interfaces. Finally, I want to thank Carl Landwehr

for facilitating and encouraging this research.

Much of this work was supported by the Space and Naval Warfare Systems Com-
mand under the direction of H.O. Lubbes. Other portions were supported by a contract
between the Johns Hopkins University and the Engineering Psychology Programs, Office
of Naval Research, under the direction of John J. O’Hare.

REFERENCES

1. Consumers Union, “Computers: Apple Macintosh,” Consumer Reports 50(1) pp.
28-31 (1985).

2. H. Chernoff, “The Use of Faces to Represent Points in n-Dimensional Space Graph-
ically,” Journal of the American Statistical Association 88 pp. 361-368 (1973).

3. MR. Cornwell and R.J.K. Jacob, “Structure of a Rapid Prototype Secure Military
Message System,” Seventh DOD/NBS Computer Security Conference pp. 48-57,
Gaithersburg, Md. (1984).

4. J. Dalton, J. Billingsley, J. Quann, and P. Bracken, “Interactive Color Map
Displays of Domestic Information,” Computer Graphics 13(2) pp. 226-233, Chicago
(1979).

5. D.C. Engelbart and WK. English, “A Research Center for Augmenting Human
Intellect,” Proc. 1968 Fall Joint Computer Conference pp. 395-410, AFIPS (1968).

6. M.B. Feldman and G.T. Rogers, “Toward the Design and Development of Style-
independent Interactive Systems,” Proc. ACM SIGCHI Human Factors in Com-
puter Systems Conference pp. 111-116 (1982).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-31-

M. Friedell, “Automatic Synthesis of Graphical Object Descriptions,” Computer
Graphics 18(3) pp. 53-62, Minneapolis (1984).

A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, Mass. (1983).

S.P. Guest, “The Use of Software Tools for Dialogue Design,” International Journal

of Man-Machine Studies 18 pp. 263-285 (1982).

HR. Hartson and D.H. Johnson, “Dialogue Management: New Concepts in
Human-computer Interface Development,” Computing Surveys (1986). in press

P. Hayes, E. Ball, and R. Reddy, “Breaking the Man-Machine Communication Bar-
rier,” IEEE Computer 14(3) pp. 19-30 (1981).

C.L. Heitmeyer, C.E. Landwehr, and M.R. Cornwell, “The Use of Quick Prototypes
in the Military Message Systems Project,” ACM SIGSOFT Software Engineering
Notes 7 pp. 85-87 (1982).

CF. Herot, R. Carling, M. Friedell, and D. Kramlich, “A Prototype Spatial Data
Management System,” Computer Graphics 14(3) pp. 63-70 (1980).

J.D. Hollan, E.L. Hutchins, and L. Weitzman, “STEAMER: An Interactive Inspect-
able Simulation-Based Training System,” The AI Magazine 5(2) pp. 15-27 (1984).
E.L. Hutchins, J.D. Hollan, and D.A. Norman, “Direct Manipulation Interfaces,” in
User Centered System Design: New Perspectives in Human-computer Interaction, ed.
D.A. Norman and S.W. Draper, Lawrence Erlbaum, Hillsdale, N.J. (1986). in press.
Interleaf, Inc., “Workstation Publishing Software,” , Cambridge, Mass. (1984).

R.JK. Jacob, HE. Egeth, and W. Bevan, “The Face as a Data Display,” Human
Factors 18 pp. 189-199 (1976).

R.JK. Jacob, “Facial Representation of Multivariate Data,” pp. 143-168 in Graph-
ical Representation of Multivariate Data, ed. P.C.C. Wang, Academic Press, New
York (1978).

R.JK. Jacob, “Using Formal Specifications in the Design of a Human-Computer

Interface,” Comm. ACM 26 pp. 259-264 (1983).

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

-39.

R.J.K. Jacob, “Executable Specifications for a Human-Computer Interface,” Proc.

ACM SIGCHI Human Factors in Computer Systems Conference pp. 28-34 (1983).

R.JK. Jacob, “An Executable Specification Technique for Describing Human-
Computer Interaction,” pp. 211-242 in Advances in Human-Computer Interaction,

ed. H.R. Hartson, Ablex Publishing Co., Norwood, N.J. (1985).

R.JK. Jacob, “Designing a Human-Computer Interface with Software Specification
Techniques,” pp. 139-156 in Empirical Foundations of Information and Software Sci-
ence, ed. J.C. Agrawal and P. Zunde, Plenum Press, New York (1985).

R.JK. Jacob, “A State Transition Diagram Language for Visual Programming,”
IEEE Computer 18(8) pp. 51-59 (1985).

L.H. Nakatani and J.A. Rohrlich, “Soft Machines: A Philosophy of User-computer
Interface Design,” Proc. ACM SIGCHI Human Factors in Computer Systems
Conference pp. 19-23 (1983).

D.L. Parnas, “On the Use of Transition Diagrams in the Design of a User Interface
for an Interactive Computer System,” Proc. 24th National ACM Conference pPp.
379-385 (1969).

MF. Poller and SK. Garter, “A Comparative Study of Moded and Modeless Text
Editing by Experienced Editor Users,” Proc. ACM SIGCHI Human Factors in Com-
puter Systems Conference pp. 166-170 (1983).

B. Shneiderman, “Multi-party Grammars and Related Features for Defining
Interactive Systems,” IEEE Transactions on Systems, Man, and Cybernetics SMC-
12 pp. 148-154 (1982).

B. Shneiderman, “Direct Manipulation: A Step Beyond Programming Languages,”
IEEE Computer 16(8) pp. 57-69 (1983).

J.L. Sibert and W.D. Hurley, “A Prototype for a General User Interface Manage-
ment System,” Technical Report GWU-IIST-84-47, Institute for Information Sci-
ence and Technology, George Washington University (1984).

D.C. Smith and others, “Designing the Star User Interface,” Byte 7(4) pp. 242-282
(1982).

31.

32.

33.

34.

35.

-33-

R.M. Stallman, “EMACS: The Extensible, Customizable, Self-documenting Display
Editor,” MIT Artificial Intelligence Laboratory, Cambridge, Mass. (1979).

D. Tsichritzis, “Form Management,” Comm. ACM 25 pp. 453-478 (1982).

Al Wasserman and D.T. Shewmake, “The Role of Prototypes in the User
Software Engineering (USE) Methodology,” pp. 191-209 in Advances in Human-
Computer Interaction, ed. H.R. Hartson, Ablex Publishing Co., Norwood, N.J.
(1985).

D. Weinreb and D. Moon, “Lisp Machine Manual,” MIT Artificial Intelligence
Laboratory, Cambridge, Mass. (1981).

MM. Zloof, “Query by Example,” Proc. 1975 National Computer Conference
44 pp. 431-438, AFIPS (1975).

Figure 1. Menu-based military message system prototype -- main menu.

hoose command from menu or from function key overlay

& & & -

1 | 2 | 3 | 4 | s 6
DISPLAY | CREATE | DELETE/ | COPY MOVE | EXPUNGE

Msg/

$ ———
*E
-

g [|
L e §
[7,]
2R 3
gm_a
=3
']

I
Msg/File/|Msg/File/|UNDELETE | Msg | Msg File
Text/Dir | Text | | |

Figure 2. Menu-based military message system prototype -- "Display"” command.

hell Tool 2.0: /Zbin/csh

2
Message | Message
by from a
DTG file

5 6

Message Text

File | File
Directory|Directory

Message
File

o ——————
o ——————
o w————

Figure 3. Menu-based military message system prototype - "Display message from

file" command.

Shell Tool 2.0: /bin/csh
Jacob SMMS
Display Message [}

or hit RETURN for default-- inbox
To designate a file that belongs to another user,
enter the user’s name, a colon, and the name of the file, like smith:inbox

Figure 4. Direct manipulation military message system prototype, showing message
window (top) and message file window (bottom). The security classifications shown are

simulated for demonstration purposes.

PRt ar v B agee Lyt bra

SIS ESMMS AR S ¥ Sa (SECRET nato),

1T) WD

Message 1 in file inbox‘ @
CONFIDENTIAL (nato)

bject: Another paper for security conference?

In your mailbox I have placed a call for papers for a computer
security conference to be held next fall at NBS. What do you think?
arl

CONFIDENTIAL (crypto nato)

(TspTay) (Access Sat) (DeTets) (Copy commands) (Send cowsands)
CONFIDENTIAL (nato)

Date: 1 Jun 84 17:22 Fram: landwehr To: corrwell jacob
Subj: Another paper for security confsrence?

(UndeTats)

UNCLASSIFIED
Date: 13 Jun 84 13:48 From: jacob TYo: landwehr
Subj: Important information LS

(BTsplay) (Rccess Set) (DeTets) (Topy commands) (Send commands)
CONF IDENTIAL (crypto)

Date: 23 Jul 84 18:87 From: jacob To: pon

Subj: change to editor.m}

Figure 5. Direct manipulation military message system prototype, showing user roles,

access set editor, and message file directory windows.

(SECRET

OO0 RN

Accass set for: Message file mboaa

vashington

downgrader

relsaser

dans
arnold
bul?
cornwel
frankitn
hancock
heitneyer
Jacod
landushr
ross
tretick
techoht

80
user

-
DisplaMf popoooowoDooowoon
Displasg npooDOoOoODOoODOCOoOoCOOoOw
EitMss pnoooooooDoooobDoon
EditTeb ppoooooooooooocoao

] (Access Set) {Treate New Fi1le)

Iy
wpTa] (C72pTay) (Access Set) (Destroy) (Duplicats)
TYTE File name: inbox CONFIDENTIAL (crypto nato)
Date: 1 Sep 10 85 106:34
Subj: A(UTspTay) (Access Set) (Destroy) (BupTicats)
File name: mmemail TOP SECRET (crypto nato noforn)
Aug 18 85 8:34

Date: 1 llﬂnphyl [Access Set] {Destroy]) lWSHcaul
Subj: File name: newbox SECRET (noforn nato)

Sep 1 85 28:25

as8s
Date: 23 Jul 64 18:07 From: jacob To: pon
Subj: change to editor.ml

Figure 8. Direct manipulation system for designing user interfaces, showing state
transition diagrams for the user interface being designed (at right) and the new user

interface itself (at left).

poobevel daragoan cato

OBYE_‘nd

1QUITIQU I‘

QUIT
OREADY...~TNUM A 10P \?n?
iEWA\L::/ﬁQ L A3

ESULT e

Vi)

10IGIT A2

pociy
YA i I

Figure 7. Examples of the nine-dimensional data points represented as digit matrices.

WWwWm O = WO o
W0 wWm l Wwom | 00 =5
www s ol Vp B o~
WM WO @ W
MW WO | M~ | - © =
wnm OoOw oy —
Mo - N g~
mOm | > W aNM AN
W O W O o o =
Mmwom =~ > e~
WMo l ~cwm - LD
mom ™M o= mow
Mmmom =M oo
moOm VY] MW
nom mam — LD

Figure 8. Examples of the nine-dimensional data points represented as polygons.

SRENANARR OIS

OnNg
E
J] o
(7]

Figure 9. Examples of the nine-dimensional data points represented as Chernoff faces.

Figure 10. Subjects’ performance clustering the nine-dimensional data points.

Faces Polygon Digits
Mean number wrong 15.33 27.96 31.88
Standard deviation 5.16 4.98 7.30
Mean time (minutes) 4.14 3.69 8.24
Standard deviation 1.63 1.43 3.22

Figure 11. Specification of a direct manipulation screen button.

INTERACTION_OBJECT MessageFileDisplayButton is

IVARS:

position = { 100, 200, 50, 12 }; --i.e., coordinates of screen rectangle
METHODS:

Draw { DRAW_TEXT_BUTTON(position, "Display"); }
TOKENS:

iLEFT { --click left mouse button -- }

iENTER { --locator moves inside rectangle given by position-- }

iEXIT { --locator moves outside rectangle given by position-- }

oHIGHLIGHT { --invert video of rectangle given by position-- }

oDEHIGHLIGHT { --same as oHIGHLIGHT-- }

SYNTAX:

main

end INTERACTION_OBJECT;

Figure 12. Specification of the screen button of F' igure 11, using inheritance.

INTERACTION_OBJECT MessageFileDisplayButton2 is

FROM: GenericButton, Genericltem;
IVARS:

position = { 100, 200, 50, 12 };
legend := "Display”;

METHODS:

DoAction { DisplayMf(inbox); }

end INTERACTION_OBJECT;

