1986 Proceedings
FALL JOINT
COMPUTER CONFEREN CE

November 2-6, 1986—INFOMART® —Dallas, Texas
Sponsored by ACM and Computer Society of the IEEE

Harold S. Stone
Stanley Winkler

Computer Society Order Number 743
Library of Congress Number 86-81582
|IEEE Catalog Number 86CH2345-7
ACM Order Number 401860

ISBN 0-8186-0743-2

L COMPUTER
@ THE COMPUTER SOCIETY @ Association for Computing Machinery o AND 'E‘f’e’éTT%BEN‘.’chEéSSL“E'SQs INC. SOCIEI'UJE
OF THE IEEE i PRESS




1986 Proceedings
FALL JOINT
COMPUTER CONFERENCE

November 2-6, 1986—INFOMART®—Dallas, Texas
Sponsored by ACM and Computer Society of the IEEE

Harold S. Stone, Proceedings Editor and Program Chairman
Stanley Winkler, Conference Chairman

Computer Society Order Number 743
Library of Congress Number 86-81582
|IEEE Catalog Number 86CH2345-7
ACM Order Number 401860

ISBN 0-8186-0743-2

@ THE INSTITUTE OF ELECTRICAL COMPUTER
THE COMPUTER SOCIETY iation for Computing Machiner \) AND ELECTRONICS ENGINEERS INC  SOGIETY
@m E com Association for Computing Y e SN PRESS = D)




The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, NW.
Washington, D.C. 20036-1903

COVER DESIGNED BY JACK |. BALLESTERO

IEEE Computer Society Order Number 743
Library of Congress Number 86-81582
IEEE Catalog Number 86CH2345-7
ACM Order Number 401860
ISBN 0-8186-0743-2 (paper)

ISBN 0-8186-4743-4 (microfiche)
ISBN 0-8186-8743-6 (case)

Prices (1986) ACM or IEEE Members: $60.00 prepaid
All others: $120 prepaid

Additional copies of the 1986 Proceedings may be ordered prepaid from:

ord SCMn X IEEE Service Center Computer Society of the IEEE :

rder Departmen Post Office Box 80452 i

Post Office B 4145 245 Hoes Lane o oo & Computer Society of the iEEE
: Piscat NJ 08854 orldway Postal Center Ave. de la Tanche

Baltimore, MD 21264  Fiscataway, Los Angeles, CA 90080 1160 Brussels, Belgium

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing serv-
ices, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1986 by The Institute
of Electrical and Electronics Engineers, Inc.

@ Association for Computing Machinery 0 THE NBTITUTE OF ELECTRCAL THE COMPUTER SOCIETY
EEE

ii



Software Engineering for Rule-based

Systems

Robert J.K. Jacob
Judith N. Froscher

Naval Research Laboratory
Washington, D.C. 20375

Abstract. Current. expert systems- are typically difficult
to change once they are built. The objective of the
present study is to develop- a .design methodology, which
will make a knowledge-based system easier to change,
particularly by people other than- its original developer.
The basic approach for solving this problem is to divide
the information in a knowledge base and attempt to
reduce the amount of information that each single
knowledge engineer must understand before he can
make a change to the knowledge base. We thus divide
the domain knowledge in an expert system into groups
and then attempt to limit carefully and specify formally
the flow of information between these groups, in order
to localize the effects of typical changes within the
groups.

As the commercial promise for expert system tech-
nology grows, the problem of ongoing maintenance and
modification of knowledge bases is becoming a
significant concern. The designs of typical current
knowledge-based systems are ad hoc, one of a kind, and
difficult to maintain. The information in the knowledge
base is interconnected in such a way that changing one
part' of the knowledge base may have unpredictable
effects on other parts.

This research attempts. to develop a design metho-
dology similar te those used in software engineering,l:2
which will make a knowledge-based production system
easier to change, particularly by people other than its
original developer. We have chosen to concentrate on
production systems because they are the most widely-
used type of knowledge representation in expert sys-
tems, particularly among those existing systems large
enough and mature enough to have experienced the
types of maintenance problems we hope to alleviate. In
the future, we will attempt to extend the approach to

suit other, newer knowledge representations, such as

frames and semantic nets, as large systems begin to be
written using them.

This paper describes the approach we are taking to
build maintainability into production systems. It intro-
duces a programming methodology for developing pro-
duction systems. It discusses our study of structure and
connectivity in already existing knowledge bases. It
then presents algorithms we have devised for separating

U.S. Government Work. Not protected by
U.S. copyright.

185

the information in a knowledge base and results
obtained with them. Finally, it discusses tools for sup-
porting the methodology.

Methodology -

The basic approach we have taken for building
maintainability into. an expert system is to divide the
information: in the knowledge base and attempt to
reduce the amount of information that each single
knowledge engineer must understand before he can
make a change to the knowledge base. We: thus divide
the domain knowledge in an expert system into groups
and then attempt to limit carefully and specify formally
the flow of information between these groups, in order
to localize the effects of typical changes within the
groups.

Production systems comprise extensive domain
knowledge, expressed as if-then rules, and a relatively
simple inference mechanism or rule interpreter. The
interpreter tests the values of the facts on the left-hand
side of a rule; if the test succeeds, new values for facts
are set according to the right-hand side of the rule. In
the present approach, we divide these rules into
separate groups. The guiding principle for grouping
two rules together is: If @ change were made to one rule,
to what extent would the other rule be affected? In this
study, a fact refers to that part of the data representa-
tion that, if changed by one rule, would affect another
rule in some way; in a simple production system where
the data are represented as sequences of attribute-value
pairs, a fact corresponds to an attribute. The
knowledge engineer building the system would group
together rules that use or produce values for the same
sets of facts. With this arrangement, a fact in the
knowledge base can be characterized either as being
generated and used by rules entirely within a single rule
group or else as spanning two or more groups. The
latter will prove critical to future changes to the
knowledge base, since they are the “glue” that holds the
groups together.

Whenever rules in one group use facts generated by
rules in other groups, such facts will. be specially
flagged, so that the knowledge engineer will know that
their values may have been. set outside this group.
More importantly, those facts produced by one group
and used by rules in other groups must be flagged too. -



For each such fact, the programmer of the group that
produces the fact makes an assertion, comprising a
brief summary of the information represented by that
fact. This assertion is the only information about that
fact that should be relied upon by the programmers of
other groups that use the fact. It is not a formal
specification of the information represented by the fact,
but rather an informal summary of what the fact
should "mean" to outside users.

Given this structure, a programmer who wants to
make changes to the system would assume the responsi-
bility of understanding thoroughly and preserving the
correct workings of a single group of rules (but not the
entire body of rules, as with conventional systems). He
or she would be free to make changes to the rules in the
group provided only that he preserves the validity of
the assertions associated with any facts that are pro-
duced by his group and used by other groups. Simi-
larly, whenever he used a fact that was produced by
another group, he would rely only on the assertion pro-
vided for it by the programmer of the other group and
not on any specific information about the fact that
might be obtainable from examining the inner workings
of the other group.

Following our methodology, the developer would
first divide the rules into groups. This can be done
manually or automatically, as described below. One
approach is to apply one of the automatic grouping
algorithms to the initial prototype expert system and
use the resulting grouping to guide the organization and
development of the final production version. Then, a
software tool will characterize each fact as inter-group
or intra-group, and flag the former. The developer of a
rule group that produces inter-group facts then provides
an assertion describing each such fact. That descrip-
tion is the only information about the fact that should
be used in the development of any other groups con-
taining rules that use the value of the fact.

Thus, the set of rules will be divided into groups,
the inter-group facts used and produced by each group
will be identified, and descriptions will be entered for
those produced by each group. Figure 1 shows the
language used to provide this information, using an
excerpt from a simple example knowledge base.® The
figure illustrates the syntax for describing rule groups; a
larger system would look exactly the same, except that
it would list more rules, facts, and groups.

To modify a group, the maintenance programmer
must understand the internal operations of that group,
but not of the rest of the knowledge base. If he
preserves the correct functioning of the rules within the
- group and does not change the validity of the assertions
about its inter-group facts, the maintenance program-
mer can be confident that the change that has been
made will not adversely affect the rest of the system.
Conversely, if he wants to use additional inter-group
facts from other groups, he should rely only on the
assertions provided for them, not on the internal work-
ings of the rules in the other group. (Of course,

186

(GROUP isamammal
(PRODUCES
(mammal "is it a mammal,
by conventional English usage"))
(RULES
(rl (IF hair) (THEN mammal))
(r2 (IF milk) (THEN mammal))))

(GROUP isabird
(PRODUCES
(bird "is it a bird, by English usage"))
(RULES
(r3 (IF feather) (THEN bird))
(r4 (IF flies ovip) (THEN bird))

(GROUP isacarn
(PRODUCES
(carn "is it a carnivorous creature"))
(RULES
{r5 (IF meat)  (THEN carn))
(r6 (IF pointed claws fwdeyes)
(THEN carn))))

{(GROUP isungulate
(PRODUCES
{ungulate "is it an ungulate"))
(USES
(mammal))
(RULES
(r7 (IF mammal hoofs) (THEN ungulate))))

(GROUP giraffe
(USES (ungulate))
(RULES
(r10 (IF ungulate longn longl darksp)
(THEN giraffe))))
etc..

Figure 1. Example of a grouped set of rules.T

changes that pervade several groups would still have to
be handled as they always have been, but the grouping
is intended to minimize these.)

Partitioning the Knowledge Base

To decide whether partitioning a knowledge base is
a feasible approach, we are analyzing existing produc-
tion systems to determine how the rules in the system
are related to each other. We have developed a
software tool that analyzes the connections between the
rules of a production system. The input to the tool is a
set of rules expressed in an abstract form.

We are using the tool to determine whether the
rules are indeed thoroughly intertwined or sufficiently
separated that they could be divided into groups. To
date, we have analyzed several kmowledge bases and
found that there is considerable separability and latent
structure to the relationships between the rules in these



systems, which could be exploited to improve maintai-
nability.

Next, we are attempting to divide. the rules of
existing systems into appropriate groups automatically,
using several new approaches. By grouping the rules of
existing production systems, we hope to determine
whether such systems could have been cast in the mold
required by the new method or whether it would have
imposed excessive restrictions and unnatural structure
on the developer. Based on the latent structure in rules
found thus far, initial results suggest that the present
approach can be imposed on many rule-based systems.
They also suggest that an ideal, but not always attain-
able, grouping of rules is one in which each group of
rules sets the value of only one fact that is used by
rules outside this group.

Rules are related to each other through the facts
whose values they use or modify. First, we depicted
these relationships in a graph, showing the inference
hierarchy for the system. Figure 2 shows such a graph
for an expert system developed by Reggia at the
University of Maryland, using the KES language;3 it is
used to diagnose stroke and related diseases. In Figure
2, each node, or point, represents a rule and each link,
or line, between two rules represents a fact whose value
is set by one rule and used by the other.

Figure 2. Plot of individual rules of an expert sys-
tem.

The first algorithm considered attempts to parti-
tion this graph into a collection of rooted trees of rules,
where the "root” of each such tree is a fact. That is,
divide the rules into groups such that each group of
rules produces only one fact that is used by other
groups. This provides the desideratum mentioned
above, since each rule group sets the value of only one
external fact. Figure 3 shows the same system as Fig-
ure 2, after such an algorithm was applied. Each node
now represents a group of rules, and each link
represents a fact that is produced by rules in one group

187

and used by those in another group. Facts that are
produced and used entirely within a single group do not
appear in the graph.

Figure 3.
trees.

Rules of expert system, grouped into

This algorithm tends to divide the knowledge base
into many small groups. Each such group contains a
collection of rules whose effect on other groups is
entirely summarized by the fact at the root of the tree.
Hence rules in these groups intuitively belong together
under any grouping scheme. The problem is that the
many small groups now must be combined into larger
agglomerations. One alternative tested was to weaken
the criterion for being a "rooted tree." That is, divide
the rules into groups such that each group produces no
more than n external facts, where n is now greater
than 1. However, as n was increased, this approach did
not appear to expose any natural structure in the
knowledge bases.

Next, an approach based on cluster analysis was
developed. Given a collection of objects, a clustering
algorithm partitions them into groups of like objects.
To use such an algorithm, though, a measure of dis-
tance or "relatedness” between rules must be defined.
Since our ultimate concern is for a programmer making
changes to the knowledge base, the similarity between
two rules should measure: If one rule were changed, how
likely is the other rule to have to be changed also. Rules
affect each other through the facts they have in com-
mon. Thus a simple measure of the "relatedness” of
two rules is the number of facts that are mentioned in
the left or right hand sides of both rules. Since there
are several ways in which two rules could refer to the
same fact, we decided to weight this count. The two
rules 1f A then B and if B then C share fact B
in common; so do the two rules if A then B and if
C then B. The rules of the former pair seem to have
a greater programming effect on each other than the
latter pair, and hence should be more "related.” Figure
4 summarizes the three ways in which two rules can




share a fact, and the weights given to each. The total
"relatedness” measure between two rules is, then, a
weighted count of the facts shared by both rules, where
each fact is weighted by the score that indicates in
which of the three possible ways the two rules use the
fact.

Score(r1,r2) = 1.0

Score(r1,r2) = 0.5

Score(r1,r2) = 0.88

Figure 4. Components of ‘“‘relatedness’” measure
between two rules.

Given such a measure, we can proceed with a
straightforward clustering algorithm. First, measure
the similarities between all pairs of rules, select the
closest pair, and put those two rules together into one
cluster. Then, repeat the procedure, grouping rules
with each other or possibly with already-formed clus-
ters. In the latter case, we must measure the "related-
ness” between a rule and a cluster of rules. This is sim-
ply defined as the mean of the similarities between the
individual rule and each of the rules in the cluster,
corresponding to an average-linkage clustering pro-
cedure. The algorithm proceeds iteratively.

The clustering algorithm can also be started with
the small groups found by the rooted-tree algorithm
above, instead of starting with individual rules. Since
the tree groups appeared promising, but just too
numerous, this is a reasonable alternative, and it
appears to produce slightly better results. Figure 5
shows the rule groups of the system of Figures 2 and 3
after clustering in this fashion.

Thus far, this method appears to do the best job of
partitioning a set of rules in an intuitively reasonable
way. One drawback to the algorithm is that on each

188

usterimakerulegroups an &,

. ore itera

| Figure 5. Rules, grouped into trees then clustered. I

iteration it makes the best possible agglomeration of
two groups, but it never backtracks, in case there might
be a better grouping for the system considered as a
whole. Also, like most clustering algorithms, if it runs
for enough iterations it will eventually group all the
rules into one large group; a stopping rule is thus
needed.

Software Tools and Measurements

We have developed software tools to support this
programming methodology. The developer can define
the grouping of rules and input the knowledge base in
the form shown in Figure 1, or he can run one of the
grouping algorithms discussed to produce the grouping.
These groupings have no impact on system performance
since they are invisible to the rule interpreter. Given
such a grouping, the software then automatically
identifies the intra-group and inter-group facts. It flags
all inter-group facts produced by a group, so the pro-
grammer can provide assertions for them; it flags all
inter-group facts used by a group and retrieves their
descriptions, so the programmer can rely on them when
using such facts. Other software tools can trace all
effects of changing a given rule and can find any unused
rules or groups.

The division of a set of rules into groups should
attempt to minimize the amount of coupling between
the groups and maximize the amount of cohesiveness
within each group.? Defining measures for these notions
will provide data to help compare alternative groupings
of a given set of rules. Once a set of rules is divided
into groups, each fact in the system can be character-
ized as being used and produced by rules entirely within
a single group or else as being used or produced by rules
in more than one group. One simple measure of cou-
pling is the proportion of facts in the second category,
while cohesion is represented by the proportion of facts
in the first.



Another approach to these measures is also being
investigated. For coupling, it uses the average "related-
ness" between all pairs of rules, where members of the
pairs lie in different groups. For overall cohesion, it
uses the average relatedness of every pair of rules that
lie in the same group. For the example shown above,
these quantities are 0.0798 average coupling and 0.9238
average cohesion, suggesting a far better than random
organization.

Conclusions

By studying the connectivity of rules and facts in
several typical rule-based expert systems, we found that
they indeed have a latent structure, which can be used
to support a new programming methodology. We have
developed a methodology based on dividing the rules
into groups and concentrating on those facts that carry
information between rules in different groups. We have
also studied several algorithms for grouping the rules
automatically. Finally, we have developed a simple
language and some software tools and measures to sup-
port the new method.

The resulting programming methodology requires
the knowledge engineer who develops a rule-based sys-
tem to declare groups of rules, flag all between-group
facts, and provide descriptions of those facts to any rule
groups that use such facts. The knowledge engineer
who wants to modify such a system then gives special
attention to the between-group facts and preserves or
relies on their deseriptions when making changes.

An interesting aspect of this approach is that it
draws distinctions between the facts contained in work-
ing memory of a production system. Certain facts are
flagged as being important to the overall software
structure of the system, while others are "internal” to
particular modules and thus less important. Program-
mers can be advised to pay special attention to rules
that involve the "important" facts. This is in contrast
to the homogeneous way in which the facts of a rule-
based system are usually viewed, where they must all
command equal attention or inattention from the pro-
gramimer.

To determine how well this programming metho-
dology will work, we are attempting to retro-fit several
existing knowledge bases with this approach. This will
help determine how well the structure implied by the
new programming methodology can fit the structures
observed in actual rule bases. We will use the grouping
algorithms to divide the rules and then use measures of
coupling and cohesion to compare alternative groupings.
Next we will attempt to measure the extent to which
the new method helps or hinders maintenance of an
expert system. We will attempt to make changes both
to a conventional expert system and to one divided into
groups following the proposed method and compare the
results. Based on our preliminary results, the method
does not impose unreasonable restrictions on the
developer nor does it lead to unnatural structures.

189

References

1.

D.L. Parnas, “On the Criteria to be Used in
Qecomposing Systems into Modules,” Communica-
trons of the ACM 15 pp. 1053-1058 (1972).

D. L. Parnas, “Software Engineering Principles,”
INFOR Canadian Journal of Operations Research
and Information Processing (November, 1984).

J. Reggia, “Knowledge-based Decision Support Sys-
tems: Development through KMS,” Department of
Computer Science, University of Maryland (1981).

W.P. Stevens, G.J. Meyers, and L.L. Constantine,
“Structured Design,” IBM Systems Journal 13 PP-
115-139 (1974).

P.H. Winston and B.K.P. Horn, LISP, Addison-
Wesley, Reading, Mass. (1980).



