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ABSTRACT

Past attempts at building multilevel-secure systems have
resulted in human-interfaces that were difficult to understand and
use. We posit that part of this difficulty resvits from a poor fit
between conventional security models and the intuitive notion of
security users apply to their aﬁpl.ication. The Secure Military Mes-
sage Systems project attacks these problems by defining a secu-
rity model intuitively closer to the application and testing this
model by constructing rapid prototype systems and trying them
out. Techniques used to construct these rapid prototypes include
the definition of abstract data types, an intermediate command
language, and an executable formal specification of the human-
interface. Features of the MMS security model are presented using
examples from a rapid prototype system.

1. The Problem

The Secure Military Message Systems project is building rapid prototypes in
order to learn about techniques for building secure computer systems. In the
past, secure systems have been built frormn general-purpose security models.
While this yields an internal model that is elegant and easy to understand, the
user interface of the resulting systems is often confusing, because it enforces
security restrictions that appear counter-intuitive from the perspective of a
user. Our solution to this problem is to define a security model that attempts to
capture the user's intuitive notion of security in a military message system [1].
Then, we examine the effects of that model on the system behavior visible at the
user interface by building and studying a <eries of rapid prototype systems that
implemnent the model. A sample session with one such rapid prototype is given
in the appendix. We have designed message systems offering a representative
range of functions for composing, reading, distributing, and processing military
messages. While the present security rnodel was motivated by message systems,
it has been found to be adaptable to other similar types of document systems.

Qur- definition of security is embodied iu a security model fur military mes-
sage systems. This model is described in detail by Landwehr [1]. The MMS secu-
rity model consists of a set of definitions, assumptions and assertions. It differs
from some conventional models of security such as that of Bell & Lapadula [2]
in that it directly models multi-level objects, such as a SECRET message contain-
ing CONFIDENTIAL paragraphs; and recognizes message system operations such
as RELEASE, rather than the generic READ, WRITE, EXECUTE.
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2. Desigp. Goals of the Rzpid Prototype Systems

The rapid prototype systems are intended to exhibit the user-visible
behavior of secure message systems conforming to the MMS model. To make our
prototyping effort feasible we have chosen to concentrate on the security model,
functional requirements, and user interface. We have tried to implement these
aspects of the design faithfully, while other concerns that could be important for
a production system are not addressed. For example, time and space efliciency
are not a concern as long as they are acceptable for demonstration purposes.
The rapid prototypes support only a few users and a low voluimne of message
traffic. Genuine security was not addressed, but the normal behavior of the
rapid prototype is just like that of the corresponding secure system. Some
other concerns are important for the rapid prototypes but not necessary for a
production system. For example, the rapid prototypes themselves should be
designed and built quickly. They should be easy to modify to reflect changes
both in functionality and in the underlying security model. At this stage, obtain-
ing a genuinely secure implementation is not as important as obtaining an
apparently secure one quickly.

The software decomposition of the M2 rapid prototype (earlier prototypes
were called MO and M1 [3] ) does address problems of building a system that
satisfies the MMS security model. The internal design has incorporated lessons
learned over several generations of rapid protoiype systems. In MO and M1,
security checks were widely scattered throughout the code. The decompositicn
we present here identifies and localizes many of the mechanisms that enforce
the MMS security model. This locality increases the promise of a verifiable
implementation of the design.

8. Structure of the Rapid Prototypes

The M2 system is partitioned into two components, a user interface com-
ponent and a semantic action component as shown in figure 1. The user inter-
face handles the details of transforming sequences of keystrokes, mouse cticks,
and other user input into requests in an Intermediate Command Language (ICL)
and presenting the results of such requests as output to the user. The ICL
requests themselves are processed by the sernantic action component.

The user interface component is specified as a set of state diagrams after
the manner described by Jacob [4]. In the siate diagram mode], an automaton.
reads from a stream of tokens and makes a transition to another state based on
the token read. Actions may be associated with state {ransitions; whenever such
a transition is made, its associated actions are performed. In the present sys-
tem, the actions consist of ICL cornmands, which are transmitted to and exe-
cuted by the semantic action component. The user interface component is
implemented by an interpreter that execules the state diagram specifications
[5]. It traverses the diagrams and performs the actions associated with each
transition.

This division permits new systems with different user interfaces to be con-
structed from the existing system convenizsntly. If the design of thiz user inter-
face is changed, only the user interface component must be modified so that it
will translate from the new cornmand language into the same ICL. commands; the
semantic component of the system need not be changed. The division also pro-
vides a useful decomposition of programming tasks. Given a stable description
of the ICL, the user interface and semantic components of the system can be
developed in isolation from one another, since the only communication between
themn is via the defined ICL commands. In fact, the M2 prototype was coded in
just this fashion, by the authors working inn paralle!. Our experience showed
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that, with this decomposition, it was possible to make major changes to either
component of the system without affecting the other component or even telling
the person writing it. .

The user interface itself is designed to be easy for nzive users to learn (in
contrast to being easy for experienced users to operate). A command typically
consists of a verb (such as Display), an object (such as "the file named inbox"),
and, possibly, some extra parameters (in this example, a display filter). The
verb is selected from a menu; objects and other parametiers are selected from
menus where possible or else typed in a window. For each itemn, a default value

tactically correct, it issues the complete command to the semantic component.
Finally, there are some user-level operations that do not correspond to ICL com-
mands, such as the ecommands to abort a command, scroll the windows, select
special-purpose menus, and exit. These are piaced on function keys and may be
entered by the user at any point in the dialogue.

The semantic action component of the system is itself partitioned into a
secure evaluator and a set of ICL programs. The ICL programs perform the
actions requested by the user. The secure evaluator ensures that ICL programs
never get a chance to perform actions that would violate security. It performs
all the security checks necessary before an ICL program is invoked.

The actions taken by ICL commands are the user’s means for inspecting
and manipulating the sensitive information in the system. Each command avail-
able to the user corresponds to one of these ICL programs. The ICL programs
manipulate objects in the message system database, such as directories, mes-
sage flles, citations, and messages, which embody the sensitive information in
the system. ICL programs are written in terms of operations on these lower
level objects. Unlike the ICL commands, the user does not have access to these
lower level operations directly. Users can enly invoke them indirectly by invok-
ing ICL commands.
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The secure evaluator is made up of programs to periorm three kinds of
security checks. The reference cheaker enforces security constraints while
determining whal objects in the system a requested ICL operation would act
upon. The access checker compares the access permissions of these objects
with the privileges of the user supplying the request. A precondition checker
uses its knowledge of the semantics of the ICL. programs to determine if a
request should be denied or allowed to proceed. '

In the interest of building the system rapidly, we decided to use an existing
text editor, Emacs [6], for composing and editing messages. Emacs is an exten-
sible text editor with its own language for defining new commands and modifying
its user interface. We took advantage of this extensibility to tailor it to approxi-
mate a secure editor for messages and to integrate it into our rapid prototype.
It protects some fields of a message from modification and it provides some
prompts and syntax checking on messages. -

4. Abstract Types, Inheritance and Locality

Most of the implementation is oriented around abstract data types. Our
notion of abstract data types is fairly conventional but includes operator inheri-
tance and overloading concepts similar to those of Smalltalk [7]. and Flavors [8].
An abstract data type characterizes a class of data by associating a type name
with a set of values and a set of named access operators. The access operators
may alter values, return information about values, or both. A type may be a
subtype of another type. If Bis a subtype of A then by defauit B inherits the
access operators of A FB's definition can then add new access operators not
associated with A4 By overloading operator names (defining new operators with
the same names as inherited operators) B can hide inherited operators.

This notion of types, and operator inheritance in particular, helped in
implementing security. A type ENTITY was associated with the security specific
information (e.g. classification, access set, CCR mark). Other types such as MES-
SAGE were defined as subtypes of type ENTITY. The security checking programs
were written for ENTITY, and thus didn’t depend on specifics of type MESSAGE,
only type ENTITY. We found it possible to add new secure types to the system by
defining new subtypes of ENTITY without adding new security checking pro-
grams.

Our design useé abstract data types to define a wide variety of data classes.
Some are visible to users: ENTITY, ACCESS_SET, MESSAGE, MESSAGE , FILE. Oth-
ers are used internally: STATE_DIAGRAM, TRANSITICN, REQUEST.

5. Security Model and _Hechanisms for Security Checking

This section describes some specific techniques used to implement the MMS
security model in the semantic component of the M2 prototype. Our presenta-
tion of the model will be in terms of the techniques we have chosen to imple-
ment it, though other implementations could satisfy the model without using
these particular techniques. Concepts from the model will be briefly described
as necessary. A complete definition and explanation of the model is &iven by
Landwehr [1].

The MMS security model provides a set of definitions and assertions charac-
terizing a secure system. Fntities are units of information in the system that
are associated with protection information. Every entity has a classification, an
gccess set, a type and a value. User ID’s represent the human users of the sys-
tem. Every user ID has an associated clearance and a set of roles. Users indi-
cate the entities they access by providing Teferences to them. A direct refer-
ence (e.g., MSG1190) is an atomic identifier that denotes exactly one entity
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independent of the values of any other entities. Entities may contain other enti-
ties. An indirect reference indicates an entity by referriug to an entity that con-
tains it. (e.g., “the fifth message in Cornwell's inbox file"). Say, an entity e! con-
tains an entity eZ2. If e is marked container clearence required (CCR), then a
user can’t use e! in an indirect reference to 2 unless the user is cleared for e ].

‘ t
requests r S ecure } 'q'::se;gs
_ Evaluator J

. User .
interface

ICL
Programs

exceptions

responses
fig 2. Security Mediation

The division of the semantic action component into a szcure evaluator and
ICL programs separates security checking from the normal case semantics of
user commands. The secure evaluator rnediates the access of the user interface
to the ICL programs as shown in figure 2. The user interface constructs ICL
requests and sends them to the secure evaluator, which either grants the
request, by invoking an ICL program, or sends an exception back to the user
interface. After a request is granted, the requested ICL program can run to
completion without the need to perform any other run-time security checks.
This obviates the need to consider problems that occur when a operation
encounters a security exception after it has begun its execution, such as restor-
ing state or translating low level security exceptions into meaningful responses
to the user.

A request that enters the secure evaluator must pass three kinds of secu-
rity checks before it is granted. Each kind is handled by a different component
of the secure evaluator, these components being a reference checker, an access
checker, and a precondition checker. A request <op r1 ... N> consists of an
operator followed by a sequence of references and possibly other parameters.
The requests goes through the following checks:

1) Reference Checker. Any violation of constraints imposcd by CCR marks
is detected at this step. Each of the indirect refercnces is derefer-
enced. This yields a structure of the form <op el ... eN> where the ei
is the the entity denoted by 7i.

2) Access Checker. For each entity ei in el...eN we check to see that the
access set of the entity permits the user to apply the operator with
that entity as its ith parameter.

3) Precondition Checker. Finally, we perform a check to determine
whether performing the requested actions the current state will main-
tain the security assertions. If so, we apply opto e1...eN.

Failure to pass any one of the above checks will cause the request to be denied
and a security exception to be generated. A brief explanation of why the request
was denied is passed back to the user interface which conveys it to the user,

With this outline of run-time security checking in place, we examine each

52



component of the secure evaluator elaborating on the checking each performs.

The reference checker evaluates the references in an ICL request based on
the classifications, values, and types of the entities appearing in each indirect
reference. Every type of entity that can contain other entities is associated with
a selector function S that given an entity and an index returns the entity con-
tained by the given entity at that index. For example, if e denotes a directory of
message files and ! is the name of a file in that directory, then S(e,il) denotes
that file. Each indirect reference <e,il,...,ik> is a sequence whose first element
is an atomic identifier for an entity and whose remaining elements are indices.
There is a procedure.for evaluating a reference to determine the -entily it
denotes. This dereferencing procedure maps references to direct references. It
acts as an identity on direct references. For indirect references it replaces the
first two elements of its argument with the entity denoted by applying a selector
function to e and i1, and applies itself recursively to the result. '

The dereferencing procedure also perforins some security checks and will
generate an exception if attempted violations occur. An exception will occur if
the reference is indirect, the entity heading that reference is marked CCR and
the user’s clearance does not dominate the classification of that entity. Notice
that it is possible to dereference an indirect reference that depends on entities
for which the user is not cleared without generating an exception.

The access checker compares the access sets of the requested entities with
the operator name and the privileges of the user making the request. Operators
are the commands users may invoke (directly) to change or inspect the entities
in the database. In the M2 rapid prototype, these operators are defined to be
the ICL programs. The access set of an entity determines what operators may
be applied to it and by what users. An access set for a given entity e is a set of
triples of the form (userlD or role, operator, k). A user can use entity e as the
kth parameter of an operator if a triple with the user’s userID {or one of the
user’s roles), that operator and k is in the access set of e.

The precondition checker compares the state of the system with the
requested action to determine whether the action can take place without violat-
ing any security assertions not already addressed by the reference checker and
access checker. One such assertion is the hierarchy assertion, which states that
the classification of every entity must dominate the classification of every entity
it contains. For example, a message file contains a set of citations and each
citation contains a message. The message file must be classified higher than any
of its citations and each citation in turn must be classified higher than its mes-
sage. Another assertion states that only a user acting in the role of system secu-
rity officer can change the clearance associated with a user ID.

In order to guarantee that such assertions remain invariant, every operator
op is associated with a precondition pre (op) characterizing the vonditions under
which applying op will leave the system in a state satisfying the security asser-
tions. Before applying any operation, this precondition is checked and an excep-
tion is generated if the precondition does not hold. Assuming the preconditions
are correct, an operation never causes an action that will invalidate the security
assertions.

Preconditions are attractive because mathematical techniques (weakest
preconditions, predicate transformers [9] .Hoare logic [10] ) exist to derive
them from a specification of the semantics of the operator and a specification of
the security invariants. Dijkstra [9], Gries [11], and others have argued convinc-
ingly that deriving programs from specifications yields benefits that verifying
programs after they are written does not. In deriving precondition checks for

our rapid prototype, we applied the concepts of invariant assertions and weakest
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preconditions informally to specify and program the system. Using this
approach, we could then attempt to prnvide iormal proofs that preconditicns
are sufficient to insure Lhat the operations mairtain the security invariants.

The use of an external text editor poses some problems to our security
design. Within the message system, messages are represented in linked struc-
tures laden with security information. A message sent to the editor is translated
into a text form visually familiar to users but with much of the security informa-
tion (e.g. access sets) stripped off. The system should prevent users from edit-
ing certain flelds, corrupting the security labels on entities, or entering ill-
formed messages into the system. To this end, we partition the message being
edited into an editable and noneditable part, displaying the latter in a window
where the user cannot modify it. In Emacs, the user edits a textual representa-
tion of a message in the absence of any security checking. When Emacs exits,
the message system parses the message, checking it for well-fortnedness and
conformity with the security constraints before we allowed it to be stored in the
message system data types. For example, a message might fail the well-
formedness check if a user mistypes a field name or leaves off a security label
on a paragraph. The message would not conform to security constraints if, say,
a CONFIDENTIAL text fleld held a SECRET paragraph.

6. Future Directions
The rapid prototype described hzre is one of a seiies cf systers being built

to investigate secure message systems. The next steps in this work include:

- a) Obtain feedback from real message system users using the M2 proto-

' type.

b) Develop a user interface incorporating a bitmapped display, graphics
and mouse. This will be done by modifying the user interface com-
ponent (and moving it to a different host), while leaving the semantic
component unchanged.

c) Investigate formal techniques for deriving precondition checks from
the specifications.

d) Build a genumely secure full-scale prototype based on the current
rapid prototype.

7. Summary

We have observed that conventional security models, while intuitively
appealing: to designers, can appear confusing and inappropriate when viewed
through the user interface of a finished system. To overcome these problems, a
specific security model has been defined to conform to an intuitive notion of how
the user interface to a secure message system should behave. A series of rapid
prototype systems has been built to allow us to observe directly the interactions
between this security model and a user interface. The M2 rapid prototype
demonstrates a particular approach to the implementation of a system that
incorporates this security model. The techniques used in building it are applica-
ble to other application based security models.
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Appzndix: A sessiou with the M2 Rapic Prototype

The following scenario, based on the M2 prototype, illustrates some funda-
mental ideas of the Se-ure Military Message System Design. In this exainple a
user, Jones, logs cnto ihe messagz systeii and reads some incoming mail. The
session illustrates some of the data cbjects the users manipulate and how mes-
sage processing is integrated with the security policy.

To gain access to the system, Jones must {irst log ir. Jones does this by
providing a userID, the classification that the screen is to assumne, in this case (T
cnwdi nato crypto), and and a password. A menu appears on the screen fron
which Jones selects active rcles for the session. The system checks to see that a
user with userID Jones and the given password is authorized to use the system,
and that Jones is authorized for each of the roles selected. With this precondi-
tion satisfied, the login operation proceeds.

The screen has a current classification at the level specified at login. Cita-
tions from Jones's message file "inbox" are display=c on the screen (fig. 1a.)

Display Message File inbox

DISPLAY CREATE OELETE | UNDELETE; CCPY | MOVE | EXPUNGE | EDIT
Msg/File/| Msg/File/| Msg/File/; HMsg | Msg | Msg | File | Meg/Text
Text/Dir | Text | Text | i | | |
1IN W

From: (U) Owork Subj: (U) Ada Conference
2 N (SECRET cnudi crynto)

From: (U) Adams Subj: (S) Beethoven Combiner
3 N (CONFIDENTIAL cnudi nuciear)

From: (U} L Subj: (C) Dense Pack Simulator
4 N (UNCLASSIFIED)

From: (U) NSA Subj: (U} Security Evaiuztion Standards

fig. al

At this point the screen (an entity) contains a sequence of citations {also
entities). Each citation contains the From, Subject, and Security fields of the
message to which it refers. Only citations below the the classification of the

screen are displayed.

Displaying the second message, Jones can see all of its fields (fig. a2)
Notice that the message classification dominates the classification of each of its
fields. Similarly, the text field classification dominates the classifications of

each of its paragraphs.

55



Cisplay Message intox 2 ail

OISPLAY | CREATE + DOELETE ! UNDELETE| COPY | MOVE | S{PUNGE | EDIT
Mag/File/| Mso/Fiie/: lgg/Fites, Msg i Mag : Meg | Fite {ﬂsg/Text

Text/Dir Text | Text '

4

Security: S crudi crypto)

Froms ) Adams
To: U} Jones
Subjs. (S) Baethoven Combiner

Text: (S crmdi crypto)

(U) first paragraph

(S} second paragraph

(S crwdi crypto} last paragraph

fig. a2

Jones's directory contains all of the message files belonging to Jones. The mes-
sage file names are displayed along with the file classifications (fig. a3.)

Display Directory Jones

EXPUNGE |

DISPLAY | CREATE OELETE | UNDELETE] COPY | MOVE ! : 01T
Meg/File/| Msg/File/| Meg/Files| Msg '@ Msg | Msg | File | Msg/Text
Text/Dir | Text | Text | | | | |

Cryptography (T ermadi crypto)

Oense Pack (T erwdi nuclear)

Misc w

Nato MM (C nata)

Sensor Project )

Specifications )

Submar i nes (C crdi nuciear)

i nbox (T nato crypto cnudi nuciear)

Accidental violations of the security model are prevented. Jones is
informed of denied requests in terms of familiar message system concepts. For
example, if Jones attempted to save the second irbox entry (displayed earlier)
into the file "Nato MRM", the system would deny the request. A brief explanation
would appear in the error window (just below the inenu) saying that the message
was classified to high to be inserted in the given message file.

Jones may move the message in the file Cryptography, since that file's classifi-
cation dominates that of the message. Jones does so and logs out leaving the
terminal ready for another login.
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