1985 Conference On
Intelligent Systems
and Machines

April 23-24, 1985

Center for Robotics and
Advanced Automation
Oakland University
Rochester, Michigan

' N N W N E ¥ EEEEEEEERE TR W'

DEVELOPING A SOFTWARE ENGINEERING
METHODOLOGY FOR RULE-BASED SYSTEMS

Robert J K. Jacob -
Judith N. Froscher ’

Naval Research Laboratory
Washington, D.C. 20375

Current expert systems are typically difficult to change
once they are built. The objective of the present study is to
develop a design methodology, which will make a knowledge-
based system easier to change, particularly by people other
than its original developer. The basic approach for solving
this problem is to divide the information in a knowledge base
and attempt to reduce the amount of information that each
single knowledge engineer must understand before he can
make a change to the knowledge base. We thus divide the
domain knowledge in an expert system into groups and then
attempt to limit carefully and specify formally the flow of
information between these groups, in order to localize the
effects of typical changes within the groups.

Introduction

If expert systems are to come into wide use in practical
applications, the problem of continuing maintenance and
modification of the knowledge base must be addressed in
their development. Most current expert systems began as
research tools, often developed in universities, and main-
tained by their originators and their students. Now this
technology shows promise of solving practical problems in
industry and government, but knowledge-based systems con-
tinue to be ad hoc, one of a kind, and difficult to maintain.
Changing a knowledge base typically requires a knowledge
engineer who is well-grounded in the design of the system and
the structure of the knowledge base. Most often, it requires
the same knowledge engineer who originally wrote the sys-
tem.

The objective of the present study is to develop a design
methodology similar to those used in software engineering,®
which will make a knowledge-based production system easier
to change, particularly by people other than its original
developer. We have chosen to concentrate on production sys-
tems because they are the most widely-used type of
knowledge representation in expert systems, particularly
among those existing systems large enough and mature
enough to have experienced the types of maintenance prob-
lems we hope to alleviate. In the future, we will attempt to
extend the approach to suit other, newer knowledge represen-
tations.

In this paper, we will describe our approach to develop-
ing such a methodology for production systems. The mainte-
nance history of a long-lived, well-documented expert system
and the efforts of other researchers to separate the informa-
tion in an expert system will be reviewed. Then we will
describe the approach we are taking to build maintainability

into production systems. Next we will discuss our study to
find structure in already existing expert systems. We will
then present some algorithms that we have used for separat-
ing the information in a knowledge base and our results in
using each of them. Finally, we will introduce a program-
ming methodology for production system development and
describe support software for it.

Background

While few knowledge-based systems are currently being
used in commercial or military environments, one of the most
successful exceptions is R1/XCON, developed by McDermott
at Carnegie-Mellon University.5 R1 was designed to configure
the many components that make up a DEC VAX 11/780
computer and is implemented as a production system in
OPS5. The development history of R1 illustrates the prob-
lems encountered when an expert system is used in a practi-
cal setting. Since the VAX computer line was constantly
being changed and expanded, it was continually necessary to
add more knowledge and greater capability to R1. Before
long, the system became complex enough that it was neces-
sary to reimplement it entirely. To support R1, DEC esta-
blished a special software support group, which had to invest
considerable effort in understanding R1 before they could
make any changes to it.

As commercial promise for expert system technology
grows, more researchers have become concerned with the
practical problems of building these systems for real users,
who have no background in artificial intelligence. They have
proposed several methods for partitioning these systems to
make the knowledge bases more understandable, easier to
maintain, more efficient, and more suitable for parallel pro-
cessing. One simple approach is to build a system made up
of several knowledge bases; examples of this approach are
seen in ACE! and PROSPECTOR.3 The developers of
LOOPS! use the notion of a rule set, which is called like a
subroutine. Each rule set returns a single value, which can
then be used elsewhere in the knowledge base. Clancey has
abstracted the inference goals in a knowledge base in order
to separate the control strategy, encoded as meta-rules, from
the specific domain knowledge.2 Rules that contribute to a
particular goal in a knowledge base can then be grouped
together; in fact, R1/XCON is partitioned into several sub-
tasks in this fashion. Because expert systems generally use
large amounts of computer resources, researchers are study-
ing how both the knowledge base and working memory can
be separated so that each independent group can be pro-
cessed on a parallel processor.? Such a separation can also
make the system easier to change, although this was not the
original purpose of the study.

Approach

The basic approach we have taken for building maintai-
nability into an expert system is to divide the information in
a knowledge base and attempt to reduce the amount of infor-
mation that each single knowledge engineer must understand
before he can make a change to the knowledge base. We
thus divide the domain knowledge in an expert system into
groups and then attempt to limit carefully and specify for-
mally the flow of information between these groups, in order
to localize the effects of typical changes within the groups.

Production systems comprise extensive domain
knowledge, expressed as if-then rules, and a relatively simple
inference mechanism or rule interpreter. The interpreter
tests the values of the facts on the left-hand side of a rule; if
the test succeeds, new values for facts are szt according to
the right-hand side of the rule. In the present approach, we
divide these rules into separate groups. The knowledge
engineer building the system would group toge: her rules that
use or produce the same sets of facts. The gui:ling principle
for grouping two rules together is: If a change were made to
one rule, to what extent would the other rule be affected? With
this arrangement, the facts in the knowledge base can be
characterized either as being generated and used by rules
entirely within a single rule group or else as spanning two or
more groups.

Whenever rules in one group use facts generated by
rules in other groups, such facts will be specially flagged, so
that the knowledge engineer will know that their values may
have been set outside this group. More imprrtantly, those
facts produced by one group and used by rules in other
groups must be flagged too. For each such fact, the program-
mer of the group that produces the fact makes an assertion,
comprising a brief summary of the information represented
by that fact. This assertion is the only information about
that fact that should be relied upon by the programmers of
other groups that use the fact. It is not a formal
specification of the information represented by the fact, but
rather an informal summary of what the fact should "mean”
to outside users.

Given this structure, a maintenance programmer would
assume the responsibility of understanding thoroughly and
preserving the correct workings of a single group of rules (but
not the entire body of rules, as with conventional systems).
He would be free to make changes to the rules in the group
provided only that he preserves the validity of the assertions
associated with any facts that are produced by his group and
used by other groups. Similarly, whenever he used a fact
that was produced by another group, he would rely only on
the assertion provided for it by the programmer of the other
group and not on any specific information about the fact
that might be obtainable from examining the inner workings
of the other group.

An interesting aspect of this approach is that it draws
distinctions between the facts contained in working memory
of a production system. Certain facts are flagged as being
important to the overall software structure of the system,
while others are "internal” to particular modules and thus
less important. Programmers can be advised to pay special
attention to rules that involve the "important” facts. This is
in contrast to the homogeneous way in which the facts of a
rule-based system are usually viewed, where they must all
command equal attention or inattention from the program-
mer.

Connectivity of Production Systems

To decide whether partitioning a knowledge base is a
feasible approach, we are analyzing several existing produc-
tion systems to determine how the rules in the system are
related to each other. We have developed a software tool
that analyzes the connections between the rules of a produc-
tion system. The input to the tool is a set of rules expressed
in a neutral knowledge representation. Because OPS5 is one
of the most widely used production system languages, we
have also built software that translates from OPS5 into this
representation, For expert systems written in other
languages, we have performed the translation manually or
semi-automatically with text processing programs.

We are using the tool to determine whether the rules
are indeed thoroughly intertwined or sufficiently separated
that they could be divided into groups. To date, we have
analyzed several knowledge bases and found that there is
considerable separability and latent structure to the relation-
ships between the rules in these systems, although this struc-
ture has not been exploited to improve maintainability.

Next, we attempt to divide the rules of existing systems
into appropriate groups automatically, using several new
approaches. By grouping the rules of existing production
systems, we hope to determine whether such systems could
have been cast in the mold required by the new method or
whether it would have imposed excessive restrictions and
unnatural structure on the developer. Based on the latent
structure in rules found thus far, initial results suggest that
the present approach can be imposed on many rule-based sys-
tems. They also suggest that an ideal, but not always
attainable, grouping of rules is one in which each group of
rules sets the value of only one fact that is used by rules out-
side this group.

Algorithms for Partitioning a Knowledge Base

Rules are related to each other through the facts whose
values they use or modify. First, we depicted these relation-
ships in a graph, showing the inference hierarchy for the sys-
tem. Figure 1 shows such a graph for an expert system
developed by Reggia at the University of Maryland, using the
KES language;? it is used to diagnose stroke and related
diseases. In Figure'1, each node represents a rule and each
link between two rules represents a fact whose value is set by
one rule and used by the other.

Figure 1. Plot of individual rules of an expert system. I

The first algorithm considered attempts to partition
this graph into a collection of rooted trees of rules, where the
"root" of each such tree is a fact. That is, divide the rules
nto groups such that each group of rules produces only one
fact that is used by other groups. This provides the desidera-
tum mentioned above, since each rule group sets the value of
only one external fact. Figure 2 shows the same system as
Figure 1, after such an algorithm was applied. Each node or
dot now represents a group of rules, and each link represents
a fact that is produced by rules in one group and used by
those in another group. Facts that are produced and used
entirely within a single group do not appear in the graph.

l Figure 2. Rules of expert system, grouped into treesj

These algorithms tend to divide the knowledge base into
many small groups. Each such group contains a collection of
rules whose effect on other groups is entirely summarized by
the fact at the root of the tree. Hence rules in these groups
intuitively belong together under any grouping scheme. The
problem is that the many small groups now must be com-
bined into larger agglomerations. One alternative considered
was to weaken the criterion for being a “rooted tree.” That
is, divide the rules into groups such that each group produces
no more than n external facts, where n is now greater than
1. However, as n is increased, this approach did not appear
to expose any natural structure in the knowledge bases.

Next, an approach based on cluster analysis was
developed. Given a collection of objects, a clustering algo-
rithm partitions them into groups of like objects. To use
such an algorithm, though, a measure of distance or "related-
ness" between rules must be defined. Since our ultimate con-
cern is for a programmer making changes to the knowledge
base, the distance between two rules should measure: If one
rule were changed, how likely is the other rule to have to be
changed also. Rules aflect each other through the facts they
have in common. Thus a simple measure of the "relatedness”
of two rules is simply the number of facts that are mentioned
in the left or right hand sides of both rules. Since there are
several ways in which two rules could share a fact, we
decided to weight this count. The two rules if A then B
and if B then C share fact B in common; so do the two
rules if A then Band if C then B. The rules of the
former pair seem to have a greater programming effect on
each other than the latter pair, and hence should be more
"related.” Figure 3 summarizes the three ways in which two
rules can share a fact, and the weights given to each. The

total "relatedness” measure between two rules is, then, a
count of the facts shared by both rules, where each fact is
weighted by the score that indicates in which of the three
possible ways the two rules use the fact.

Score(r1,r2) = 1.0

Score(rl,r2) = 0.5

Score(rl,r2) = 0.8

Figure 3. Components of “relatedness” measure between
two rules.

Given such a measure, we can proceed with a straight-
forward clustering algorithm. First, measure the distances
between all pairs of rules, select the closest pair, and put
those two rules together into one cluster. Then, repeat the
procedure, grouping rules with each other or possibly with °
already-formed clusters. In the latter case, we must measure
the distance between a rule and a cluster of rules. This is
simply defined as the mean of the distances between the indi-
vidual rule and each of the rules in the cluster, corresponding
to an average-linkage clustering procedure. The algorithm
proceeds for as many iterations as desired.

The clustering algorithm can also be started with the
small groups found by the rooted-tree algorithm above,
instead of starting with individual rules. Since the tree
groups appeared promising, but just too numerous, this is a
reasonable alternative, and it appears to produce slightly
better results. Figure 4 shows the rule groups of the system
of Figures 1 and 2 after clustering in this fashion.

Thus far, this method appears to do the best job of par-
titioning a set of rules in an intuitively reasonable way. One
drawback to the algorithm is that on each iteration it makes
the best possible agglomeration of two groups, but it never
backtracks, in case there might be a better grouping for the
system considered as a whole. Also, like most clustering algo-
rithms, if it runs for enough iterations it will eventually
group all the rules into one large group. Manually examining
the sizes and communication paths of the groups that have
been produced at each iteration provides a subjective guide
for terminating the clustering process.

! UB!.F!MI!‘FU QQI‘DUDS! !18" !I!I!!, !alore l!ora!mn !!

l Figure 4. Rules, grouped into trees then clustered. l

Measures of Coupling and Cohesion

The division of a set of rules into groups should attempt
to minimize the amount of coupling between the groups and
maximize the amount of cohesiveness within each group.9
Defining measures for these notions will provide data to help
compare alternative groupings of a given set of rules. Once a
set of rules is divided into groups, each fact in the system can
be characterized as being used and produced by rules entirely
within a single group or else as being used or produced by
rules in more than one group. One simple measure of cou-
pling is the proportion of facts in the second category, while
cohesion is represented by the proportion of facts in the first.

Another approach to these measures is also being inves-
tigated. For coupling, it uses the average “relatedness”
between all pairs of rales, where members of the pairs lie in
different groups. For overall cohesion, it uses the average
relatedness of every pair of rules that lie in the same group.
For the example shown above, these quantities are 0.0798
average coupling and 0.9238 average cohesion, suggesting a
far better than random organization.

Programming Methodology

After prototypes for an expert system have been built
and a solid understanding of the domain knowledge and sys-
tem requirements has been acquired, the knowledge engineer
may have to design and develop a version of the expert sys-
tem that will be used in a production environment. When
the system is installed, its maintenance may be undertaken
by a software support group that has not been a party to its
development. It is thus desirable to provide a method so
that the expert system developer can build a system that will
be easy to maintain and modify.

Following our methodology, the developer would first
divide the rules into groups. This can be done manually or
automatically. One approach is to apply an automatic
grouping algorithm to the initial prototype expert system
and use the resulting grouping to guide the organization and
development of the final production version. Then, a
software tool will characterize each fact as inter-group or
intra-group, and flag the former. They will prove critical to
future changes to the knowledge base, since they are the
"glue" that holds the groups together. The developer of a
rule group that produces inter-group facts then provides an
assertion describing each such fact. That description is the

only information about the fact that should be used in the
development of any other groups containing rules that use
the value of the fact.

Thus, the set of rules will be divided into groups, the
inter-group facts used and produced by each group will be
identified, and descriptions will be entered for those produced
by each group. Figure 5 shows the language used to provide
this information, using an excerpt from a simple example
knowledge base.10

(GROUP isamammal
(PRODUCES
(mammal "is it a mammal,
by conventional English usage"))
(RULES
(r1 (IF hair) (THEN mammal))
(r2 (IF milk) (THEN mammal))))

(GROUP isabird
(PRODUCES
(bird "is it a bird, by English usage"))
(RULES
(r3 (IF feather) (THEN bird))
(r4 (IF flies ovip) (THEN bird))

(CROUP isacarn
(PRODUCES
(carn "is it a carnivorous creature”))
(RULES
(r5 (IF meat) (THEN carn))
(ré6 (IF pointed claws fwdeyes)
(THEN carn))))

(GROUP isungulate
(PRODUCES
(ungulate "is it an ungulate"))
(USES
(mammal))
(RULES
(r7 (IF mammal hoofs) (THEN ungulate))))

(GROUP giraffe
(USES (ungulate))
(RULES :
(rl10 (IF ungulate longn longl darksp)
(THEN giraffe)))) '
etc....

LFigure 5. Example of a grouped set of rule;[

To modify a group, the maintenance programmer must
understand the internal operations of that group, but not of
the rest of the knowledge base. If he preserves the correct
functioning of the rules within the group and does not change
the validity of the assertions on its inter-group facts, the
maintenance programmer can be confident that the change
that has been made will not adversely affect the rest of the
system. Conversely, if he wants to use additional inter-group
facts from other groups, he should rely only on the assertions
provided for them, not on the internal workings of the rules
in the other group. (Of course, changes that pervade several
groups would still have to be handled as they always have
been, but the grouping is intended to minimize these.)

Support Software

We have developed software tools to support this pro-
gramming methodology. The developer can define the group-
ing of rules and input the knowledge base in the form shown
in Figure 5, or he can run one of the grouping algorithms

discussed to produce the grouping. These groupings have no
impact on system performance since they are invisible to the
rule interpreter. Given such a grouping, the software then
automatically identifies the intra-group and inter-group
facts. It flags all inter-group facts produced by a group, so
the programmer can provide assertions for them; it flags all
inter-group facts used by a group and retrieves their descrip-
tions, so the programmer can rely on them when using such
facts. Other software tools can trace all effects of changing a
given rule and can find any unused rules or groups.

Evaluating the Methodology

To determine how well this programming methodology
will work, we are attempting to retro-fit several existing
knowledge bases with this approach. This will help deter-
mine how well the structure implied by the new programming
methodology can fit the structures observed in actual rule
bases. We will use the grouping algorithms to divide the
rules and then use measures of coupling and cohesion to com-
pare alternative groupings. Next we will attempt to measure
the extent to which the new method helps or hinders mainte-
nance of an expert system. We will attempt to make
changes both to a conventional expert system and to one
divided into groups following the proposed method and com-
pare the results. Based on our preliminary results, the
method does not impose unreasonable restrictions on the
developer nor does it lead to unnatural structures. We will
also investigate alternative partitioning algorithms and
measures of coupling and cohesion for knowledge bases.

Conclusions

By studying the connectivity of rules and facts in
several typical rule-based expert systems, we found that they
indeed have a latent structure, which can be used to support
a new programming methodology. Next, we have developed
a methodology based on dividing the rules into groups and
concentrating on those facts that carry information between
rules in different groups. We have also studied several algo-
rithms for grouping the rules automatically and measures of
coupling and cohesion of a knowledge base. Finally, we have
developed a simple language and some software tools to sup-
port the new method.

The resulting programming methodology requires the
knowledge engineer who develops a rule-based system to
declare groups of rules, flag all between-group facts, and pro-
vide descriptions of those facts to any rule groups that use
such facts. The knowledge engineer who wants to modify
such a system then gives special attention to the between-
group facts and preserves or relies on their descriptions when
making changes. In contrast to the homogeneous way in
which the facts of a rule-based system are usually viewed,
this method distinguishes certain facts as more important
than others and directs the programmer’s attention to them.

Finally, a future step in this research will be to apply
these basic ideas to newer knowledge representations, such as
frames and semantic nets, as large systems begin to be writ-
ten using them. The basic approach will likely remain the
same: divide the information in the knowledge base into

groups, then specify and limit the flow of information
between the groups. The specifics of the programming
methodology will, of course, differ.

References

1. D.G. Bobrow and M. Stefik, “The LOOPS Manual,”
Tech. Rep. KB-VLSI‘81-13, Knowledge Systems Area,
Xerox Palo Alto Research Center (1981).

2. W.J. Clancey, “The Advantages of Abstract Control
Knowledge in Expert System Design,” Proc. National
Conference on Artificial Intelligence pp. 74-78 (1983).

3. R.O. Duda, PE. Hart, N.J. Nilsson, and G.L. Suther-
land, “Semantic Network Representations in Rule-based
Inference Systems,” pp. 203-221 in Pattern-directed
Inference Systems, ed. D.A. Waterman and F. Hayes-
Roth, Academic Press, New York (1978).

4. A Gupta and CL. Forgy, “Measurements on Produc-
tion Systems,” CMU-CS-83-167, Department of Com-
puter Science, Carnegie-Mellon University (1983).

5. J. McDermott, “R1: The Formative Years,” The Al
Magazine pp. 21-29 (1981).
6. D.L. Parnas, “On the Criteria to be Used in Decompos-

ing Systems into Modules,” Communications of the ACM
15 pp. 1053-1058 (1972).

7. J. Reggia, “Knowledge-based Decision Support Systems:
Development through KMS,” Department of Computer
Science, University of Maryland (1981).

8. M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Birnbaum,
F. Hayes-Roth, and E. Sacerdoti, “The Architecture of
Expert Systems,” pp. 89-126 in Building Ezpert Systems,
ed. F. Hayes-Roth, E. A. Waterman, and D. B. Lenat,
Addison-Wesley, Reading, Mass. (1983).

9. W.P. Stevens, G.J. Meyers, and L.L. Constantine,
“Structured Design,” IBM Systems Journal 13 pp. 115-
139 (1974).

10. P.H. Winston and B.K.P. Horn, LISP, Addison-Wesley,
Reading, Mass. (1980).

11. I1B. Wright, F.D. Miller, G.VEE. Otto, EM. Siegfried,
G.T. Vesonder, and J.E. Zielinski, “ACE: Going from
Prototype to Product with an Expert System,” Proc.
1984 ACM Annual Conference on the 5th Generation
Challenge pp. 24-28 (1984).

