Proceedings of the X
1986 IEEE International Conferenceg
Systems, Man, and Cybernetics

Atlanta, Georgia
October 14-17

86CH2364-8

Proceedings of the
1986 IEEE International Conference on
Systems, Man, and Cybernetics

Pierremont Plaza Hotel and Conference Center
Atlanta, Georgia
October 14-17, 1986

86CH2364-8

Additional copies may be obtained from:
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

IEEE Catalog No. 86CH2364-8

Library of Congress Catalog No. 86-81599

Copyright and Reprint Permissions: Abstracting is permitted with credit to the
source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law
for private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 29 Congress St., Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director,
Publishing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved.
Copyright © 1986 by The Institute of Electrical and Electronics Engineers, Inc.

Direct Manipulation

Robert J.K. Jacob

Naval Research Laboratory
Washington, D.C. 20375

Abstract. Direct manipulation is a powerful new paradigm
for designing user interfaces. At the core, this approach
presents visual representations of a set of objects on a screen
and provides a user with a standard repertoire of manipula-
tions that can be performed on any of them. This means
that the user has no command language to remember beyond
the standard set of manipulations, few noticeable changes of
mode (i.e., most commands can be invoked auv any time), and
a continuous reminder of the available objects and their
states on the display. This paper examines the nature of
direct manipulation user interfaces and some issues associ-
ated with them. It distinguishes interfaces that operate
directly on concrete visual objects from those that use visual
metaphors to operate in more abstract domains. Two exam-
ples of direct manipulation interfaces are described, and some
benefits and drawbacks characteristic of direct manipulation
are considered. It is concluded that, while the prospects for
combining direct manipulation with "intelligent"” user inter-
faces are promising, little research has been conducted in this
area to date.

Introduction

The concept of Direct Manipulation user interfaces,
introduced by Ben Shneiderman,!? brought together a collec-
tion of principles and techniques shared by a number of inno-
vative user interfaces that were widely regarded as easy—and
enjoyable—to learn and use. Shneiderman identified the
defining characteristics of direct manipulation user inter-
faces:17

e Continuous representation of the object of interest.

o Physical actions (movement and selection by mouse,
joystick, touch screen, etc.) or labeled button presses
instead of complex syntax.

e Rapid, incremental, reversible operations whose impact

on the object of interest is immediately visible.

e Layered or spiral approach to learning that permits
usage with minimal knowledge.

The essence of such a user interface is that the user seems to
operate directly on the objects in the computer rather than
carrying on a dialogue about them. Instead of using a com-
mand language to describe operations on objects, the user
"manipulates” objects visible on a display. For example, to
delete a file named FOO in a command language system, the
user would ask the computer to delete the file whose name is
FOO. In a direct manipulation system, he or she would find
a representation of the file on the screen and "delete" it
directly (perhaps with a delete button, a mouse gesture, or
the like). The effect would be apparent immediately on the

384

display. Further, the user could apply the same delete opera-
tion to any other object visible on the display (provided the
system permits its deletion); the user does not have to learn
new commands for them.

The most visible characteristic of a direct manipulation
user interface is this ability to manipulate displayed objects.
Hutchins, Hollan, and Norman8 identify that quality as direct
engagement. A direct manipulation user interface typically
provides a set of objects presented on a display and a stan-
dard repertoire of manipulations that can be performed on
them. There is no command language for the user to
remember beyond the set of manipulations, and generally any
of them can be applied to any visible object. The displayed
objects are active in the sense that they are affected by each
command issued; they are not the fixed outputs of one execu-
tion of a command, frozen in time. They are also usable as
inputs to subsequent commands.

However, the ultimate success of a direct manipulation
interface requires more than this manipulability. It also
requires directness in the form of low cognitive distance® the
mental effort needed to translate from the input actions and
output representations to the operations and objects in the
problem domain itself. The visual images chosen to depict
the objects of the problem or application domain should be
easy for the user to translate to and from that domain. Con-
versely, the actions required to effect a command should be
closely related to the meaning of the command in the prob-
lem domain. The effective use of direct manipulation hinges
on the choice of a good metaphor for representing the world
of the application in terms of screen images and input
actions,

Categories of Direct Manipulation Interfaces

The problem domains with which direct manipulation
user interfaces must deal can be divided into two classes. In
the first, the underlying problem is concerned with static,
concrete objects; examples include menus, screen layouts,
printed forms, engineering drawings, typeset reports, and
fonts of type. A direct manipulation user interface for
operating in such a domain can simply use a picture of the
concrete object in a "what you see is what you get” style of
editor. The choice of representation is straightforward, since
there is already an agreed-upon concrete visual form for the
objects of the problem area. Unfortunately, this approach is
only possible where there can be a one-to-one correspondence
between the problem domain and the visual representation.

A more difficult problem arises in the second class of
direct manipulation user interface. Here, the domain
involves abstract objects, which do not have a direct

U.S. Govemment work not protected by U.S. copyright.

graphical image, such as time sequence, hierarchy, condi-
tional statements, frame-based knowledge, or data in a data
base. To provide a direct manipulation interface for such a
domain, it is necessary first to devise a suitable graphical
representation or visual metaphor for the objects. "What
you see is what you get” is still helpful, but not sufficient to
solve this problem, since the objects are abstract.

Interfaces for Concrete Objects

Examples of direct manipulation user interfaces for
problem domains in the first class, where a concrete represen-
tation is available, often involve systems for creating and
manipulating graphical images. A screen editor is a good
example.19 A more elaborate example can be found in a typi-
cal direct manipulation editor for a typesetting system,
which displays a mockup of the final printed page on a high-
resolution display. It permits the user to manipulate the
displayed page and, as he or she does, it immediately
redisplays the portions of the page aflected by the change.
Since the system is designed for producing printed pages, the
visual representation chosen for the direct manipulation
interface is simply a high-resolution picture of such a page.
Other examples of this class of direct manipulation user
interface include:

e Font editors, where the visual representation is a pic-
ture of the character being edited.

e Computer-aided design or drafting systems based on
standard engineering drawings, where the problem
domain is that of paper drawings and the visual
representation is a screen image of (portions of) the
same drawings.

e Systems for designing printed forms, where, again, the
visual representation is simply a screen picture of the
form.

The objects represented in these direct manipulation
interfaces are concrete physical objects, and most of the
manipulations available to the user are based on common
physically-understandable actions such as moving, copying,
changing size, or removing. These systems therefore gen-
erally have small cognitive distances between the problem
domain and the objects and operations of the user interface.

Interfaces for Abstract Domains

More difficult problems arise where the problem domain
is abstract. It is helpful if a reasonable concrete representa-
tion for the abstract problem domain is already in use,
perhaps in pencil-and-paper form, and it can be exploited by
the user interface designer. For example:

e A system for manipulating a geographic data base
might use choropleth ("patch”) maps as its visual
representation for the data and allow the user to mani-
pulate the maps to view the data.!

e A computer-aided manufacturing system that drives
machine tools directly can use conventional mechanical
drawings as its visual representation.

e A matrix or spreadsheet calculator. The visual meta-
phor widely chosen for such systems is the accountant’s
paper worksheet, with its rows and columns of figures.
It is a concrete visual representation of an abstract
domain (matrices). The rapid acceptance of direct
manipulation spreadsheet systems shows that the paper
spreadsheet was a particularly fortuitous choice of

visual metaphor for this abstract object.

e STEAMER? allows its user to operate a simulated
steam engine. The problem domain is the sequence of
operations for running a steam engine, and the visual
representation is an image of an engine control panel,
with some extensions not available on conventional
panels.

¢ The Xerox Star desktop manager!® and its numerous
philosophical descendants, such as Apple Macintosh,
handle a domain of computer files and directories. For
their visual metaphor they use a stylized picture of a
desk surface with papers, file folders, trays, and even a
waste basket to represent the computer file domain. A
familiar operation, like moving a paper from a file folder
to the waste basket, corresponds in an intuitively plau-
sible way to deleting an item from a data file.

e Finally the system for designing user interfaces
described later has as its problem domain the time
sequence or syntax of input and output operations per-
formed by a system and its user. The visual metaphor
chosen here is the state transition diagram, already
used to represent user interface designs on paper. The
designer manipulates a picture of a state transition
diagram to describe and effect changes in the behavior
of the user interface being constructed.

In each of these systems, an abstract problem domain was
represented by a concrete visual metaphor. The visual meta-
phors used in these examples were all existing concrete
objects, rather than newly-invented representations. Each
representation was chosen to minimize cognitive distance
between problem and representation, so that when the user
manipulates the objects in the representation, his operations
are closely allied to those of the problem domain. The most
successful direct manipulation user interfaces thus far have
depended on a fortuitous or perspicacious choice of visual
metaphor.

It is also possible to design a direct manipulation inter-
face by inventing a new visual object and teaching it to users
as the representation of some abstract domain. Inventing
good representations is a difficult problem, and there are
relatively few examples of this class of direct manipulation
system:

e The Spatial Data Management System® uses an
hierarchical collection of icons arrayed in a map-like
layout to depict data in a data base. The user exam-
ines the data base by panning across the layout or
zooming up or down in the hierarchy. The visual meta-
phor for the data base data is thus a new pictorial
representation. The original icons in the system were
individually sketched; methods for generating graphics
directly from the data were also studied.3

e DMDOS is a user interface to the IBM PC-DOS operat-
ing system command language developed by Ben Shneid-
erman and Osamu Iseki at the University of Mary-
land.1® It uses a tabular representation of directories,
disks, peripherals, and other objects of interest and per-
mits the user to operate directly on the items shown in
the display.

385

A Direct Manipulation Military Message System

Figures 1 and 2 show the display of a direct manipula-
tion military message system, one of a family of prototype
message systems being built in the Secure Military Message
Systems Project at the Naval Research Laboratory.® Such a
message system is much like a conventional electronic mail
system, except that each message (actually, each field of each
message), each file, and each user terminal has a security
classification. The basic visual metaphor chosen for the
direct manipulation version of the message system is simple:
a paper message. A message is represented by a screen
image that is similar to a traditional paper military message.
A new object, a file of messages, is also introduced. This is
represented by a display of a list of the summaries (called
citations) of the messages in the file. Some elements of each
message citation in such a display can be changed directly by
typing over them; they are indicated by borders around their
labels. Other elements are fixed because the application
requires it (e.g., the user cannot change the date of a message
that has already been sent). In addition, each citation con-
tains some screen buttons, or small, labeled boxes. Pressing a
mouse button while pointing to such a box causes the action
indicated in the box to occur. All the commands that the
user could apply to a given message are shown on its citation
as buttons. If the user sees a message on the screen, he does
not need to refer to a manual to find out what commands he
could apply to it.

Rosoage 1 in 110 tobey
WTRT) COP BN (mta)

Jocsd
+ Anather puger for security cenfersce?

your aaiihox 1 heve pleced s cald o« computer
 enterance w8 Le baTs o (417 ST e thirk?

))
COFTONIAL (rata)
Wote: 1 2 84 17:22 Pram: Yendwr
(Mg arotrer peper for secueity canfersmcet

LasszrIE
ovta: 13 Jn 00 10:48 From: socob
s partom imtormetion

Figure 1. Direct manipulation military message system
prototype, showing message window {top) and message file
window (bottom). (Security classifications shown are simu-
lated for demonstration only).

A Direct Manipulation System for Designing User
Interfaces

The next example involves an abstract domain: the
design of user interfaces (not necessarily direct manipulation
ones). That is, the design of the sequence of inputs and out-
puts, or syntax, of a user-computer dialogue. The visual
representation chosen for this abstract domain is one already
used for representing user interfaces outside the realm of
direct manipulation—state transition diagrams.118 It is thus
an appropriate choice for use in a direct manipulation user
interface as the concrete visual representation for the
abstract notion of syntax. The specific language chosen for
use here has been used to specify and directly implement user

386

. .
it
"moanaazznessaadany
Gl goooooOoOOORANCOOG

T Cleset TOPIECRET (crypta nats natorn)
scret:

= T

(EcSen Wat) (OoiTrsy) (BgTenis)
L‘ZE

COFIDONIAL (crypta rate)

Fita muna: m-

Figure 2. Direct manipulation military message system
prototype, showing user roles, access set editor, and mes-
sage file directory windows.

interfaces for several prototype systems;!314 similar
languages have also been used by others for this purpose.2 20
The language used here is part of a methodology for design-
ing and specifying user interfaces;1%:13 the direct manipula-
tion version of it described below is currently being imple-
mented.1®

An interactively editable picture of this state transition
diagram is used as the visual representation of the user inter-
face syntax. The programmer enters the state diagrams with
a graphical editor and affixes the necessary labels and
actions. As the diagrams are edited, they can be directly
executed. Thus the direct manipulation interface provides
two types of windows. One shows a demonstration of the
sequence being programmed, while the other allows the user
to manipulate the visual representation of its syntax. As
shown in Figure 3, the simulator window on the left shows
the newly-designed user interface (of a simple line-oriented
desk calculator program) as it would appear to the user and
allows the programmer to interact with it in the role of its
user. The programming windows on the right show the state
diagrams themselves and allow the programmer to modify
them.

Characteristics of Direct Manipulation Interfaces

The principal advantages of direct manipulation user
interfaces are psychological: they decrease the demands on
the user’s short- and long-term memory. For long-term
memory, they require remembering only a few generic com-
mands in the form of general-purpose manipulations, which
can be applied to most visible objects. Once the users
memorizes this set, most specific operations can be derived
from it, in contrast to traditional systems with many specific
commands to remember. Short-term memory load is reduced
because most commands that change the values of objects
are reflected immediately in changes in the display of those
objects. The system thus continuously displays much of its
internal data, rather than requiring the user to remember
them and ask specific questions about them.

Direct manipulation user interfaces also introduce some
difficulties. They are, both for concrete and abstract objects,
more rigidly fixed at a single level of abstraction than com-
mand language systems. For example, consider a desktop

Figure 3. Direct manipulation system for designing user
interfaces, showing state transition diagrams for the user
interface being designed (at right) and the new user inter-
face itself (at left).

manager like that of the Xerox Star.® It deals with an
underlying file system at a particular—though generally
appropriate—level of abstraction. Low-level details, such as
allocating space for new files, reclaiming free space, determin-
ing disk layout, and reading and writing directories, are han-
dled conveniently by the system and are invisible to its user.
The user operates at the level of whole files and directories,
not their component bits, tracks, or sectors. It is, however,
difficult for the user to move further up smoothly in abstrac-
tion within the same language—perhaps to operate on aggre-
gates of files from different directories or to operate on com-
mands about files. For example, the system makes it easy to
move file foo to folder bar without worrying about lower-level
details. But it would be difficult to move all files whose con-
tents contain the string "Star” from one folder to another.
The problem is that, while direct manipulation interfaces
abstract away a host of irrelevant details up to a particular
level, they remain stuck at that level; it is difficult to move
up any further. This makes them convenient for users who
happen to want to operate at the level provided but cumber-
some at either higher or lower levels. By contrast, command
language user interfaces encourage such abstraction because
they provide a natural means to express it.” Many command
languages have good, almost intrinsic facilities for abstrac-
tion, control structures, formal parameters, combining indivi-
dual commands, and the like. If a direct manipulation inter-
face is designed for the level of abstraction its user wants to
use, he or she will indeed find it convenient. For both direct
manipulation and command language user interfaces, that
level can be as high or low as desired. The problem arises
when the user wants to change levels smoothly. Command
languages make it easier to move up or down in level; they
encourage abstraction. Direct manipulation interfaces are
often stuck at one level of abstraction, be it high or low.

Another drawback applies to the user interface pro-
grammer rather than the user. While direct manipulation
can make a system easy to learn and to use, such a user
interface is generally difficult to construct. Existing examples
have required considerable highly machine-specific, low-level
programming. Higher-level abstractions for dealing with this
new interaction technique are needed.

387

Modes in the User Interface

Modes or states refer to the varying interpretation of a
user’s input. In each different mode, a user interface may
give different meanings to the same input operations. Some
use of modes is necessary in most user interfaces, since there
are generally not enough distinct brief input operations (e.g.,
single keystrokes) to map into all the commands of a system.
A moded user interface requires that the user remember (or
system remind him) of which mode it is in at any time, and
he or she must remember the different commands or syntax
rules applicable to each mode. Modeless systems do not
require this; the system is always in the same mode, and
inputs always have the same interpretation.

Direct manipulation user interfaces appear to be mode-
less. Many objects are visible on the screen; and at any time
the user can apply any of a standard set of commands to any
object. The system is thus always in the same "universal” or
"top-level” mode. This is approximately true of some screen
editors, but for most other direct manipulation systems,
where the visual representation contains more than one type
of component, this is a misleading view. It ignores the input
operation of moving the cursor to the object of interest. A
clearer view suggests that such a system has many distinct
modes. Moving the cursor to point to a different object is the
command to cause a mode change, because once it is moved,
the range of acceptable inputs is reduced and the meaning of
each of those inputs is determined. This is precisely the
definition of a mode change. For example, moving the cursor
to the Display screen button in the message system example
should be viewed as putting the system into a mode where
the meaning of the next mouse button click is determined (it
displays that message) and the set of permissible inputs is
circumscribed (for example, keyboard input could be illegal or
ignored). Moving the cursor somewhere else would change
that mode.

If direct manipulation user interfaces are not thus really
modeless, why do they appear to have the psychological
advantages over moded interfaces that are usually ascribed
to modeless ones? The reason is that they make the mode so
apparent and so easy to change that it ceases to be a stum-
bling block. The mode is always clearly visible (as the loca-
tion of a cursor), and it has an obvious representation (simply
the echo of the same cursor location just used to enter the
mode change command), in contrast to some special flag or
prompt. Thus, the input mode is always visible to the user.
The direct manipulation approach makes the output display
{cursor location to indicate mode) and the related input com-
mand (move cursor to change mode) operate through the
same visual representation (cursor location). At all times,
the user knows exactly how to change modes; he or she can
never get stuck. It appears, then, that direct manipulation
user interfaces are highly moded, but they are much easier to
use than traditional moded interfaces because of the direct
way in which the modes are displayed and manipulated.

The Intelligent User Interface

An "intelligent” user interface should be able to describe
and reason about what its user knows and conduct a dialogue
with the long-term flow and other desirable properties of
dialogues between people. It maintains and uses information
about the user and his or her current state of attention and
knowledge, the task being performed, and the tools available
to perform it.% It can use this information to help interpret a

user’s inputs and permit them to be imprecise, vague, slightly
incorrect (e.g., typographical errors) or elliptical. It can con-
trol the presentation of output based on its model of what
the user already knows and is seeking and remove informa-
tion irrelevant to his current focus. Knowledge-based tech-
niques can also be applied to improve the selection, construc-
tion, and layout of graphical outputs.

Most research to date on the processes needed to con-
duct such "intelligent” dialogues has been applied to natural
language, but it is important to realize that such techniques
of the intelligent user interface are by no means restricted to
natural language. There is no reason why such ideas could
not be used in a direct manipulation dialogue. The user’s
side of such a dialogue can consist almost entirely of pointing
and pressing mouse buttons, and the computer’s, of animated
pictorial analogues. Nevertheless, a dialogue in such a
language could exhibit the intelligent user interface proper-
ties cited—following focus, inferring goals, correcting miscon-
ceptions. This combination of such intelligent user interface
techniques with a direct manipulation type of language holds
promise for providing a highly effective form of man-machine
communication.

Conclusions

This paper has examined direct manipulation interfaces
and divided them into two classes: those that operate in a
domain of concrete visual objects and those that use such
visual objects as proxies to operate in a more abstract prob-
lem domain. For interfaces in the second class, the choice of
a good visual representation is critical. Some advantages
and disadvantages of direct manipulation were also con-
sidered. It is noteworthy that the advantages were based on
fundamental characteristics of the users, while the disadvan-
tages were largely technical and likely to yield to further
research. Finally, the future possibilities offered by combin-
ing "intelligence” with direct manipulation were seen to be
promising.

Acknowledgments

I want to thank Ben Shneiderman for introducing the
idea of direct manipulation and helping me understand it and
Don Norman for his suggestions and comments on this work,
which have helped to clarify the idea.

This work was supported by the Space and Naval War-
fare Systems Command under the direction of H.O. Lubbes.

References

1. J. Dalton, J. Billingsley, J. Quann, and P. Bracken,
“Interactive Color Map Displays of Domestic Informa-
tion,” Computer Graphics 13(2) pp. 226-233, Chicago
(1979).

2. MB. Feldman and G.T. Rogers, “Toward the Design
and Development of Style-independent Interactive Sys-
tems,” Proc. ACM SIGCHI Human Factors in Computer
Systems Conference pp. 111-116 (1982).

3. M. Friedell, “Automatic Synthesis of Graphical Object
Descriptions,” Computer Graphics 18(3) pp. 53-62, Min-
neapolis (1984).

4. P. Hayes, E. Ball, and R. Reddy, “Breaking the Man-
Machine Communication Barrier,” [EEE Computer
14(3) pp. 19-30 (1981).

388

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CL. Heitmeyer, C.E. Landwehr, and M.R. Cornwell,
“The Use of Quick Prototypes in the Military Message
Systems Project,” ACM SIGSOFT Software Engineering
Notes 7 pp. 85-87 (1982).

C.F. Herot, R. Carling, M. Friedell, and D. Kramlich, “A
Prototype Spatial Data Management System,” Com-
puter Graphics 14(3) pp. 63-70 (1980).

J.D. Hollan, E.L. Hutchins, and L. Weitzman, “STEA-
MER: An Interactive Inspectable Simulation-Based
Training System,” The AI Magazine 5(2) pp. 15-27
(1984).

E.L. Hutchins, J.D. Hollan, and D.A. Norman, “Direct
Manipulation Interfaces,” in User Centered System
Design: New Perspectives in Human-computer Interac-
tion, ed. D.A. Norman and S.W. Draper, Lawrence Erl-
baum, Hillsdale, N.J. (1986).

Interleaf, Inc., “Workstation Publishing Software,”
Cambridge, Mass. (1984).

O. Iseki and B. Shneiderman, “Applying Direct Manipu-
lation Concepts: Direct Manipulation Disk Operating
System (DMDOS),” ACM SIGSOFT Software Engineer-
ing Notes 11 pp. 22-26 (1986).

R.JK. Jacob, “Using Formal Specifications in the Design
of a Human-Computer Interface,” Comm. ACM 286 pp.
259-264 (1983).

R.JK. Jacob, “Executable Specifications for a Human-
Computer Interface,” Proc. ACM SIGCHI Human Fac-
tors in Computer Systems Conference pp. 28-34 (1983).

R.JK. Jacob, “An Executable Specification Technique
for Describing Human-Computer Interaction,” pp. 211-
242 in Advances in Human-Computer Interaction, ed.
H.R. Hartson, Ablex Publishing Co., Norwood, N.J.
(1985).

R.JK. Jacob, “Designing a Human-Computer Interface
with Software Specification Techniques,” pp. 139-156 in
Empirical Foundations of Information and Software Sci-
ence, ed. J.C. Agrawal and P. Zunde, Plenum Press,
New York (1985).

R.J.K. Jacob, “A State Transition Diagram Language
for Visual Programming,” IEEE Computer 18(8) pp. 51-
59 (1985).

D.L. Parnas, “On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer
System,” Proc. 24th National ACM Conference pp. 379-
385 (1969).

B. Shneiderman, “Direct Manipulation: A Step Beyond
Programming Languages,” IEEE Computer 186(8) pp.
57-69 (1983).

D.C. Smith and others, “Designing the Star User Inter-
face,” Byte 7(4) pp. 242-282 (1982).

R.M. Stallman, “EMACS: The Extensible, Customizable,
Self-documenting Display Editor,” MIT Artificial Intelli-
gence Laboratory, Cambridge, Mass. (1979).

A.l. Wasserman and D.T. Shewmake, “The Role of Pro-
totypes in the User Software Engineering (USE) Metho-
dology,” pp. 191-209 in Advances in Human-Computer
Interaction, ed. HR. Hartson, Ablex Publishing Co.,
Norwood, N.J. (1985).

H

