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Abstract—Current expert systems are typically difficult to change
once they are built. This paper introduces a method for developing
more easily maintainable rule-based expert systems, which is based on
dividing the rules into groups and focusing attention on those facts that
carry information between rules in different groups. It describes a new
algorithm for grouping the rules of a knowledge base automatically
and a notation and set of software tools for the proposed method. The
approach is supported by a study of the connectivity of rules and facts
in rule-based systems, which found that they indeed have the latent
structure necessary for the programming methodology, as well as by
recent experimental results. In contrast to the homogeneous way in
which the facts of a rule-based system are usually viewed, this ap-
proach distinguishes certain facts are more important than others with
regard to future modifications of the rules.

Index Terms—Cluster analysis, information hiding, knowledge base,
knowledge engineering, knowledge maintenance, production system,
rule-based system, software engineering.

I. INTRODUCTION

ANY of the major expert systems in use today be-

gan life as research tools, typically developed in
universities and maintained by their originators and their
students. As long as this was the case, the problems of
maintaining and modifying the knowledge base were
tractable. However, as expert systems become larger and
more complex and come to be used in environments away
from their developers, maintenance of the knowledge base
becomes an overwhelming problem. Changing a knowl-
edge base of an expert system built with typical current
technology requires a knowledge engineer who under-
stands the design of the system and the structure of the
knowledge base thoroughly; most often, this means only
the original author of the system. If expert systems are to
be widely used in practical settings, the problems of con-
tinuing maintenance and modification of the knowledge
base must be addressed in their development.

The present research develops a design and program-
ming methodology for builders and maintainers of knowl-
edge-based systems. The result is a technique similar to
those used in software engineering [16], [17], which can
make a knowledge-based production system easier to
change, particularly by people other than its original de-
veloper. We have chosen to concentrate on production
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systems because they are the most widely-used type of
knowledge representation in expert systems, particularly
among those existing systems large enough and mature
enough to have experienced the types of maintenance
problems we hope to alleviate. The underlying approach
can be extended to suit other, newer knowledge represen-
tations.

Other researchers have also begun to be concerned with
the problem of designing expert systems for ease of main-
tenance. Some have proposed methods for partitioning
these systems to make the knowledge bases more under-
standable, maintainable, efficient, or suitable for parallel
processing. One simple approach is to build a system
made up of several knowledge bases; examples of this
approach are seen in ACE [25] and PROSPECTOR [6].
The developers of LOOPS [2] use the notion of a rule set,
which is called like a subroutine. Each rule set returns a
single value, which can then be used elsewhere in the
knowledge base. Clancey has abstracted the inference
goals in a knowledge base in order to separate the control
strategy, encoded as meta-rules, from the specific domain
knowledge [4]. Rules that contribute to a particular goal
in a knowledge base can then be grouped together; in fact,
R1/XCON is partitioned into several subtasks in this fash-
ion [20].

Because expert systems generally use large amounts of
computer resources, several researchers have investigated
how both the knowledge base and working memory can
be separated so that each independent group can be pro-
cessed on a parallel processor [101, [11], [22]. Such a
separation cannot only make a system easier to change but
can also enable parallel firing of the rules.

II. APPROACH

The basic approach we take to make an expert system
easier to change is to divide the information in the knowl-
edge base and attempt to reduce both the amount of in-
formation that a single knowledge engineer must under-
stand before he or she can make a change to the knowledge
base and the effect of such changes. We thus divide the
domain knowledge in an expert system into groups and
then attempt to limit carefully and specify formally the
flow of information between these groups, in order to lo-
calize the effects of typical changes within the groups.

A basic production system comprises a knowledge base
expressed as if-then rules and a relatively simple infer-
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ence mechanism or rule interpreter. The interpreter tests
the values of the facts on the left-hand side of a rule; if
the test succeeds, new values for facts are set according
to the right-hand side of the rule. In the present approach,
we divide these rules into an hierarchy of separate groups.
The general principle for deciding whether to group two
rules together is: If a change were made to one rule, to
what extent would the other rule be affected? In this study,
a fact refers to some isolable portion of the data represen-
tation that, if changed by one rule, would affect the firing
or output of another rule in some way. In a simple pro-
duction system where the data are attribute-value pairs, a
fact corresponds to one attribute (not its value).

This simple view of a production system is not tied to
any particular production system language, but represents
a general conceptual model of rule-based systems. In it,
the actions of rules affect a database of facts; and the fir-
ings of rules are determined by the facts in the database.
The database is the only medium for interactions or de-
pendencies among the rules. Languages that introduce
control constructs and other special features may restrict
the data flow given by this view, but they will never ex-
pand it. Using this simple view, we trace all potential
flows and do not look at restrictions caused by control or
other special constructs; the approach will thus be con-
servative at times, but never miss a dependency between
rules.

The knowledge engineer building a rule-based system
now groups together rules that use or produce values for
the same sets of facts. Control knowledge is segregated
from other rules and handled separately. Each fact in the
knowledge base is then characterized either as being gen-
erated and used by rules entirely within a single rule group
or else as spanning two or more groups. The latter will
prove critical to future changes to the knowledge base,
since they are the ‘‘glue’’ that holds the groups together.
Baroff and others [1] propose a complementary approach,
in which they divide the facts into groups and then char-
acterize the rules according to which groups of facts they
operate on. The method described by Nau [14], [15] also
leads to essentially the same result as the present ap-
proach.

Whenever rules in one group use facts generated by
rules in other groups, such facts are flagged, so that the
knowledge engineer will know that their values may have
been set outside this group. More importantly, those facts
produced by the group under study and used by rules in
other groups must be flagged too. For each such fact, the
programmer of the group that produces the fact makes an
assertion, comprising a brief summary of the information
represented by that fact. This assertion is the only infor-
mation about that fact that should be relied upon by the
programmers of other groups that use the fact. It is not a
formal specification of the information represented by the
fact, but rather an informal summary of what the fact
should ‘‘mean’’ to other programmers. The objective is
to assemble an overall statement about a group of rules.
That is, if the rules in this group are fired (any number of
times), the given statement will be true. The collection of

the assertions on the facts produced by a group embody
such an overall statement about the group.

Specifically, the developer of a rule-based system would
perform the following steps, which are discussed in
greater detail in the next section.

1) Segregate Control Variables: Flag and then sepa-
rate all facts or variables that are used for control pur-
poses, that is, those used to enable or disable the firing of
rules, as opposed to those that carry information between
rules.

2) Divide the Rules into Groups: Partition the rules
based on the flow of data (but not control information,
which was just removed) between them.

3) Identify Local and Nonlocal Facts: A software tool
characterizes each fact as either being produced and used
entirely within one group (a local or intragroup fact) or
being produced or used by two or more groups (a nonlocal
or intergroup fact); the latter are flagged.

4) Write External Descriptions for Nonlocal Facts:
The developer of each rule group that produces intergroup
facts then provides an assertion or description of the ex-
ternally visible properties of each such fact.

5) Separate Control Rules, When Possible: 1f the pro-
duction system language permits, the control knowledge
should be segregated from the other groups of rules.

Given this structure, programmers who want to change
the system would now assume the responsibility of un-
derstanding thoroughly and preserving the correct work-
ings of a single group of rules (but not the entire body of
rules, as with conventional systems). They could change
rules in the group provided that they preserve the validity
of the assertions associated with facts produced by this
group and used by other groups. Similarly, whenever a
programmer used a fact produced by another group, he or
she would rely on the assertion provided for it by the pro-
grammer of the other group, but not on any specific in-
formation about the fact that might be obtainable from
examining the inner workings of the other group. Recent
experimental results have demonstrated the efficacy of this
separation (see Section VII) [5].

III. METHODOLOGY

This section describes the specific steps involved in ap-
plying the new method to the development of a rule-based
system, gives examples, and discusses some of the details
that arise. The description is given at two levels of detail;
an overview may be obtained by skipping the parts la-
beled ‘‘Discussion,’” which address the finer points of ap-
plying the method. They are set off from the main text
and could appropriately be skipped on first reading. Also,
as noted, recall that a fact here refers to a portion of the
system'’s stored data, more nearly like a working memory
element or programming language variable than a fact in
its English usage.

The method may be applied from the start or may be
introduced after an early prototype version of a system
has been built, but before development of a final produc-
tion version. Particularly for exploratory work in a new
Al domain where requirements are ill-defined, applying
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the complete method during experimentation with prelim-
inary prototypes could entail more costs than benefits.
Since the statements added by this method have no effect
on the actual execution of the rules, introducing them later
in the development process has no adverse effect on the
correctness or run-time behavior of the system.

1) Segregate Control Variables: The first major divi-
sion of the knowledge base into modules is to separate
control knowledge from domain knowledge, as in the ap-
proaches of Clancey [4], Fickas [7], and several others.
If possible, it would be preferable to segregate control
knowledge entirely, perhaps into a separate representation
from the rules themselves. Only if the production system
language or the design of the system being built does not
facilitate such a separation, does this first step then be-
come necessary.

In this step, variables used exclusively to enable or dis-
able the firing of rules are flagged and segregated from
those that carry information between rules. ‘‘State’’ or
‘‘goal’’ variables generally fall into this control category.
At this point, control rules are not being identified, only
control variables. Segregating the control or state vari-
ables ensures that the groupings performed in the next step
will be based on the flow of ‘‘real’’ data (not control)
among rules.

Discussion

One could use the opposite approach and concentrate entirely on
the state variables as a key to identifying groupings of rules. How-
ever, such a method will only divide the rules temporally, that is,
according to when they operate. That is not always the appropriate
grouping from the point of view of modifying the program. For
modification, we are concerned with how two rules affect each other
over the entire execution of the system, not just whether they affect
each other in sequence. While the two characteristics are often the
same in well-structured systems, there is no guarantee that they
will always coincide.

To aid in this separation of control variables, it is advisable to
avoid letting a single variable serve two purposes—one for control
and one as other data. For example, where the presence of an item
in the database is used for control, but the value of the item is used
as data, it is helpful to use two different variables instead. In gen-
eral, it is helpful to the subsequent steps of this method to make
the system more nearly data-driven, so that firings of rules are de-
termined by ordinary interactions of setting and testing data values,
rather than by other programming constructs or shortcuts. The
analyses we will want to perform on the system in subsequent steps
assume that the system is driven by the data and will attempt to
modularize the system based on the interactions of the data. Where
the assumption is violated, the analysis will make unnecessarily
conservative estimates of the connections between rules.

Example: As an example of Step 1, in one of the rules
from the system listed in Section IV

(RULE universal
(phase "phasename scoring)
(fmt "part < y > "score <z >)
{entry “index < y > "det << all each
every >> “used nil)

-

(modify 2 "score {compute <z> — 1))
(modify 3 "“used true))

phase is a control variable whose only purpose is to en-
able this and other rules. All phase variables were flagged,
and thus they do not appear in any of the PRODUCE or
USE statements in Section IV.

2) Divide the Rules into Groups: Next, the rules are
divided into groups, based on the flow of data (but not
control information, which was just removed) between
them. In a large system, the groups may form a hierarchy.
The division into groups can be done manually or auto-
matically as described in Section V. A hybrid approach
may also be used, by applying the automatic grouping al-
gorithm to a prototype of the expert system and then using
the resulting grouping to inform the manual organization
and subsequent development of the production version.

Discussion

The rules should be divided so that each group contains all the
rules relevant to one specific, small area of knowledge. The effect
of the operation of the rules in the one group on rules outside that
group is via the intergroup facts produced by the group. Ideally. a
group should contain all the rules that together produce one or a
small number of intergroup facts. The operation of that group is
then conveniently summarized by the descriptions of those facts.
Any further details about the operation of the group are considered
local to the group and may be changed without affecting the rest of
the system. The intergroup facts should represent easily-explained
concepts around which meaningful modules or work assignments
can be structured. Difficult-to-describe intermediate data should be
encapsulated within groups as intragroup facts. As shown in the
examples below, a group may contain other groups.

Section V defines the notion of relatedness between two rules
more precisely and describes the development of algorithms to per-
form this grouping procedure automatically.

Example: A simplified example of such a group of rules
is shown below. Together, the rules in this group deter-
mine whether a ship is ready to sail. The group encapsu-
lates the details about what makes a ship ready. (In this
simplistic example, its engine and radar must be
“‘ready.’’) Details about what makes the engine ‘‘ready”’
are further encapsulated into the subgroup engine-ready,
illustrating the use of hierarchical grouping of rules.

(GROUP ship-ready
(RULE engine-and-radar
(IF (engine-status = ready)
(radar-status = ready))
(THEN {ship-status = ready)))

(GROUP engine-ready
{(RULE gas-and-oil
(IF (engine-fuel-level
>= 100)
(engine-oil-level > =
34))
(THEN (engine-status =
ready)))
(RULE ... etc.))

radar-ready
(RULE ... etc.)))

(Group

3) Identify Local and Nonlocal Facts: Given a group-
ing of the rules, the next step is mechanical. A software
tool characterizes each fact as being local or intergroup.
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If all the rules that use or modify the value of a fact are
in one group, then that fact is local to the group; all other
facts are intergroups facts. Intergroup facts whose values
are set or modified by rules in a group are then listed in
the PRODUCE statements for that group; intergroup facts
whose values are examined by rules in a group are listed
in the group’s USE statements.

Discussion

The notion becomes more complicated where there is a hierarchy
of groups. A fact produced or used by the rules in more than one
top-level group is easily identified as an intergroup fact. A fact
produced and used by several subgroups, all within one larger
group, is considered intergroup with respect to the subgroups but
local with respect to the larger group. It is thus listed in the PRO-
DUCE and USE statements of the subgroups, but not of the larger
group.

Example: The example group given above is now
shown with the PRODUCE and USE statements for each
of its groups and subgroups:

(GROUP ship-ready

(PRODUCE ship-status ‘‘ready means
ship can be
sailed on any
mission up to
1000 nautical
miles’’)

(USE engine-iubricated)

(RULE engine-and-radar
(IF (engine-status = ready)
(radar-status = ready))
(THEN (ship-status = ready)))

(GROUP engine-ready
(PRODUCE engine-status
““ready means engine fully op-
erational’’)
(USE engine-lubricated)

(RULE gas-and-oil
(IF (engine-fuel-level
> = 100)
(engine-lubricated =
true))
(THEN (engine-status =
ready)))

(RULE ... etc.))

(GROUP radar-ready
(PRODUCE radar-status
““ready means all radars fully
operational’”’)

(RULE ... etc.)))

Now, the effect of group ship-ready on rules in other
groups is entirely encapsulated in the one fact it PRO-
DUCES, namely ship-status; the remaining facts in this
group are internal to the group. Facts engine-status and

radar-status are part of the internal workings by which
this group determines its conclusion about the ship status.
They are examples of facts produced and used by
subgroups within a larger group, and are thus considered
intergroup with respect to the subgroups engine-ready
and radar-ready but local with respect to the larger group
ship-ready. They are listed in the PRODUCE and USE
statements of the subgroups, but not of the larger group.
In this example, fact engine-lubricated is assumed to be
produced by some other group that analyzes the engine;
while engine-fuel-level is an example of a primitive in-
put to this rule-based system (i.e., not generated by any
other rules) and hence does not appear in any of the PRO-
DUCE or USE statements.

Several investigators have prescribed or demonstrated
the division of rules into smaller groups to improve mod-
ularity [3]. Such divisions are often made around control
or state variables, as described above, with the hope that
the resulting groups will be sufficiently independent of one
another to aid in maintenance. The present method takes
this approach further in precision and explicitness. First,
it verifies the actual independence of the groups from one
another. Second, where two groups are connected, it
identifies the specific data elements through which they
interact. The result is not just a set of modules, but a set
of modules with a known and enforceable degree of in-
dependence and an explicit declaration of all the data paths
between them.

4) Write  External Descriptions for  Nonlocal
Facts: The developer of each rule group that produces
intergroup facts then provides an assertion or description
of the externally-visible properties of each such fact. The
assertion describes what the programmer of the fact-pro-
ducing group asserts will remain true of that fact in the
future—and hence upon which the programmers of the
groups using that fact can rely. It summarizes the work-
ings of the group that produces it. It is generally inappro-
priate for this assertion to provide a formal specification
of the conditions for producing the fact, because that
would essentially repeat the entire group of rules as they
are presently. Rather, what is desired is a higher level
informal statement of the aspects of the output that will
not change and may be considered externally visible. For
example: Fact X gives the system’s best estimate of
whether the patient has heart disease; rather than: X will
be true iff input A < 0.6 and B = 2.1. This assertion is
the only information about the fact that should be used in
the development of other groups containing rules that use
the value of the fact; information about the internal work-
ings of the rules in the group should not be used, because
such details are not guaranteed to remain unchanged.

Discussion:

This step is the crucial one and is the only part of the method
that is inherently resistant to automation. It is discussed in some
detail here, particularly as it applies in situations that are not com-
pletely straightforward, such as hierarchical rule groups.

Basically, this step should be viewed as making an overall as-
sertion about each group or subgroup of rules that will be true
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regardless of how often the rules in that group fire. Specifically,
that assertion would state that:

¢ the rules in this group can fire any number of times and they
will have no effect on any intergroup variables not in the
PRODUCE statements of this group; and

if the variables in the USE statements of this group meet some
stated conditions ¢, then the rules in this group will maintain
some stated properties p of the variables in the PRODUCE
statements.

The developer of a group fills in the conditions ¢ and properties p
for each of the facts produced by this group. For each such fact,
he or she provides a statement or assertion indicating p, the effect
of the rules in this group on the fact, qualified by a condition c if
necessary. Such an assertion resembles a program slice [23] in that
it summarizes the effect of several different rules on a single fact,
even though the same rules might also affect other facts.

in the example above, simple assertions (without preconditions)
were given for the effect of the rules on facts ship-status, engine-
status, and radar-status. Rules in other groups may use the fact
ship-status in accordance with its assertion. That is, they may
use ship-status only to determine whether the ship ‘‘can be sailed
on any mission up to 1000 nautical miles.”’ They are not based on
the knowledge of what actually constitutes being able to sail 1000
nm. The developer of this group is thereby free by change the rules
that define ‘‘can be sailed up to 1000 nm.”” (for example, to check
the electrical generators before sailing). Such a change would be
confined entirely to group ship-ready; it does not change the va-
lidity of the assertion given for fact ship-ready; and rules in other
groups that relied on this assertion will not be changed.

In languages that permit rules to create and delete database ele-
ments, the assertions may also involve the configuration of the da-
tabase. For example, an assertion might say that rules in a group
expect exactly one element of some class to be in the database and
always leave exactly one. This enables one to follow an approach
in which **legal’’ and “‘illegal’’ configurations of the database ele-
ments are specified by the programmer [3]. Then, every group is
simply permitted to assume a ‘‘legal”’ configuration of the inter-
group facts it uses and required to preserve the configuration on the
intergroup facts it produces. With the present method, such restric-
tions need only be placed on the configurations of the intergroup
facts.

Another complication arises when facts are produced by more
than one group. A fact could be produced by several top-level
groups or by several subgroups that all fall within one larger group.
In either case, different assertions for such facts might be attached
to the individual producer groups or a single global assertion could
be made at a higher level. The distinction between these two alter-
natives is useful.

For the first case, attaching separate assertions to the individual
groups or subgroups that produce the same fact allows the designer
to specify the separate effects each of the groups has upon that fact.
The overall statement one could make about the fact is then the
logical ‘‘or’’ of the assertions given by the individual groups. At-
taching a single higher level assertion allows the designer to spec-
ify an overall interpretation or mode of usage for that fact.

To accommodate this second case, the assertion is given in a
GLOBAL statement either at the top level or else within the inner-
most group that contains all rules that produce or use the fact. Facts
produced by a large number of groups are generally handled in this
way, since they constitute the ‘‘global’’ data for the system. Their
assertions are part of the overall system design, rather than the
design of the individual groups. The system designer will identify
these facts in the early design and provide more informative state-
ments, which indicate how he or she expects the global data to be
used by the groups together.

Specifically, the assertions for the different kinds of intergroup
facts that can arise from hierarchical groupings are handled as fol-

lows. (Examples of these cases taken from the larger set of rules
shown in Section IV are referenced here.)

* The innermost group that is the sole producer of a fact gives
its assertion in a PRODUCE statement in this group (e.g.,
conn-score in group compute-conn-scores shown in Sec-
tion IV). Groups that enclose this group and are thus by ex-
tension also sole producers of the fact give the symbol DOWN
for the assertion to point to the assertion made at the lower
level of the hierarchy (e.g., conn-score in compute-
scores).

® When a fact is produced by several groups and a single high-
level assertion can be made to describe it, that assertion is
attached to the innermost group which contains all groups that
produce this fact. If the fact is used outside that innermost
containing group, the assertion is given in a PRODUCE state-
ment in that group (e.g., fmt-score in group scoring). Inner
groups that produce this fact give the symbol UP as their as-
sertion, indicating that the correct assertion for this fact is
found at a higher level of the hierarchy (e.g., fmt-score in
groups compute-scores and compute-conn-scores). If the
fact is produced by several groups within a larger group, but
not used outside the larger group, there would be no PRO-
DUCE statement for the larger group. The assertion then is
given in a GLOBAL statement in the scope of the larger group
(e.g., entry-headcat in compute-conn-scores). Finally,
if the fact is produced by several outermost level groups, the
overall assertion is given in a GLOBAL statement at the out-
ermost level (e.g., entry-index).

* When a fact is produced by several groups and separate, spe-
cific assertions are made by each group, then each innermost
group that produces the fact and for which a unique assertion
about the fact can be made gives the assertion ina PRODUCE
statement. That assertion is preceded by the symbol UP, in-
dicating that the other portions of the full assertion for this
fact are found at a higher level. A larger, enclosing group that
is still not the sole producer of the fact also gives UP as its
assertion. A still larger enclosing group that is the sole pro-
ducer gives DOWN for its assertion, indicating that the cor-
rect assertion is the logical ‘*or’’ of the assertions of all the
lower level component groups (does not occur in the system
shown in Section IV).

To summarize, the innermost group that is sole producer of a fact
gives an assertion for it. Enclosing groups that are therefore also
sole producers of the fact give DOWN for the assertion. A group
that is one of several producers of a fact may give 1) UP as the
assertion or else 2) UP plus a more specific assertion. The inner-
most enclosing group that is the sole producer for the fact (i.e.,
group that contains all subgroups that produce this fact) then either
gives (for case 1) the general assertion or else (for case 2) DOWN,
meaning the ‘‘or’’ of all the more specific UP assertions made
within the group.

5) Separate Control Rules, When Possible: At this
point, control knowledge (rules or statements that enable
or disable the firing of other rules) should be separated
from the rest of the knowledge base, if the production
system language permits. As noted in step 1, in some lan-
guages, control knowledge is expressed in a notation other
than rules, so that this separation is already made (e.g.,
KES, ORBS [7]). In an object-oriented language, the con-
trol knowledge about changes in state or goals might also
be encapsulated in an object, and the left-hand sides of
other rules could send messages to the control object to
determine whether to fire.
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Discussion

One approach in a simple production system language where state
or goal variables have been used is to make a separate top-level
group (perhaps containing hierarchical subgroups) for control. All
rules that set the values of control variables are then collected into
one group, which describes all the transitions between states or
goals. The rules in the control group are the only ones that can
change the values of the control variables; antecedents of rules in
other groups can query those variables.

Example: For example, in the system shown in Section
IV, there is a single control variable phase. Most of the
rules test the value of phase to determine whether they
can fire, as in this example:

(RULE universal

(phase “phasename scoring)

(fmt "part < y > "score <z>)

(entry "index < y > "det << all each
every >> “used nil)

N

(modify 2 "score (compute <z> — 1))

(modify 3"used true)).

Thus, all rules associated with scoring can be enabled or
disabled together by setting phase-phasename to scor-
ing. Rules in the group named control are the only ones
that set the value of phase and thereby determine the
transitions between the phases of the message analysis
process.

6) Other Issues: Some other issues arise in trying to
map various production system languages into the present
method. The method is based on tracking the flow of data
between rules and groups by means of the names of vari-
ables set or used by rules. To alleviate such problems, it
is desirable to make the actual flow of data correspond as
closely as possible to the use of the variable names. Tech-
niques involving more sophisticated uses of variable
names (such as serial reuse of temporary variables) can
therefore **fool’” this strategy (into being more conserv-
ative) and should be eschewed or handled specially.

Discussion

For example, using the same variable for two different purposes
(but possibly at different times) will cause such confusion. Tem-
porary variables used at different times should be given distinct
names. Variables used in different states and which thus cannot
exist at the same time should have different names. In general,
wherever the programmer can distinguish two unrelated uses of a
variable or two uses that can never occur simultaneously, the two
should be given different names.

A further wrinkle is added by production system languages that
permit creation of new database elements or facts during execution
(such as OPSS5 or ART), since they modify the straightforward con-
ception of static facts examined and changed by rules. Such lan-
guages typically permit the left-hand side of a rule to ask whether
there exists any fact with certain attributes, rather than simply test-
ing the values of predeclared facts or variables. A rule in OPSS,
for example, can test and set values of one or more attributes of
one or more ‘‘working memory elements’” and can create or re-
move such elements. The “facts’’ of interest are thus dynamic—
they cannot be statically enumerated in advance. Each working

memory element is identified as belonging to some class, and rules
generally identify the class of each element they examine or change.
For example, the following OPSS rule

(p example
(fmt "part <x>)
(entry "index < x> “headcat assembly)
o
(modify 1 "score 5)
(remove 2)
(make ship “status ready))

examines the part attribute of a working memory element of class
fmt and the index and headcat attributes of an element of class
entry. It changes the score attribute of the fmt element, removes
the entry element, and creates a new element of class ship and
sets its status attribute. For the purposes of the software engi-
neering method, each of the possible classes of elements in a sys-
tem could be treated as a separate ‘‘fact,”” with a multifaceted value
consisting of all the attribute values of elements of that class. The
above rule would then be considered to use facts fmt and entry
and produce facts fmt, entry, and ship. In the notation we use for
abstract description of rules, it would be written

(RULE example
(IF fmt entry)
(THEN fmt entry ship)).

The problem with this interpretation is that it is a rather coarse-
grained abstraction of the working of the rules. For example, nearly
every rule in the system shown in Section IV tests some attribute
of fmt. A finer-grained abstraction of the information used and
produced by each rule is needed. The basic goal of this abstraction
is to identify which items in the right-hand sides of rules could
affect the firing or not firing of which items in the left-hand sides.
Observe that the right-hand side item

(modify 1 “score 5)

in the above, which changes the score attribute of the fmt ele-
ment, matched by the left-hand side, would not affect any other
rule with a left-hand side containing

(fmt “part foo).

It would affect only those rules that test the score attribute of
working memory elements of class fmt. Thus, each attribute of
each class is treated as a scparate *‘fact,”’ e.g., fmt-score and
fmt-part are separate facts.

Furthermore, since working memory elements are created and
destroyed dynamically, there is not really a single static variable
fmt-score in the system; it is considered to occur whenever any
working memory element of class fmt uses an attribute named
score. The fact fmt-score is an abstraction of all possible uses of
the score attribute of all working memory elements of class fmt.

We observe, similarly, that the right-hand side

(make ship "status ready)

can only affect rules whose left-hand sides test the status attribute
of class ship, since no other attributes of ship were set. Hence, it
is considered to set ‘‘fact”’ ship-status only. However, the right-
hand side

(remove 2)

in the example above, which deletes an entire working memory
element of class entry, potentially affects any rule that examines
any portion of an entry element. It is considered to set a new
“‘fact’’ entry, which may be thought of as an abbreviation for the
effect of removing an element of class entry. All left-hand sides
that examine any part of an entry working memory element are
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then considered to use the fact entry in addition to the facts for
any individual attributes of entry they use.

The OPS5 rule above thus finally becomes, in our representa-
tion:

(RULE example
(IF fmt fmt-part entry entry-index entry-headcat)
(THEN fmt-score entry ship-status)).

As noted, these ‘‘facts’’ are not actual memory elements but ab-
stractions of the manipulations of working memory data by which
two rules can affect each other. During execution of the system,
various working memory elements may be created and removed
dynamically. All possible effects of arbitrary sequences of such
operations are summarized in the connections between the pseu-
dofacts fmt, fmt-part, entry, etc., that we use.

However, undisciplined use of ‘‘there-exists’’ predicates can
make the rules unnecessarily difficult to analyze and group. It is
helpful to restrict it further. Wherever the full power of such a
predicate is not strictly necessary, it should be avoided. For ex-
ample, if a system is designed so that there could never be more
than one element of some class ¢, then the predicate Does there
exist any element of class ¢ can be treated simply as Has the vari-
able ¢ been set [3]. Class ¢ becomes a single static variable c.
Similarly, if it were known that there will be precisely three in-
stances of class ¢, then class ¢ could become three separate static
variables. In general, then, whenever the creation of instances of
a class can be predicted statically in advance, it is helpful to give
a separate class name to each known instance to permit a more
precise, finer-grained analysis of the interaction between rules.

Syntax: Following the steps listed, a set of rules is thus
divided into groups, the intergroup facts used and pro-
duced by each group are identified, and descriptions are
entered for those facts produced by each group. The ex-
ample below illustrates the language used to represent this
information, using a simple example knowledge base [24].
This is a forward chaining system with no control rules;
steps 1, 5, and 6 above were thus inapplicable.

(GROUP isamammal
(PRODUCE mammal “‘isita mammal, by
conventional English usage’’)

(RULE r1 (IF hair) (THEN mammal))
(RULE 72 (IF milk) {THEN mammal}))

(GROUP isabird
(PRODUCE bird "’is it a bird, by English
usage’’)
(RULE r 3 (IF feather) (THEN bird))
(RULE r4 (IF flies ovip) (THEN bird))
(RULE rx (IF @) (THEN c¢))
(RULE ry (IF b) (THEN c¢))
(RULE rz (IF ¢) (THEN bird)})
(GROUP isacarn
(PRODUCE carn “‘is it a carnivorous
creature’’)

(RULE r5 (IF meat) (THEN carn})
(RULE r6 (IF pointed claws fwdeyes)
THEN carn)))

(GROUP isungulate
(PRODUCE ungulate “‘is it an ungu-
late’’)
(USE mammal)

(RULE r 7 (IF mammal hoofs) (THEN un-

gulate)))
{(GROUP kind-of-carn
(USE mammal)
(USE carn)
(RULE r8 (IF mammal carn tawny
darksp) (THEN cheetah))
(RULE r9 (IF mammal carn tawny
blackst) (THEN tiger)))
(GROUP kind-of-ungulate
(USE ungulate)
(RULE r10 (IF ungulate longn longl
darksp) (THEN giraffe))
(RULE r11 (IF ungulate blackst) (THEN
zebra)))
(GROUP kind-of-bird
(USE bird)

(RULE r12 (IF bird notfly longn longl
blackwh) (THEN ostrich))

(RULE r13 (IF bird notfly swims
blackwh) (THEN penguin)

(RULE r 14 (IF bird flyswell) (THEN alba-
tross))).

The rule bodies above are given in an abstract notation
that lists their input and output facts, but no further de-
tails. This is the same represenation used as input for the
analyses described in Section VII.

Note that three extra rules have been added for illustra-
tion to group isabird above. They indicate that the animal
is considered a bird if ¢ is true, which in turn depends on
a and b. These rules appear to produce fact ¢, but c is
not shown as being PRODUCEd by group isabird and
does not have an assertion. This is because ¢ is not used
by rules in any other group—it is thus an intragroup fact,
analogous to a local variable with no bearing on the con-
nectivity of the modules of the system. Also, group kind-
of-carn appears to produce facts cheetah and tiger, but
they, too, are not listed. The reason is that those facts are
not used by rules in any other groups and, again, have no
effect on the connections between groups. In fact, they
are top-level outputs of this expert system.

Also, observe, in the above example, that all informa-
tion except for the rule bodies themselves—i.e., the
groupings, PRODUCE and USE statements, and asser-
tions—are essentially comments. While it might be pos-
sible to exploit them to improve efficiency or enable par-
allel firing of rules, they need have no effect on the actual
execution (or correctness) of the expert system. Further-
more, since the groupings have no effect on the execution
of the rules, the method applies equally to any expert sys-
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tem shell or language, provided only that its concept of
rules and facts can be mapped onto our rather abstract
view. The method would be particularly convenient in a
system where rules, facts, relationships, and assertions
were all kept in a single knowledge or database, but it
does not require such support.

After a knowledge base is developed in this fashion, the
knowledge engineer who wants to modify a group must
understand the internal operations of that group, but not
of the rest of the knowledge base. If he or she preserves
the correct functioning of the rules within the group and
does not change the validity of the assertions about its
intergroup facts, he can be confident that the change that
has been made will not adversely affect the rest of the
system. Conversely, if he or she wants to use additional
intergroup facts from other groups, he should rely only on
the assertions provided for them, not on the internal work-
ings of the rules in the other group. (Of course, changes
that pervade several groups would still have to be handled
as they always have been, but the grouping is intended to
minimize these.)

An interesting aspect of this approach is that it draws
distinctions between the facts contained in working mem-
ory of a production system. Certain facts are flagged as
being important to the overall software structure of the
system, while others are “‘internal’’ to particular modules
and thus less important. Programmers can be advised to
pay special attention to rules that involve the ‘‘impor-
tant’’ facts. This is in contrast to the homogeneous way
in which the facts of a rule-based system are usually
viewed, where they must all command equal attention or
inattention from the programmer.

IV. AN EXAMPLE

A larger set of rules is shown in the example in this
section. It is an excerpt from a rule-based system devel-
oped at NRL for summarizing natural language messages
about failures of electronic equipment on ships [9]. Navy
personnel currently perform this task manually, collecting
the summary data for use in selecting reliable equipment
to outfit new ships. To use this system, the narrative sec-
tion of each incoming message is first parsed using a broad
coverage string parser [19], and the data are stored in an
information format table. The rules of the system shown
here then examine and modify the entries in this table.
The rows of the information format table represent clauses
of the text, and the columns represent semantic categories
specific to the messages, such as function, organization,
part, process, repair, signal, and status. Each clause is
also syntactically regularized so that it is in the active
voice and in a standard order.

Each line of the information format table is converted
into one OPSS working memory element, where it will be
accessible to the rules. Each line of the format table and
each semantic category has an index, which is used to
point to the actual entries in the table. Each entry in the
information format table thus becomes an OPS5 element
of class entry with attributes containing its index and its

actual contents, such as its text, its syntactic and semantic
properties, and whether it has been scored yet. Each for-
mat line similarly becomes an OPSS5 element of class fmt,
whose attribute values contain the indexes of the corre-
sponding entrys.

The rule-based system then selects one clause from the
information format which best describes the equipment
failure and its cause. The rules score each line of the table
based on characteristics such as how specific the descrip-
tion is, whether the information shows causality, and
whether the line describes a component or a whole sys-
tem. The format line with the highest score is chosen for
the summary.

The system is written in the OPS5 language [3], [8].
Using the new method, this set of rules would appear as
shown below, with the rules divided into groups, the in-
tergroup facts declared, and the control knowledge seg-
regated. To save space, most of the actual rules are omit-
ted from the listing, but the GROUP declarations and
PRODUCE and USE statements are shown for all groups.
Within the group compute-conn-scores, the system is
shown in full, including all rules, just as it would be en-
tered in practice. The overall hierarchy of the groups and
subgroups is also depicted in Fig. 1.

The control variable throughout this system is phase-
phasename; all rules can test its value, while rules in
the group control change its value. ‘‘Facts’’ in OPSS5 are
not always simple static variables, and they have been
treated as discussed in the previous section. However,
since there are no remove statements in the right-hand
sides of these rules, the additional facts such as fmt and
entry discussed previously are not required. The example
illustrates the programming method, but it should be re-
membered that it is used for exposition; the proposed
method may seen excessive for a system of this size and
complexity.

{(GLOBAL entry-index
"“Contains symbol used by attributes of fmt to
point to this entry’’)

(GLOBAL entry-used
‘’Contains nil if this text entry has not been
scored by a rule, else true’’)

(GLOBAL fmt-status
"‘Gives entry-index of text describing equip-
ment status’’)

(GROUP scoring

(PRODUCE entry-index UP)

(PRODUCE entry-used UP)

(PRODUCE fmt-score
‘“Set to numerical weight assigned to this
line of information format’’)

(PRODUCE fmt-status UP)

(PRODUCE vars-bigscore ‘’Set to largest value
of fmt-score in the table’’)

(USE entry-index)
(USE entry-used)
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scoring

compute-scores

compute-conn-scores

determine-headcat

score-preparation

output-preparation

final-output

control

Fig. 1. An illustration of the overall hierarchy of rule groups and subgroups
for the example system shown in Section IV. Each group of rules is
shown as a box; each subgroup is shown as a box within a larger box.

(USE fmt-func)

(USE fmt-part)

(USE fmt-process)

(USE fmt-score)

(USE fmt-signal)

(USE fmt-status)

(USE vars-bigscore)

... rules omitted here ...

{GROUP compute-scores
(PRODUCE conn-score DOWN)
(PRODUCE entry-index UP)
(PRODUCE entry-used UP)
(PRODUCE fmt-score UP)
(PRODUCE fmt-status UP)

(USE conn-score)

(USE entry-index)

(USE entry-used)

{USE fmt-func)

(USE fmt-part)

(USE fmt-process)

(USE fmt-score)

(USE fmt-signal)

(USE fmt-status)

... rules omitted here ...

(GROUP compute-conn-scores

(PRODUCE conn-score
“Set to numerical weight of format line
containing a connective word"’)

(PRODUCE entry-index UP)

(PRODUCE entry-used UP)

(PRODUCE fmt-score UP)

(PRODUCE fmt-status UP)

(USE conn-score)
(USE entry-index)
(USE entry-used)

(USE fmt-score)
(USE fmt-status)

(GLOBAL entry-headcat

““Word describing semantic category of
head of phrase of this entry’’)

(RULE problem-is

{phase "phasename scoring)

(conn “op <x> "argl < y> "arg2
<z>)

(entry "index < x > "“head be)

(fmt "index < y > “status <u >)

(entry “index < u > "“headcat problem
“used nil)

(<< conn fmt >> “index <z > "score
<v>)

N
{modify 6 “score (compute < v > + 1))
(modify 5 “used true))

(RULE find

(phase "phasename scoring)

(conn "op <x> "arg2 < y>)

{entry “index < x> "“head << find de-
termine >> "“used nil)

(<< conn fmt >> "index < y > "score
<z>)

N

(modify 4 “score (compute <z> + 1))

(modify 3 “used true))

(RULE invest-conn

(phase "“phasename scoring)

(conn "op <x> "argl <y> "arg2
<z>)

(entry “index < x> "headcat show
“used nil)

(fmt "index < v > "invest < > nil)
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(<< conn fmt >> "index < z> "score
<w>)

-

(modify 5 “score (compute < w> + 1))

(modify 3 “used true))

(RULE bequeath

(phase "phasename scoring)

{conn "score { < > nil <> 0 <x> }
"argl < y> "arg2 <z>)

(<< conn fmt >> “index < y > "score
<u>)

{<< conn fmt >> "index < z> "score
<v>)

N

{modify 3 “score (compute <u> +
<x>)

(modify 4 "score (compute <v> +
<x>)

(modify 2 “score 0))

(RULE modal-obj

(phase "phasename scoring)

(conn "op < x> "arg2 < y>)

{entry "index <x > "“head << suspect
appear believe >> “used nil)

(fmt "index < y > "score <z>)

N

{modify 4 "“score {(compute <z> + 1))

(modify 3 “used true))

(RULE modal-move

(phase "phasename scoring)

{(conn "op < x> "arg2 < y>)

(entry "index <x> "head { << sus-
pect appear believe >> <z> }
"used nil)

(conn “index < y> "op <u >)

(entry "index < u >)

o

(modify 5 "modal <z >)

(modify 3 “used true))

(RULE cause

(phase "phasename scoring)

(conn "op < x> "arg1 < y>)

(entry “index <x> "headcat cause
“modal nil “used nil)

(fmt "index < y> "score <z>)

—

{modify 4 “score (compute <z > + 2))

(modify 3 “used true))

(RULE cause-may

{phase "“phasename scoring)

{(conn "op < x> "argl < y>)

{entry “index < x> "headcat cause
"modal < > nil “used nil)

(fmt "index < y > "score <z>)

—

(modify 4 “score (compute <z > + 1))
(modify 3 "used true))

(GROUP determine-headcat

(PRODUCE entry-headcat UP)

(USE entry-head)
(USE entry-headcat)

(RULE catgz-bad

(phase "“phasename initial)

(entry “headcat nil “head << bad
break broken burn crack
damage error fail failure fault
inop inoperative lack lose loss
malfunction poor spot wear
wrong >>)

—

(modify 2 "headcat bad))

(RULE catgz-cause
(phase “phasename initial)
(entry “headcat nil “head << cause
make produce render result >>)

—

(modify 2 “headcat cause))

(RULE catgz-code
(phase "phasename initial)
(entry “headcat nil “code << KWR-
37 KY-8 >>)

-

(modify 2 “headcat assembly))

RULE catgz-component

(phase "phasename initial)

(entry “headcat nil *head << ampli-
fier antenna apc assembly cir-
cuit driver exciter pa ppc rf
>>)

-

(modify 2 "headcat assembly))

(RULE catgz-impair
{phase "phasename initial)
(entry “headcat nil “head << impair
inhibit prevent stop >>)

—

(modify 2 “headcat impair))

(RULE catgz-problem
(phase "phasename initial)
(entry “headcat nil “head << prob-
lem damage failure fault mal-
function difficulty defect >>)

—

(modify 2 “headcat problem))



(RULE catgz-show
(phase “phasename initial)
(entry “headcat nil "head << show
indicate reveal >>)

-

(modify 2 "headcat show)))

(GROUP score-preparation

(PRODUCE conn-arg1
*Gives fmt-index or conn-index of
fmt line preceding connective’’)
(PRODUCE conn-arg2
““Gives fmt-index or conn-index of
fmt line following connective’’}
(PRODUCE entry-head ‘’Contains first
word of phrase of this entry’’)
(PRODUCE entry-headcat UP)
(PRODUCE entry-index UP)
(PRODUCE entry-neg
“Value is non-nil if head of phrase
for this entry is negated’’)
(PRODUCE fmt-status UP)

(USE conn-arg1)
(USE conn-arg2)
(USE entry-head)
(USE entry-headcat)
(USE entry-index)
(USE entry-neg)
(USE entry-used)
(USE fmt-status)

(RULE cause-bad
(phase "phasename initial)
{conn "op <x> "arg2 < y>)
(entry "index < x > "“headcat impair)
(fmt “index < y > "status nil)
-
(bind <z >)
(modify 4 "“status <z >)
(make entry < z> “head bad “head-
cat bad “text bad)
(modify 3 “headcat cause)
(call new-entry < y > status bad))

(RULE smoke-fire

{phase "phasename initial)

(conn "op <x> "argl < y> "arg2
<z>)

{entry “index < x > “headcat cause)

(fmt "index < y > “status nil)

(fmt "index < x > "status < w >)

(entry “index < w > “headcat bad)

N

(bind < u>)

(modify 4 "status <u >)

(make entry < u > "“head bad “head-
cat bad “text bad)

(call new-entry < y> status bad))
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(RULE due-to

{phase "phasename scoring)

(conn "op <x> "argl < y> "arg2
<z>)

(entry “index <x> "head <<
due_to result >> “used nil)

{modify 3 "“headcat cause)

(modify 2 “arg1 <z > arg2 < y>))

RULE neg-to-bad-status

(phase "phasename scoring)

(fmt Nindex < y > "status <x >)

(entry “index <x> "neg < > nil
"headcat < > bad)

{modify 3 “neg nil “head bad “head-
cat bad “text bad)

(call new-entry < y > status bad))

(RULE zero-to-bad

{phase "phasename scoring)

(fmt Nindex < y > “status <x >)

(entry "index < x> “quant << zero
0 >> “headcat < > bad)

{modify 3 "quant nil "“head bad
"headcat bad “text bad)

(call new-entry <y > status bad})

{RULE quant-to-bad

(phase "phasename scoring)

(fmt "index < y > "status <x>)

(entry “index < x> "quant-mod
in_excess_of)

N

(modify 3 “quant-mod nil “head bad
"headcat bad "text bad)

(call new-entry <y > status bad})})))

(GROUP output-preparation

(PRODUCE entry-index UP)

(PRODUCE entry-used UP)

(PRODUCE fmt-func ‘‘Gives entry-index of
test describing function of equipment’’)

(PRODUCE fmt-part
““entry-index of text describing component
level of equipment in system’’)

(PRODUCE fmt-process
‘*entry-index of text describing how equip-
ment processes electrical signal’’)

(PRODUCE fmt-signal
““entry-index of text describing electrical
signal from equipment’’)

(PRODUCE fmt-status UP)

(USE fmt-func)
(USE fmt-part)
(USE fmt-process)
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(USE fmt-score)

(USE fmt-signal)

{USE fmt-status)

(USE vars-bigscore)

... rules omitted here . ..)

(GROUP final-output
:; N.B. this group displays final output of sys-
;; tem to user,
;; hence does not PRODUCE any data USED by
;1 other groups

(USE entry-index)

(USE fmt-func)

(USE fmt-part)

(USE fmt-process)

(USE fmt-score)

(USE fmt-signal)

(USE fmt-status)

(USE vars-bigscore)

... rules omitted here ...)

(GROUP control
;; Produces only control variable phase-
;; phasename, which is never listed
... remainder of group omitted . ..)

V. AN AUTOMATED PROCEDURE FOR PARTITIONING A
KNOWLEDGE BASE

It is possible to develop an algorithm that will take a
set of rules and divide them into groups suitable for use
with this method. Such an algorithm can help in the de-
velopment of a rule-based system (in step 2 above), and
it will also be useful in evaluating the wider applicability
of the proposed method by attempting to group the rules
of existing systems, as described in Section VII. It is
somewhat easier to develop a grouping algorithm for rule-
based systems than for code written in conventional pro-
gramming languages because both the syntax and seman-
tics of production languages are simpler and more regu-
lar.

The basic problem is to partition a set of rules into
groups that will aid in their maintenance. Rules that affect
each other and are likely to be changed at the same time
should be grouped together. Several approaches to the
grouping problem have been explored [12], [13], and the
best results were obtained from an algorithm based on
cluster analysis. A clustering algorithm takes a collection
of objects and partitions them into groups of like objects.

In order to use a clustering algorithm, a measure of dis-
tance or ‘‘relatedness’’ between the objects to be clus-
tered (the rules) must be defined. Since our ultimate con-
cern is for a programmer making changes to the
knowledge base, this ‘‘relatedness’” between two rules
should approximate the likelihood that a change made to
one rule would require a change in the other rule. The
rules in a production system are related through the facts
whose values they use or modify. The strict definition of

rule dependency is thus that two rules are related if there
is any noncontrol fact mentioned by both rules (on their
left- or right-hand sides); they are independent if they
have no noncontrol facts in common. For the clustering
algorithm we need a measure of the extent of the relation-
ship between two rules, rather than a binary-valued defi-
nition. The relatedness between two rules is thus mea-
sured by the number of noncontrol facts that are men-
tioned in both rules. Since there are several ways in which
two rules could refer to the same fact, a weighting factor
is applied. The two rules

if Athen B
if Bthen C

share fact B in common; so do the two rules

it Athen B
if C then B.

The rules of the former pair have a greater programming
dependency on each other than the latter pair, and hence
should be more *‘related.”’ The top three illustrations in
Fig. 2 summarize the three ways in which two rules can
share a fact and the weight given to each. The values of
the weights shown in Fig. 2 were observed to yield the
best groupings, but experiments with other values sug-
gested that the clusterings are relatively insensitive to any
plausible choice of weights. So the precise values of these
weights are somewhat arbitrary and noncritical. The total
‘‘relatedness’’ measure between two rules is a weighted
count of the facts shared by both rules. Each fact is
weighted by the score that indicates in which of the three
possible ways the two rules use the fact.

Given such a measure, we can proceed with a straight-
forward clustering algorithm. First, measure the similar-
ities between all pairs of rules, select the closest pair, and
put those two rules together into one cluster. Then repeat
the procedure, grouping rules with each other or possibly
with already-formed clusters. In the latter case, we must
measure the ‘‘relatedness’ between a rule and a cluster
of rules. This is the mean of the similarities between the
individual rule and each of the rules in the cluster, cor-
responding to an average-linkage clustering procedure.
The algorithm proceeds iteratively. As currently imple-
mented, it does not generate hierarchical clusters, al-
though this is envisioned. The view of rule dependency
incorporated into this ‘‘relatedness’’ measure is quite
simple and is essentially limited to a single cycle of pro-
duction system firing. Nevertheless, as seen in Section
VII, it can produce a useful partitioning of a rule base,
specifically a partitioning that satisfies our initial goal that
those rules likely to be modified at the same time should
be grouped together.

The algorithm presently used contains some further re-
finements. While they have a relatively small effect on its
overall operation, they prove significant at iterations
where the best and next-best possible pairings are close
in average similarity but differ substantially on other cri-
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W(in-out) = 1.0

W(share-outs) = 0.75

W(share-ins) = 0.5

W(not-shared) = -0.25

Fig. 2. Components of *‘relatedness’’ measure between two rules. Rules
are shown as lines, facts are shown as circles, and the fact whose score
is given is shown as a double circle.

teria. First, an additional case was added to cover facts
not shared by two rules. Without it, the pair of rules

if Athen B
if Bthen C

and the pair

if Athen B
if Bthen Cand Dand Eand F

would have the same similarity; but, in determining a
grouping, the former pairing is preferable to the latter.
Hence, a negative weight, as shown in the last illustration
of Fig. 2, is added to the similarity between two rules for
facts that appear in one of the rules but not the other. In
addition, the square root of each between-rule similarity
is taken before combining them into the between-group
similarity measure. These two changes reduce the ten-
dency of the algorithm to use a few pivotal rules to form
along, “‘spindly”’ group that gradually annexes its neigh-
bors in all directions.

The other refinement is an additional term added to the
similarity between two groups, which slightly favors
combinations of smaller groups over larger ones. This
takes into account the practical consideration that the

groupings are ultimately going to be used as the basis for
assignment of programming responsibilities to individu-
als; hence, very small or very large groups would likely
be manually overridden in the end. The quantity 2 /(size
of the combined group) is added to the similarity between
two groups for this purpose.

A drawback to algorithms of this general type is that on
each iteration the algorithm makes the best possible ag-
glomeration of two groups, but it never backtracks, in case
there might be a better grouping for the system considered
as a whole. Also, like most clustering algorithms, if it
runs for enough iterations it will eventually group all the
rules into one large group. A stopping rule that has been
used successfully is to stop when the similarity between
the next two groups to be combined is no longer positive
(since there is a term with a negative weight in the simi-
larity between rules). Another approach is to use the dis-
tribution of the sizes of the groups as a guide.

This clustering algorithm implies a bottom-up ap-
proach, which requires no high-level information from the
knowledge engineer. It derives a high-level structure for
the rule system based only on the information contained
in the rules themselves. Finally, recall that the use of this
or any algorithm to divide the rules into groups is an op-
tional aspect of the new method. The partitioning may
equally well be done manually or by some other algo-
rithm.

The algorithm and relatedness measure are presented
more formally below:

Algorithm:

1. Put each rule into a separate group.

7. Measure relatedness (defined below) between each
pair of groups.

3. Choose the pair of groups, g1 and g2, with the larg-
est relatedness, R( gl, g2).

4. IfR(gl, g2) < 0, stop (or other stopping rule, see
text).

5. Combine gl and g2 into a single group.

6. Go to step 2.

Relatedness between two groups, gl and g2:

R(gl,g2) =
mean over all pairs of rules r1 and 2, where r € g1
and r2 € g2 (
sqrtl (
no. of “‘in-out’’ shared facts in r1 and r2 *
W (in-out) [see Fig. 2]
+ no. of share-outs facts in r1 and r2 *
W(share-outs)
+ no. of share-ins facts in r1 and r2 *
W(share-ins)
+ no. of not-shared facts in r1 and r2 * W(not-
shared)
N’
+2/(no. of rules in g1 + no. of rules in g2).

'If radicand negative, substitute: —sqrt (abs (radicand)).
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Fig. 3. Plot of individual rules of the simple expert system shown in Sec-
tion 1II. Rules are shown as circles and facts are shown as lines con-
necting them.

VI. SUPPORT SOFTWARE

Some of the steps required by the new method are
amenable to automation, and software tools have been de-
veloped for them. Step 2, the division of rules into groups
can be performed by the clustering algorithm described in
Section V. Given such a grouping, whether generated
manually or automatically, a software tool then performs
Step 3, identifying the intragroup and intergroup facts. It
flags all intergroup facts produced by a group, so the pro-
grammer can provide assertions for them; and it flags all
intergroup facts used by a group and retrieves their asser-
tions, so the programmer can rely on them when using
such facts. Step 4, writing the external descriptions of the
intergroup facts produced by each group, represents the
capture and documentation of additional high-level
‘“‘plan’’ or design information in the system designer’s
head, describing his expectations about what aspects of a
fact will not change in the future. This information cannot
be deduced from the rules themselves. As noted, these
assertions are most useful when, like high-level com-
ments, they describe the designer’s intentions rather con-
tain a formal specification of the conditions for producing
a fact. This step is therefore inherently manual and is crit-
ical to the success of the method. The tools find and high-
light the intergroup facts but then require the programmer
to give them special attention and provide special decla-
rations for them.

Additional software tools have been developed to sup-
port the method and to analyze the connections between
the rules of a production system. The input to all the soft-

ware tools is a set of rules expressed in the abstract form
shown in Section III. The developer of a rule-based sys-
tem can define the grouping of rules and input the knowl-
edge base in the form shown in Section III or he or she
can enter the ungrouped rules in the same form and use
the clustering algorithm to produce the grouping. We have
built software that translates rules from OPSS5 into the ab-
stract representation, including the separation of OPSS
working memory elements into their component ‘‘facts’’
(as discussed in Step 6). For expert systems written in
other languages, we have performed the translation man-
ually or semiautomatically with text processing programs.

One of the software tools used for analyzing rule con-
nectivity traces all effects of changing a given rule and
can find any unused rules or groups. Statistics about the
distribution of inter and intragroup facts in the system are
also produced; an example is shown in Section VII. A
graphical plot of the relationships between rules or groups
may be obtained. Fig. 3 shows such a plot for the animal
system given in Section III. In it, each node, or circle,
represents a rule and each link, or line, between two rules
represents a fact whose value is set by one rule and used
by the other. Plots of a larger system are described in
Section VII.

Finally, we have developed tools to compute measures
of coupling and cohesion for a set of rules. As with other
software engineering methods, the division of the rules
into groups should attempt to minimize the amount of
coupling between the groups and maximize the amount of
cohesivenss within each group [21]. By defining numeri-
cal measures for the informal notions of coupling and
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(draw “rules® “facts*) on TIAN data

Fig. 4. Plot of rules of a more complex expert system, described in Section
VII. Rules are shown as dots and facts are shown as lines.

cohesion in this domain, alternative groupings of a set of
rules may be compared. One simple measure of overall
coupling is the proportion of intergroup facts, while cohe-
sion is represented by the proportion of intragroup facts.
(top- and bottom-level facts are excluded from these
counts). Another approach uses, for coupling, the average
*‘relatedness’’ between all pairs of rules, where members
of the pairs lie in different groups. For overall cohesion,
it uses the average relatedness of every pair of rules that
lie in the same group.

VII. INVESTIGATING THE FEASIBILITY OF THE NEW
METHOD

To decide whether. partitioning a knowledge base is a
feasible approach, we analyze existing expert systems to
determine how the rules in the system are related to each
other. We use the software tools described in Section VI
to determine whether the rules are indeed thoroughly in-
tertwined or sufficiently separated that they could be di-
vided cleanly into the groups required by the method. The
approach is to use the clustering algorithm to divide the
rules of an existing system into groups. By examining the
resulting groupings, we hope to determine how well the
structure implied by the new programming method can fit
the structures observed in actual rule bases, that is,
whether the existing systems could have been cast in the
mold required by the method or whether it would have
imposed excessive restrictions and unnatural structure on
the developers. To date, we have analyzed several knowl-
edge bases and found that there is considerable separabil-
ity and latent structure to the relationships between the
rules in these systems, which permits the present ap-
proach to be imposed.

For example, Fig. 4 shows the graphical plot for a larger
expert system. It was developed by James Reggia of the
University of Maryland, using the KES language and is
used to diagnose stroke and related diseases [18]. It con-
tains 373 rules and 116 distinct variables. Unlike OPSS5,
the KES language uses static variables, in which all in-
stantiations are declared in advance. However, 21 of the
variables in this system can be assigned more than one
value simultaneously. The presence of each possible value
for each multivalued variable becomes a separate fact in
our framework, so that the system has 244 facts. In Fig.
4, like Fig. 3, each node represents a rule and each link
between two rules represents a fact whose value is set by
one rule and used by the other. To reduce clutter, labels
like those in Fig. 3 have been suppressed, and rules, which
were represented by circles in Fig. 3, are now shown as
points.

Fig. 5 shows the same system as Fig. 4, after clustering
into 30 groups. Each node now represents a group of rules,
and each link represents a fact that is produced by rules
in one group and used by those in another group. Facts
that are produced and used entirely within a single group
do not appear in the graph, and the resulting structure is
visibly simpler. (This graph provides an indication of how
well the merhod is working; it is not intended to serve as
documentation for the rule base maintainer.) Statistics
about the facts for this grouping are as follows:

373 Rules
30 Groups

244 Facts
94 bottom
30 top
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Fig. 5. Rules of Fig. 4, clustered. Rule groups are shown as dots and in-
tergroup facts are shown lines.

66 X—X
12 X-y
6 X=Xy
7 Xy~-Xx
0 Xy—-Xy
21 Xx—-any
5 any—x
3 any-any

This means that of the 244 facts found, 94 of them were
characterized as bottom, meaning input data, not pro-
duced by any rules, and 30 top, meaning outputs, not used
by any rules. The x-x category denotes intragroup facts.
The remaining categories describe subspecies of inter-
group facts: x-y denotes facts produced by just one group
and used by just one other group; x-xy are those produced
by one group and used by that group and one other group;
xy-x are produced by two groups and used only by one of
those two; xy-xy are produced by two groups and used by
the same two; x-any are produced by one group and used
by two or more groups; any-x are produced by two or
more groups and used by one group; and any-any covers
the remaining more complex cases. Observe that 66 of the
120 nontop- or bottom-level facts in this system have be-
come intragroup facts or local variables, while 54 are now
intergroup. The groupings were also found to be substan-
tially similar to the arrangement suggested by the rule au-
thor’s naming of the original rules and his comments in
the code; approximately 90% of all pairs of rules were
handled in the same way (either both separated or both
joined) by the two arrangements. This provides an empir-
ical estimate of the extent to which the structure of this
knowledge base was successfully represented by the new
method.

Finally, some support for the efficacy of this approach
may be gained from a series of experiments conducted by
J. Steve Davis [5]. Experimental subjects were given in a
simple rule-based system, and they were asked to modify
it to incorporate an additional piece of knowledge. Some
of the subjects received a rule-based system built accord-
ing to the present method, while the others received es-
sentially the same system constructed in the traditional
way. Those in the first group made the required modifi-
cations significantly faster than those in the second, and
their changes were judged to be of higher quality (i.e.,
they fit the structure of the original rule system better, in
contrast to an ad hoc ‘‘patch’’ to handle a new case). This
suggests that, at least in a limited experimental setting,
the present method is indeed effective in its goal of re-
ducing the effort required to maintain a knowledge base.

VIII. CoNCLUSIONS

This paper has described a new method for developing
more easily maintainable rule-based expert systems,
which is based on dividing the rules into groups and con-
centrating on those facts that carry information between
rules in different groups. It described a new algorithm for
grouping the rules of a knowledge base automatically and
a simple notation and set of software tools for the pro-
posed method. The method was supported by a study of
the connectivity of rules and facts in rule-based systems,
which found that they indeed have a latent structure,
which can be used to support the programming method-
ology.

The resulting programming method requires the pro-
grammer who develops a rule-based system to declare
groups of rules, flag all between-group facts, and provide
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descriptions of those facts to any rule groups that use such
facts. The programmer who wants to modify such a Sys-
tem then gives special attention to the between-group facts
and preserves or relies on their descriptions when making
changes. In contrast to the homogeneous way in which
the facts of a rule-based system are usually viewed, this
method distinguishes certain facts as more important than
others and directs the programmer’s attention to them.
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