
MultiOtter: Multiprocess Symbolic Execution
University of Maryland Department of Computer Science Technical Report CS-TR-4982

Jonathan Turpie, Elnatan Reisner, Jeffrey S. Foster, Michael Hicks
Computer Science Department

University of Maryland
College Park, MD

{yudi, elnatan, jfoster, mwh}@cs.umd.edu

ABSTRACT
Symbolic execution can be an effective technique for explor-
ing large numbers of program paths, but it has generally
been applied to programs running in isolation, whose inputs
are files or command-line arguments. Programs that take in-
puts from other programs—servers, for example—have been
beyond the reach of symbolic execution. To address this, we
developed a multiprocess symbolic executor called Multi-
Otter, along with an implementation of many of the POSIX
functions, such as socket and select, that interactive programs
usually rely on. However, that is just a first step. Next,
we must determine what symbolic inputs to feed to an in-
teractive program to make multiprocess symbolic execution
effective. Providing completely unconstrained symbolic val-
ues causes symbolic execution to spend too much time ex-
ploring uninteresting paths, such as paths to handle invalid
inputs. MultiOtter allows us to generate inputs that con-
form to a context-free grammar, similar to previous work,
but it also enables new input generation capabilities because
we can now run arbitrary programs concurrently with the
program being studied. As examples, we symbolically ex-
ecuted a key-value store server, redis, and an FTP server,
vsftpd, each with a variety of inputs, including symbolic ver-
sions of tests from redis’s test suite and wget as a client for
vsftpd. We report the coverage provided by symbolic exe-
cution with various forms of symbolic input, showing that
different testing goals require different degrees of symbolic
inputs.

1. INTRODUCTION
Symbolic execution [10] is a powerful testing technique for

systematically exploring paths through a program. How-
ever, it has largely been used to study programs whose sym-
bolic inputs come from files or the command line. To test
programs that communicate with other programs would re-
quire a faithful model of system resources such as sockets
and pipes, and such modeling is not typically performed.1

Furthermore, system models alone would not be enough:
while we could imagine implementing means to open and
communicate via pipes and sockets, servers require clients
to be active, creating and connecting to sockets or respond-
ing adaptively to exchanges of information. Therefore, there
must be a programmatic way to specify, from the point of
view of the server, how possible clients may interact with it

1Cloud9, a symbolic execution framework developed concur-
rently with the present work, does model these resources; we
defer discussion of it to Section 5.

symbolically.
To support symbolic execution of interactive programs like

servers, we propose using multiprocess symbolic execution:
we run a client program in parallel with a server, and we pro-
vide a realistic POSIX library that the two use to commu-
nicate. The POSIX library provides the functionality that
servers rely on to communicate with clients, and by running
programs in parallel, we can have a client that creates and
connects to sockets.

Not only does this approach put interacting programs
within reach of symbolic execution, but it also allows us,
by carefully selecting the client program, to precisely con-
trol how we inject symbolic data into the server. The data
can range from purely symbolic (i.e., totally unconstrained)
data, if we want a brute force exploration of the program; to
data constrained using a context-free grammar for avoiding
erroneous inputs, as has been explored in previous work [5,
11]; to very targeted inputs which may consist of, for ex-
ample, concrete tests converted into symbolic tests, or real
client programs that are themselves fed symbolic input.

One key point for multiprocess symbolic execution is that
all processes must share the same constraints on symbolic
values. For example, if we generate symbolic data in a client
and send this data to the server, the server’s code might ex-
amine these symbolic values and cause symbolic execution
to branch, following each possible path. To maintain consis-
tency between server and client, the client code must execute
under the new constraints resulting from branches taken in
the server’s code—assumptions made about symbolic values
in one process’s code must be visible to other processes.

We implemented multiprocess symbolic execution by ex-
tending the symbolic executor Otter [14] to support multiple
processes—we call this extension MultiOtter—and we im-
plemented a large piece of the POSIX specification through
which multiple processes can communicate. We use newlib [13]
as our C standard library, and we implemented several POSIX
components, such as a file system, socket functions, and the
ability to fork new processes. Our POSIX implementation,
limited to the parts needed by our experiments, is written
almost entirely in C, but with low-level functionality such as
forking and blocking handled specially by MultiOtter. Us-
ing our POSIX implementation is quite easy; adding a small
preamble to a server’s code and linking to our POSIX model
is all that is needed to run a client in parallel with the server.
Execution then proceeds as usual: the programs create sock-
ets and communicate over them using read/write or send/recv,
the server can test for connections using select, etc.

We demonstrate MultiOtter’s utility with a sequence of

1

experiments. First, we studied redis, a key-value store server.
MultiOtter made it easy to run a simple client program in
parallel with redis to feed it purely symbolic data. How-
ever, doing so only covered paths corresponding to invalid
inputs. Gracefully handling invalid inputs is certainly im-
portant, but so is handling valid inputs. For our second
experiment, to reach code for handling redis’s main func-
tionality, we created clients that first generate input con-
forming to context-free grammars and then pass the data
to the server. These inputs led to far fewer error paths
than the purely symbolic input, and they successfully issued
many commands to the server. Our final experiment with
redis fully exercised the ability to run an arbitrary program
as a client, going beyond context-free grammars: we modi-
fied some tests from redis’s test suite by making input val-
ues symbolic, effectively yielding a symbolic test suite. All
the symbolic tests passed, but we discovered that symbolic
execution did not cover any code beyond that covered by
the original test suite. Nonetheless, the symbolic test suite
gives much stronger assurance of correctness than the test
suite itself provides: each concrete test demonstrates that
one input-output pair is correct, but a symbolic test shows
that all input-output pairs of that form are correct.

Next, we studied vsftpd, a security-minded FTP server.
As with redis, we began by feeding the server purely sym-
bolic data and then input constrained by a grammar. In this
case, neither form of input was effective at covering anything
beyond paths handling invalid inputs—vsftpd’s parsing of its
input created a large number of paths that handle erroneous
inputs, and the grammar we used was not focused enough
to steer execution toward paths for valid inputs. We next
ran vsftpd with an actual FTP client, wget. Running a sin-
gle concrete input, wget covered many more lines than the
earlier experiments, but of course only a single path. Pro-
viding wget with symbolic input led to a moderate increase
in both lines and paths executed. Finally, we returned to
grammars, but this time restricted to the commands wget
might issue; doing so afforded some improvement over the
previous grammar.

In summary,
• We introduce MultiOtter, a new symbolic execution

engine that can execute several processes in parallel
within a symbolic environment.
• We implemented a POSIX model that can be symboli-

cally executed by MultiOtter to allow programs to use
POSIX system calls to interact.
• We used MultiOtter to run a number of clients against

the redis and vsftpd servers and, for several meth-
ods of providing symbolic input, compared the trade-
offs between how many (and which) lines and paths
were executed. We found that, under a time limit,
purely symbolic inputs explore only paths for invalid
inputs and therefore cover relatively few lines; gram-
mars have widely varying effectiveness, depending on
both the program and the grammar itself; and highly
constrained inputs (symbolic tests or real client pro-
grams) can cover a significant number of lines, but
they explore relatively few paths.

Thus, multiprocess symbolic execution is needed for han-
dling interactive programs, and the choice of how to supply
symbolic inputs must take into account the goal of symbolic
testing.

CIL

Multiprocess
scheduler

server.c

newlib

POSIX
model

client.c

Active
process
updater

MultiOtter

Scheduler Executor

Otter

Handler for
multiprocess

primitives

Figure 1: The architecture of MultiOtter.

2. MULTIOTTER
The overall architecture of MultiOtter is shown in Fig-

ure 1. The core of the system is Otter [14], a single-process
symbolic executor. We now briefly describe Otter, followed
by our POSIX implementation and, finally, MultiOtter it-
self.

2.1 Background: Symbolic execution and Ot-
ter

Symbolic execution [10] is a technique for systematically
exploring paths through a program by introducing symbolic
values into the program. A symbolic executor tracks these
values as they flow through the program and conceptually
forks execution if a conditional depends on a symbolic value,
exploring both branches. The path condition is the con-
junction of all the conditions corresponding to the branches
chosen along a given path; it gives the precise conditions, ex-
pressed as constraints on the symbolic values, under which
that particular path would be taken. For the remainder of
this paper, we assume familiarity with symbolic execution,
and we refer the reader to the literature (e.g. [10, 2, 14]) for
more background.

Otter [14] is a symbolic executor that, given a C program
as input, parses it into an intermediate form using CIL [12]
and then interprets the program. Program variables can be
assigned fresh symbolic values by invoking the SYMBOLIC

function; this is generally done in a driver that then invokes
the program’s main function. Otter operates over a worklist
of what we call jobs, which are snapshots of execution com-
prising a program counter, a path condition, and the state
of memory. At each step of execution, Otter selects a job
to advance, executes the next instruction, and stores the re-
sults back into the worklist (or reports them, if the program
exited or an error occurred).

2.2 POSIX model
Otter is a pure (or static) symbolic executor, similar to

KLEE [2] but somewhat different from dynamic symbolic
executors [6, 7, 17, 15]. As such, it requires an implemen-
tation of all library functions used by the program being
studied. In previous work [2, 14], the set of available library
functions was relatively limited. In particular, support for
network functions was brittle or nonexistent.

We have implemented a more complete system model in-
cluding both the C library functions and a simulation in C
of other POSIX functions. The C library implementation
is provided by using CIL to compile newlib [13] against our
POSIX implementation.

We wrote an in-memory file system called OtterFS as a

2

backend for many POSIX functions. OtterFS is written in
C and makes use of the blocking and shared memory prim-
itives discussed below. Unlike typical in-memory file sys-
tems, OtterFS does not attempt to simulate the layout of
a physical drive, but rather just the file system structure
and data contents. These design choices aim to simplify the
symbolic execution of programs that use OtterFS. OtterFS
includes support for some POSIX devices including /dev/null,
/dev/tty, /dev/console (which is hard-linked to /dev/tty), and
/dev/zero. Reading from /dev/tty produces symbolic data,
and writes to it are logged by MultiOtter. It is possible to
add other devices by implementing read and write functions
for them and adding them to the list of devices. OtterFS
supports traditional Unix permissions, but it only supports
two users: root and non-root.

In OtterFS, sockets are implemented as a wrapper over
a pair of pipes (which are, in turn, implemented as special
fixed-sized files). The socket functions keep track of the
state of the socket and enforce the expected behavior of each
system call. OtterFS does not simulate network errors or
other abnormal environment behaviors, assuming that the
TCP layer absorbs all such errors. Most of the rest of the
socket implementation is stubs of the network layers that are
not being simulated. For example, there is no need to use
socket lingering, since all communication is instantaneous,
but the ability to get and set the socket linger is necessary
to execute programs that attempt to use the linger feature.

2.3 Multiprocess symbolic execution
Since Otter handles only single processes, MultiOtter must

manage metadata associated with multiple processes, which
it does by extending jobs to multijobs. A multijob comprises
a job (the running job), a set of idle processes, and a set of
memory locations shared among all processes. Since multi-
jobs form a subclass of jobs, MultiOtter can reuse large por-
tions of Otter’s functionality, simply providing Otter with a
multijob wherever it expects a job.

Idle processes are each represented by a program counter
and local memory. Recall that the running job has a pro-
gram counter, memory, and a path condition. This path
condition is shared among all processes in a multijob. Cor-
rect behavior depends on the path condition being shared,
as this example illustrates:

if (fork()) { if (x) send(x); else send(1); } /∗ Parent ∗/
else { y = recv(); assert(y); } /∗ Child ∗/

Clearly, the assertion should not fail, regardless of the value
of x: when x is 0, the parent sends 1, and when x is sent, it
is nonzero. Consider what happens if x holds the symbolic
value α. When the parent takes the true branch for if(x), it
assumes α is nonzero and sends α to the child, which then
asserts α is nonzero. If the path condition were not shared,
the child would consider α an unconstrained symbolic value,
and the assertion would fail. For the assertion to succeed,
the child must share the parent’s path condition.

Throughout execution, MultiOtter maintains a worklist
of multijobs and, as depicted in Figure 1 and described in
Figure 2, MultiOtter iteratively selects a multijob from its
worklist, chooses a process from this multijob to execute,
sets the chosen process to be the running job, and either
handles a multiprocess-specific function call or passes the
job to Otter. We now consider each step in more detail.

The first step in MultiOtter’s main loop is scheduling a

1 while worklist is not empty:
2 multijob ← pick multijob(worklist)
3 process ← pick process(multijob)
4 multijob ← set running process(multijob, process)
5 if multijob is calling a multiprocess primitive:
6 results ← handle call(multijob)
7 else:
8 results ← Otter(multijob)
9 worklist ← worklist ∪ results

Figure 2: MultiOtter pseudocode.

Function name Description

otter fork Fork a new process
alloc shared Allocate shared memory
free shared Free shared memory
begin atomic Begin atomic section
end atomic End atomic section
block Block on shared memory

Table 1: Multiprocess primitive functions.

job to execute, which occurs in two parts. First, on line 2
in Figure 2, MultiOtter chooses which multijob to explore
next. For this, MultiOtter reuses Otter’s job scheduler. Ot-
ter allows many different scheduling strategies; we use its
version of generational search [7] although exploring the per-
formance of other strategies may be interesting future work.
In generational search, a given multijob runs until all its pro-
cesses terminate. When a multijob branches (for example,
at if statements that depend on symbolic values), one branch
is selected randomly and followed, and the others are stored
in the worklist as the next generation. When the multijob
terminates, a new multijob is randomly selected from the
oldest generation. This strategy gains the benefit of depth-
first search’s deep exploration (so later parts of a program
can be covered) but the generations provide some breadth.

Next, on line 3, MultiOtter chooses which process in the
multijob to run. For this, MultiOtter uses a preemptive,
round-robin scheduler. This allows other processes to con-
tinue running even if one process is in an infinite loop. Mul-
tiOtter’s scheduler also determines if any process that had
blocked (see below) should be awakened.

After selecting a process to run, MultiOtter makes the
chosen process the multijob’s active job on line 4. This in-
volves moving the previously active job to the list of idle
processes, adjoining the multijob’s shared memory to the
process’s local memory, and attaching the path condition to
the process.

On line 5, MultiOtter inspects the chosen process to see
if it is about to execute a function that is a multiprocess
primitive—a function that only makes sense in the context
of multiprocess execution and cannot be implemented in C.
Since these are relevant only to multiprocess execution, Mul-
tiOtter must handle such functions itself; it cannot delegate
them to Otter. A list of MultiOtter’s primitives is given in
Table 1. These are analogous to system calls in real systems,
and our POSIX implementation makes use of them; in fact,
these functions are only called through OtterFS and POSIX
functions, not from programs directly.

The most basic functionality multiprocess symbolic exe-
cution needs is the ability to create new processes through

3

calls to fork. Our implementation of fork includes some C
code (to update the open-file table) followed by a call to the
MultiOtter primitive otter fork. This call causes MultiOtter
to create a new process within the current multijob. As re-
quired by the semantics of fork, the child’s memory is a copy
of the parent’s, but modifications to non-shared memory in
a child process do not alter the values in the parent process,
and vice versa. Otter (and, hence, MultiOtter) has a purely
functional representation of memory, so this copy-on-write
semantics was quite easy to implement.

MultiOtter also needs a method of managing shared mem-
ory. We created two primitives for this purpose: alloc shared

to create shared memory and free shared to free it. OtterFS
makes heavy use of shared memory. MultiOtter’s model pre-
sumes all processes are on a single machine, so all files and
other file-like objects, such as sockets, are stored in shared
memory, as is the system-wide open-file table.

The final set of primitives we created are for synchro-
nization among processes: begin atomic and end atomic create
atomic sections, and block accepts any number of pointers to
shared memory and suspends the calling process until one of
the designated shared memory regions is modified. The pro-
cess scheduler will not preempt a program while it is in an
atomic section. Calling block releases the process scheduler
to schedule other processes. OtterFS uses these primitives
for many calls that access the file system, for blocking reads
and writes, and for select.

As an example, Figure 3 illustrates how OtterFS uses
synchronization primitives for blocking reads and writes on
pipes, which are required by POSIX to be performed atomi-
cally if possible. A read can only occur if there is data in the
pipe’s buffer; otherwise, it must block until there is data. A
similar situation occurs when writing to a pipe. Addition-
ally, if the write is larger than the free space in the pipe’s
buffer, data is written into any space that is free, but the
write must block until there is space to continue writing the
rest of the data. begin atomic and end atomic are used to make
sure that other processes modify neither the data in the pipe
nor the pipe’s internal metadata while the read or write is
occurring. The calls to begin atomic immediately after the
calls to block ensure that validation of the pipe’s state and
use of the pipe are performed within a single atomic section.

Finally, if the running job is not calling a multiprocess
primitive, MultiOtter simply delegates the instruction to
Otter in line 8. Since Otter presumes its input is a job and
not a multijob, it manipulates only the running job—not
the inactive processes. If shared memory or the path condi-
tion change, MultiOtter makes these changes visible to the
other processes as each one is selected to run. This includes
the case where Otter branches on a symbolic value and re-
turns multiple jobs: the entire multijob is duplicated, includ-
ing the waiting processes, and each process will thenceforth
run under its multijob’s path condition. (Like memory, this
duplication is implemented functionally and hence is quite
straightforward and efficient.)

3. CONTEXT-FREE GRAMMARS
Previous work [5, 11] has explored how to control sym-

bolic execution’s search using context-free grammars, pre-
venting the exploration of the many possible parsing-error
paths through programs that require structured input. We
explored the effectiveness of this technique for programs
that read their inputs over the network, adapting an ap-

int read pipe(pipe t ∗pipe, char ∗buf, size t num) {
/∗ Prevent other processes from changing the pipe. ∗/
begin atomic();
/∗ Block until there is data to read. ∗/
while(pipe is empty(pipe)) {

block(pipe); /∗ implies end atomic ∗/
begin atomic();
}
/∗ Read as much as possible ∗/
size t how many = min(num, available data(pipe));

read pipe internal(pipe, buf, how many);
end atomic();
return how many;
}

int write pipe(pipe t ∗pipe, char ∗buf, size t num) {
begin atomic();
/∗ Write in a loop, blocking if more space is needed. ∗/
size t still to write = num;
while (still to write > 0) {

/∗ Block until there is free space to write into. ∗/
while(pipe is full(pipe)) {

block(pipe); /∗ implies end atomic ∗/
begin atomic();
}
/∗ Write as much as possible ∗/
size t how many = min(still to write, free space(pipe));

write pipe internal(pipe, buf, how many);
still to write −= how many;
buf += how many;
}
end atomic();
return num;
}

Figure 3: Using synchronization primitives with
pipes in OtterFS.

proach used by the authors of the string-constraint solver
HAMPI [9]: we transform a context-free grammar into a set
of C functions that produce a symbolic string conforming to
the grammar. For our experiments, we wrote a small client
program that connects to the server, produces a string us-
ing the generated C code, and sends the string over a socket
to the server. This allows MultiOtter to explore only those
server inputs which conform to the grammar.

The generated code uses two different techniques to create
symbolic strings. First, we encode symbolic strings of a fixed
length by fixed-sized arrays of symbolic bytes. Grammars
introduce a symbolic string of length exactly X by using the
nonterminal2 stringX. Second, Otter supports if-then-else
values—symbolic values of the form ite(i, t, e), which equals
t if i is nonzero and e otherwise. We create these using the ?:

operator when a nonterminal can expand to any one of sev-
eral string literals, producing a symbolic string representing
any one of the literals. Note that we use these techniques be-
cause Otter does not directly support fully symbolic strings,
i.e., variables that range over strings of arbitrary size and
contents.

Pseudocode describing our CFG-to-C transformation is
shown in Figure 4, and code implementing it is given in Fig-

2We could call these terminals, but our transformation
treats them more like nonterminals; hence our terminology.

4

for each nonterminal N (other than stringX):
emit [char *generate_N (void) {]
if N has more than one rhs:

emit [int choice; __SYMBOLIC(&choice);]
counter ← 0
for each rhs R of N that is not a string literal:

s ← R with each nonterminal M replaced by
generate_M ()

if R is the last non-string-literal rhs and
no rhs of N is a string literal:

emit [return concat(s);]
else:

emit [
if (choice == counter)

return concat(s);
else

]
increment counter

if some rhs of N is a string literal:
emit [return (]
for each rhs R of N that is a string literal:

if R is the last string-literal rhs: emit [R]
else: emit [choice == counter ? R :]
increment counter

emit [);]
emit [}]

Figure 4: Grammar-constraint code generation
pseudocode. An rhs is the list of terminals and non-
terminals on the right-hand side of a production,
e.g., N → rhs1|rhs2.

ure 12 in Appendix B. For brevity, two pieces of our trans-
formation are omitted from these figures. First, an initial
preprocessing step adds auxiliary nonterminals to remove
syntactic sugar such as Kleene star. Second, stringX non-
terminals are handled specially, but we omit the (straight-
forward) process of producing the C functions corresponding
to these nonterminals.

Example grammar. Consider the following CFG specify-
ing a tiny subset of FTP, where nonterminals are italicized
and terminals are shown in red.

start → USER string3 \nPASS string3 \n cmd*;
cmd → HELP\n | LIST\n | QUIT\n;

Figure 5 shows a simplified version of the C code produced
by our transformation. The preprocessing step introduces a
new nonterminal

cmd star → ε | cmd cmd star

and replaces cmd∗ with cmd star in start’s right-hand side.
Then, one function is produced for each nonterminal.

We produce a generate stringX function for each stringX
nonterminal used in the given grammar. As generate string3

demonstrates, these use the Otter primitives ASSUME and
SYMBOLIC. ASSUME(exp) adds the constraint that ex-

pression exp is nonzero, and SYMBOLIC(&v) assigns a fresh
symbolic value to variable v.

For all other nonterminals, we produce a function that

char ∗generate string3(void) {
char ∗str = malloc(4), c;

SYMBOLIC(&c); ASSUME(c); str[0] = c;
SYMBOLIC(&c); ASSUME(c); str[1] = c;
SYMBOLIC(&c); ASSUME(c); str[2] = c;

str[3] = 0;
return str;

}

char ∗generate start(void) {
return concat("USER ", generate string3(), "\nPASS ",

generate string3(), "\n", generate cmd star());
}

char ∗generate cmd star(void) {
int choice; SYMBOLIC(&choice);
if (choice == 0)

return concat(generate cmd(), generate cmd star());
else

return (""); // Empty string
}

char ∗generate cmd(void) {
int choice; SYMBOLIC(&choice);
return (choice == 0 ? "HELP\n" :

choice == 1 ? "LIST\n" :
"QUIT\n");

}

Figure 5: Grammar-constraint code example.

makes a symbolic choice of how to expand the nonterminal.
Expanding to anything other than a string literal involves
calling functions to generate substrings and then concatenat-
ing the results. Expanding to a string literal simply returns
that string, but if a nonterminal can expand to any one of
several string literals, they are all grouped together using
the ?: operator, as discussed above.

Example execution. We now consider an execution start-
ing from generate start. When calling this function, Otter
first generates two symbolic strings of length 3 (for the user-
name and password), then it generates the string for cmd*,
and finally it concatenates the results. As it generates cmd*,
it will branch on the variable choice. In the choice != 0 case,
it generates the empty string, and the final result is

USER α0α1α2\nPASS α3α4α5\n

In the choice == 0 case, it calls generate cmd, where Otter
does not branch on the ?: operator but instead generates a
symbolic if-then-else pointer which can refer to any of the
three possible strings. After that, Otter branches on choice

in the recursive call to generate cmd star. In the choice == 0

case, this process repeats, but in the choice != 0 case, the
final string is

USER α0α1α2\nPASS α3α4α5\nβ0β1β2β3β4

where the αis are constrained to be non-null and the βis
are if-then-else values that depend on the symbolic value of
choice from generate cmd. For example, if that symbolic value
is γ, the value of β0 is

ite(γ = 0, ’H’, ite(γ = 1, ’L’, ’Q’)).

5

Our grammar-constraint encoding differs from HAMPI’s [9]
in several ways. HAMPI requires a maximum string length,
while our encoding does not require one—one can be given,
but if not, Otter will continue exploring ever-larger strings in
the grammar until its execution is terminated by the user or
by a timeout. Also, HAMPI performs some simplifications
of the given CFG, but our transformation uses the CFG as
given. Finally, HAMPI’s encoding uses only arrays of sym-
bolic bytes; it does not use if-then-else values. We leave
exploring the ramifications of these different encodings to
future work.

As we will see in Section 4.1, using context-free grammars
to approximate non–context-free languages can be problem-
atic. Note, though, that because our transformation pro-
duces C code that is “executable” by our symbolic executor,
we are not truly limited to context-free grammars. We can
hand-modify the generated code to produce non–context-
free behavior, if desired. We have not explored this possi-
bility but it is something we hope to consider in the future.

4. EXPERIMENTS
To validate the practicality of our symbolic executor and

POSIX model, we symbolically executed two widely used
server programs—a key-value store server, redis, and an
FTP server, vsftpd. Also, to explore the impact of vary-
ing degrees of constraints on symbolic input, we used sev-
eral clients that provided different types of input: purely
symbolic input, input conforming to a context-free gram-
mar, and highly constrained input based on an existing test
suite or client program. We ran our experiments on a Mac
Pro with two 2.26 GHz quad-core Xeon processors (note,
though, that MultiOtter is single-threaded) and 16 GB of
RAM. Each execution was given a timeout of 3 hours.

The metrics we considered were line coverage and num-
ber of paths explored. Line coverage is a useful baseline
because executing code is obviously necessary for finding a
bug in that code, but counting the number of paths is a much
stronger way of determining how much of the program has
truly been exercised. Counting paths in multiprocess sym-
bolic execution requires clarification: we are actually count-
ing path conditions. Thus, each multijob counts as a single
path regardless of the number of processes. Furthermore,
we ignored paths that were created as a result of branch-
ing but were never selected for execution by the scheduler
before the timeout. Recall that we used a search strategy
that executes each multijob to completion before switching
to another multijob; thus, every path was a complete path,
except for the one that was executing when the timeout ex-
pired.

To enable us to attach a client process to a server, we
added a small preamble to each server’s main function; this
preamble calls fork to create the client process. The client
process creates a socket and connects to the server before
writing data to the server. However, the client would receive
an error indicating a refused connection if it tried to connect
before the server was ready. Therefore, we also added, at the
point where the server calls listen, a single assignment set-
ting a sentinel value. Our block primitive delays the client’s
execution until this value is set. Note that this initializa-
tion, which is needed even for feeding purely symbolic data
to the server, directly relies on our multiprocess symbolic
execution framework.

Experiment Line cov Paths

1 pure symbolic 11.78% 717
2 overapprox. grammar 17.58% 164

underapprox. grammar 23.84% 481
3 test suite 25.45% 70

symbolic test suite 25.45% 83

Table 2: Experimental results – redis.

We also made some other minor modifications to our sub-
ject programs to facilitate our experiments. For example, for
redis, we decreased the number of objects that it allocates
at startup, and we circumvented its wrappers around malloc

and free. Both of these modifications lighten the load on
MultiOtter without affecting program semantics in our ex-
periments. For vsftpd, we modified its mmap-based memory
allocator to use malloc.

4.1 redis
redis is a key-value store server written in C and consist-

ing of approximately 10,000 lines of code. We used version
2.2.0-rc4 in our experiments. The core commands that redis
supports are various reading, writing, and updating com-
mands for a map from strings to strings, or from strings
to one of several data structures containing strings. Aside
from this functionality, redis has other features, such as com-
mands for clients to subscribe to named channels and pub-
lish messages over those channels, or to perform a set of
actions atomically in case multiple clients are accessing the
database at the same time.

redis’s main use of our POSIX model is in its use of sock-
ets: creating a socket to listen for connections, using select

to wait for either client commands or new connections, and
reading and writing over a socket with each client. It also
has an event loop that regularly calls gettimeofday; we imple-
mented a simple notion of time wherein each successive call
to gettimeofday returns a value one microsecond later than
the previous call. Making time symbolic would allow us to
search for errors related to timing issues3, but it also greatly
expands the space of possible executions, so we leave this for
future work.

We executed redis under MultiOtter in a series of experi-
ments, the results of which are shown in Table 2. For each
experiment, the table shows the percentage of line coverage
attained and the number of paths explored. It is clear from
the table that exploring more paths does not mean cover-
ing more lines of code, but it is important to recall that
each path represents a different class of inputs—so there is
some merit to covering many paths, even at the expense
of line coverage. Our experiments are an investigation into
how to achieve different tradeoffs: unconstrained input ex-
plores many paths but does not cover many lines, highly con-
strained input explores few paths but many lines, and mod-
erately constrained input strikes a balance between those
extremes.

3In one initial experiment, for example, our tick was one
second, rather than one microsecond, and this exposed a
potential starvation problem: redis schedules one specific
function for execution every 100 milliseconds. If the function
takes longer than that to run, redis will invoke the function
again, rather than servicing waiting clients.

6

Experiment 1: Purely symbolic input. As our first exper-
iment, to exercise redis and MultiOtter at a basic level and
to see how well a straightforward but naive approach would
fare, we provided a client that feeds 100 unconstrained sym-
bolic bytes of data to the server. While this client explored
over 700 paths, only 12% of the code was covered, and none
of the paths corresponded to a well-formed command being
issued.

Experiment 2: Grammar-constrained input. Next, we
used a grammar to try to limit the commands to valid in-
puts. For simplicity, we restricted keys and values to be
exactly one character long. Longer keys and values would
be unlikely to exercise additional program behavior; hence,
they would do little but complicate our experiments, espe-
cially because redis computes hashes of keys, and hashes
often cause trouble for constraint solvers [4]. One wrinkle
in using context-free grammars to describe redis’s input lan-
guage is that it is not context-free: it includes several com-
mands that accept a variable number of arguments, and the
number of arguments is itself a part of the command. To
deal with this, we used two different grammars: one under-
approximating the actual input language by requiring each
command to have a fixed number of arguments, and one
overapproximating by allowing malformed inputs that spec-
ify the wrong number of arguments.4 The grammars are
given in Appendix A.

As shown in Table 2, both grammars get better line cov-
erage than the purely symbolic input does, despite exploring
fewer paths. However, the overapproximation gets less cov-
erage and explores fewer paths than the underapproxima-
tion. This is due to more complicated symbolic expressions
than the underapproximate grammar generates, which re-
sult in more and slower calls to the constraint solver. We
suspect these constraints come from converting the sym-
bolic value representing the number of arguments into an
integer. Another factor, albeit of less importance, in the
overapproximate grammar’s lower coverage is that many
paths corresponding to partially valid input have multiple
offshoots that all hit the same error-handling code. This
is code that the underapproximate grammar cannot execute
so, given enough time, the overapproximate grammar should
get higher coverage. However, exploring these paths reduces
the rate at which the overapproximate grammar executes
paths for valid commands, which results in lower line cover-
age given our time limit.

As another way of comparing these experiments, Figure 6
shows the number of lines covered by each symbolic execu-
tion as a function of time. All three forms of input covered
a large number of lines quickly—this is mostly code to ini-
tialize the server and read an input. After this, the three
diverge. The pure symbolic client executed many paths that
all hit the same three errors; it finally found a different error
around 5,000 seconds and then a fifth around 9,000 seconds.
In contrast, both of the grammars periodically execute a
new command, yielding new coverage. The overapproxi-
mate grammar covers new lines more slowly than the un-
derapproximate grammar because, as noted above, it runs
more slowly in general due to more complicated symbolic

4Previous work on grammar-based constraints for symbolic
execution [5] noted that approximating input languages is
sometimes necessary, but it did not explore the impact of
these approximations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000 12000

L
in

e
s
 C

o
v
e
re

d

Time (s)

pure-symbolic
overapprox-grammar

underapprox-grammar

Figure 6: Number of lines covered over time for
redis.

expressions.
For both grammars, we found that a large proportion of

the multijobs left in MultiOtter’s worklist when the timeout
expired had never finished generating inputs conforming to
the grammar; relatively few were branches off of code in redis
itself. Perhaps other ways of encoding grammar constraints
would behave differently, but we leave this investigation to
future work. Regardless, our experiments clearly confirm
previous results showing that constraining inputs to context-
free grammars is helpful in exploring more of the program
by eliminating invalid inputs [5, 11].

Experiment 3: Symbolic tests. Finally, we converted a
portion of redis’s test suite to symbolic tests to see the ef-
fects of further constraining the symbolic input to the server.
redis’s test suite as a whole consists of 845 tests and achieves
58% line coverage, as measured by lcov. We focused on just
a subset of this test suite: 70 tests that exercise redis’s list
data structure, which on their own achieve 25% line cover-
age of redis’s code base. The tests are written in Tcl. We
modified the existing test harness so that executing the tests
did not interact with the server, but instead printed out a
trace of the commands to be issued and assertions to be
checked by MultiOtter. We modified these traces to make
the keys and most of the values used in the tests be sym-
bolic. We then attached each of these tests (or groups of
tests, in cases where several tests had to be run together to
behave properly) as client programs to the server.

One benefit of using a test suite is that its assertions pro-
vided semantic properties for MultiOtter to test. (In the
earlier experiments, in contrast, MultiOtter only tested the
server for basic safety violations such as null dereferences
or buffer overflows.) Making the keys and values purely
symbolic caused some of the assertions to fail because sym-
bolic values were sometimes interpreted as whitespace rather
than data. However, constraining the keys and values to
be letters—that is, symbolic bytes in the range [A-Za-z]—
caused all of the test suite’s assertions to pass.

Interestingly, the concrete tests and the symbolic tests
covered all the same lines and, aside from line coverage, the
symbolic tests did not explore very many paths—in all, the
symbolic tests explored 83 paths, compared to the 70 con-
crete tests (one path per test). This shows that the concrete

7

Experiment Line cov Paths

1 pure symbolic 21.24% 85
2 grammar 21.50% 172
3 wget (concrete) 32.75% 1

wget + symbolic 34.07% 28
reduced grammar 25.51% 143

Table 3: Experimental results – vsftpd.

tests are actually quite general. A good test is meant to
demonstrate not just that one particular input is handled
properly but that a class of inputs is, and our experiment
demonstrates that this is the case for redis’s test suite. The
tests depended on the specific values only when a symbolic
value was compared against a value that we left concrete
in the tests, or when the hash of one symbolic value was
compared against another. However, one drawback to our
findings is that they suggest that, at least for redis, more
work is required to get better coverage. Simply replacing
concrete values with symbolic values only goes so far; more
sophisticated tests with more intricate assertions seem to be
necessary.

4.2 vsftpd
vsftpd is an FTP server, also written in C and about

10,000 lines of code, designed for security and speed. We
used version 2.0.7 of vsftpd and configured it to run in stan-
dalone mode (as opposed to being forked on demand by in-
etd). As with redis, we executed vsftpd under MultiOtter in
a series of experiments, measuring line coverage and paths
explored. We initialized OtterFS so the server makes avail-
able one file with a single-character filename. We enabled
anonymous access and disabled use of chroot and file locking,
which OtterFS does not fully support. We disabled passive
mode FTP to highlight the effectiveness of using an actual
client program over a grammar—the client program can in-
terpret the failed activation of passive mode and switch to
active mode. The results of all experiments are shown in
Table 3.

Experiment 1: Purely symbolic input. Similar to our
first experiment with redis, we began with a client that con-
nects to the server and sends it 100 unconstrained symbolic
bytes. The majority of the code covered was executed be-
fore vsftpd was ready to accept connections. The stream of
symbolic bytes did not do very well: it explored few paths
and covered few lines, and none of the paths explored in the
allotted time successfully logged in.

Investigating this, we found that, upon receiving input,
vsftpd checks whether each character is a special character
(such as a null, newline, or space) before checking to see
whether it received a valid FTP command. When MultiOt-
ter takes the branch corresponding to detecting one of the
special characters at any one of these checks, it takes time
before MultiOtter eventually backtracks to try the other,
more useful, branch. This fruitless exploration is further ex-
acerbated because, when vsftpd hits an error, it does not
immediately exit—it prints an error message, such as “in-
valid command”, and continues reading the remainder of
the input. So, when executing vsftpd, MultiOtter does this
as well, only backtracking when all 100 input bytes are ex-

hausted. Given our time limit, MultiOtter failed to explore
any path where USER, the command initiating login, ap-
peared as part of vsftpd’s input.

Note that redis did not exhibit this behavior. When redis
encounters an error, such as those triggered by the purely
symbolic input, it discards the rest of its input, so MultiOt-
ter quickly backtracks. Also, redis does not print an error
message upon encountering these errors, so MultiOtter does
not spend time, as it does with vsftpd, executing code to
send messages to the client. This explains the large differ-
ence in number of paths explored by the purely symbolic
client for the two server programs.

Experiment 2: Grammar-constrained input. Second, we
used a grammar, shown in Figure 10 in Appendix A, that
represents all the commands that could be sent to a basic
FTP server. The grammar constrains the input to issue a
USER command, followed by a symbolic username, a PASS

command with a symbolic password, an arbitrary series of
other control commands, and finally QUIT. Despite this
structure, the grammar covered very few additional lines,
compared to the purely symbolic input. The same problem
occurred here as before: even when constrained to begin
with a USER command, finding a valid user name (the short-
est is FTP, a standard anonymous login) proved too much
for MultiOtter, given the time limit.

The additional lines covered in this experiment handled
the commands USER, PASS, and QUIT, which are supplied
concretely by the grammar. (QUIT executes successfully,
but USER and PASS simply lead to errors.) This experiment
explored more paths than the purely symbolic input because
the paths were generally shorter: the grammar generated
inputs that were shorter than the 100 bytes used in the first
experiment.

Experiment 3: A real client – wget. Third, we used a real
client program, wget. As a baseline, we ran wget through
MultiOtter with a concrete input instructing it to down-
load the planted file on the file system. This resulted in
a huge improvement in coverage over the previous experi-
ments: while wget missed some pre-login code executed in
the previous experiments, it issued all the commands to log
in and download the file.

In fact, having an active client such as wget is critical to
downloading a file. Unlike redis, vsftpd expects its client
to create additional sockets, beyond the one over which
the initial connection is established. These sockets trans-
mit data rather than commands and responses. This means
that clients that only provide data to the server but do not
actively create sockets—such as the clients used in the first
two experiments—are limited to executing commands that
communicate only over the initial socket. Fully exercising
an FTP server’s functionality would therefore be very diffi-
cult without an active client program executing in parallel
with the server.

Due to its reliance on POSIX, such a client/server inter-
action was beyond the reach of symbolic execution in the
past. However, the experiment just described was a con-
crete execution, using MultiOtter only because it is directly
comparable to the other experiments. To make use of the
symbolic executor, we next ran wget with a partially sym-
bolic input that set the file name symbolic. This resulted
in covering 1.32% lines beyond those covered with a con-

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000 12000

L
in

e
s
 C

o
v
e
re

d

Time (s)

pure-symbolic
grammar

grammar-reduced
wget-concrete
wget-symbolic

Figure 7: Number of lines covered over time for
vsftpd.

crete input. While this is not a large increase in coverage,
it does cover all lines covered by the concrete test while also
covering many more paths through that code.

Finally, to more directly compare the grammar to wget,
we constructed a reduced grammar, shown in Figure 11 in
Appendix A, that only contains commands that wget could
execute. The reduced grammar covered 29 lines (0.7%) that
were not covered by the symbolic wget; these lines corre-
spond to error conditions that wget does not hit because
wget always supplies valid inputs. Symbolic wget covered
392 lines (9.2%) that were not covered by the reduced gram-
mar; these correspond to the execution of a successful file
download.

Comparing the two grammars, the reduced grammar cov-
ered all the lines that the full grammar covered plus an ad-
ditional 4% of vsftpd’s lines. These extra lines correspond
to successfully logging in and to issuing a CWD command
(albeit for an invalid directory).

As a final analysis of our experiments, Figure 7 shows the
number of lines covered as a function of time, for each exper-
iment. In each case, most of the new lines were covered at
the beginning of execution. Some of these lines correspond
to vsftpd’s initialization code, which is the same in each run.
However, after that, the coverage from the symbolic input
and the full grammar stalled because they repeatedly issued
invalid commands. The reduced grammar also mostly is-
sued invalid commands, but there are two points at which
its coverage increased: it logged in and issued a command at
700 seconds, and then it issued an invalid command (while
logged in, which covers different code than pre-login invalid
commands cover) at 4,000 seconds. The wget runs exhibit
a sharp delay before achieving any coverage. This is due to
a long pause while Otter initializes several large tables of
data that wget uses for parsing inputs. We believe we can
eliminate this pause with a small optimization in Otter, but
despite this delay, the wget runs quickly surpass the others
in lines covered.

4.3 Discussion
For both redis and vsftpd, we found in agreement with

earlier findings [5, 11] that, given a reasonable timeframe,
purely symbolic inputs only cover paths for invalid inputs.
Also, highly constrained inputs are able to explore long, in-

teresting program paths, although they tend not to explore
very many paths.

Constraining inputs to context-free grammars was much
more variable. First, grammars were much more effective in
improving coverage beyond purely symbolic input with redis
than with vsftpd. This is because of a difference between
how the two servers’ inputs are delimited. FTP messages
are self-delimited, so vsftpd must check each input charac-
ter to see if it is a control character, and this leads to a
large amount of branching. redis’s protocol, on the other
hand, specifies the lengths of arguments; in this context,
any character is legal so checking for control characters—
and branching as a result—is unnecessary for reading input.
Second, for each server, there was a noticeable difference
between the performance of the two grammars we used. In
both cases, constraining the grammar more led to higher line
coverage, and also to more paths covered (for redis) or only
slightly fewer (for vsftpd). Previous work [5, 11] discussing
context-free grammars as a way to constrain symbolic exe-
cution did not emphasize how important the details of the
grammar are to its effectiveness. Third, for vsftpd, we noted
that there is a fundamental limitation when using context-
free grammars as input: vsftpd expects the client to create
new sockets in order to, for example, download a file. A
client that simply supplies a stream of input data will not
fill this role and will not be able to explore pieces of the
server’s functionality that depend on an active client.

Thus, context-free grammars can sometimes be used to
strike a balance between purely symbolic input (potentially
exploring many paths but few lines) and highly constrained
input (many lines but few paths). However, care must be
taken to craft an appropriate grammar, and if a server truly
requires an active client to interact with, grammars will not
be effective.

5. RELATED WORK
There is no shortage of work on symbolic execution [8,

16, 6, 7, 2, 17, 15], but previous work has focused on pro-
grams in isolation. Even works that study concurrent pro-
grams [8, 18] study a single multithreaded program at a
time, rather than multiple communicating programs. There
have even been papers [15, 18, 14] presenting results of sym-
bolically executed server programs, but these papers had
to work around the need for a client program. One pa-
per [15] involved extracting code that was known to contain
bugs, rather than executing the program in its entirety. In
our previous work [14], we implemented mocked version of
POSIX functions and carefully initialized the file system so
that calls to read and recv provided the necessary data to the
server. These manual modifications were tedious and error-
prone, and they had to be separately done for each program
being studied. MultiOtter and its POSIX library obviate
the need for this extra labor.

Several symbolic execution systems [6, 7, 3, 2] interact
with the underlying system during symbolic execution by
making external calls using concrete values. This means the
symbolic executor’s model of, for example, the operating sys-
tem does not need to be complete for the symbolic executor
to work. On the other hand, making concrete external calls
limits the reach of symbolic execution and can also lead to
an imprecise or inconsistent view of program state. Despite
interacting with the environment, though, these systems still
focus only on studying a single program at a time. The en-

9

vironment they envision is essentially static, consisting of
library or OS functions rather than another executing pro-
gram. Perhaps one could use these systems to symbolically
execute programs which communicate via the network by
performing the network calls concretely and having a client
program running “on the other side”. This has not been at-
tempted, however, and there are potential stumbling blocks,
primarily due to the fact that the other program would ex-
ecute concretely. Chipounov, Kuznetsov, and Candea [3]
discuss ways of overcoming some of these problems. They
also consider tradeoffs that come from various levels of fi-
delity in modeling the environment, but it is unclear how
these considerations translate when the environment is an-
other program.

Our experiments with grammar-constrained input were
directly inspired by previous work demonstrating how to
prevent symbolic execution from “getting lost” in uninter-
esting program paths [5, 11]. However, this work focused on
a single program in isolation. We presented results showing
that grammar-based constraints can be effective for interact-
ing programs, too, but only if the interaction between the
programs is data-only; we also demonstrated the impact of
approximating context-sensitive languages with context-free
grammars.

Loop-extended symbolic execution [15] adds support for
better handling loops, which, among other benefits, helps
prevent symbolic execution from spending too much time
exploring paths for invalid inputs. That work also matches
symbolic inputs to features of the input grammar such as
lengths of arguments. Combining loop-extended symbolic
execution and multiprocess symbolic execution remains an
interesting avenue for future work.

A system very similar to MultiOtter, called Cloud9 [1],
was developed concurrently to our work. As we did, the au-
thors enhanced a symbolic executor—they used KLEE [2]—
with multiprocess support. They developed a POSIX model
very similar to ours, although they support threads and they
allow for simulating network anomalies (e.g., packet frag-
mentation), which we do not. Another major component of
Cloud9, orthogonal to symbolic execution of communicating
programs, is distributing symbolic execution over a cluster
of computers to exploit the inherent parallelizability of sym-
bolic execution. Their paper discusses using existing test
cases as a model for symbolic tests, but their experiments
focus on their distributed architecture and how it, and their
POSIX model, extend the reach of symbolic execution with
purely symbolic inputs. Our work studies in more detail
how different forms of symbolic input affect what parts of
the program will execute.

6. CONCLUSION
We built a multiprocess symbolic execution framework

along with a POSIX model that many real communicating
programs use. We showed that this framework allows us to
symbolically execute server programs, but that we must be
careful about how we provide input if we wish to cover more
than error-handling code. Context-free grammars provide
some benefit in this regard, but they are of limited effec-
tiveness when they only approximate the program’s actual
input language, or when the program requires more than
simply data as input—such as establishing socket connec-
tions at arbitrary points in the program’s execution. Using
a real client program, or modifying concrete tests to make

symbolic tests, gives more control over what paths get sym-
bolically executed, yielding higher line coverage but explor-
ing fewer paths. Thus, depending on the testing goal, each
of these forms of symbolic input can be useful.

Acknowledgments
This work was funded in part by NSF grants CCF-0541036
and CNS-0905419.

7. REFERENCES
[1] S. Bucur, V. Ureche, C. Zamfir, and G. Candea.

Parallel symbolic execution for automated real-world
software testing. In Proceedings of the sixth ACM
SIGOPS/EuroSys Conference on Computer Systems,
EuroSys ’11, pages 1–15, Salzburg, Austria, 2011.
ACM.

[2] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, pages
209–224, 2008.

[3] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a
platform for in-vivo multi-path analysis of software
systems. In Proceedings of the sixteenth international
conference on Architectural support for programming
languages and operating systems, ASPLOS ’11, pages
265–278, New York, NY, USA, 2011. ACM.

[4] P. Godefroid. Compositional dynamic test generation.
In POPL ’07: Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 47–54, New York, NY,
USA, 2007. ACM.

[5] P. Godefroid, A. Kiezun, and M. Y. Levin.
Grammar-based whitebox fuzzing. In PLDI, pages
206–215, 2008.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In PLDI, pages
213–223, 2005.

[7] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In NDSS. Internet
Society, 2008.

[8] S. Khurshid, S. Khurshid, C. S. Pasareanu, and
W. Visser. Generalized symbolic execution for model
checking and testing. TACAS, pages 553–568, 2003.

[9] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. Hampi: a solver for string constraints. In
ISSTA ’09: Proceedings of the eighteenth international
symposium on Software testing and analysis, pages
105–116, New York, NY, USA, 2009. ACM.

[10] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[11] R. Majumdar and R.-G. Xu. Directed test generation
using symbolic grammars. In Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, ASE ’07, pages
134–143, New York, NY, USA, 2007. ACM.

[12] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In CC ’02:
Proceedings of the 11th International Conference on
Compiler Construction, pages 213–228, London, UK,
2002. Springer-Verlag.

10

[13] The Newlib Homepage, 2011.
http://sourceware.org/newlib/.

[14] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and
A. Porter. Using Symbolic Evaluation to Understand
Behavior in Configurable Software Systems. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE), pages 445–454, Cape
Town, South Africa, May 2010.

[15] P. Saxena, P. Poosankam, S. McCamant, and D. Song.
Loop-extended symbolic execution on binary
programs. In ISSTA ’09: Proceedings of the eighteenth
international symposium on Software testing and
analysis, pages 225–236, New York, NY, USA, 2009.
ACM.

[16] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In FSE-13, pages 263–272,
2005.

[17] N. Tillmann and J. De Halleux. Pex: white box test
generation for .net. In Proceedings of the 2nd
international conference on Tests and proofs, TAP’08,
pages 134–153, Berlin, Heidelberg, 2008.
Springer-Verlag.

[18] C. Zamfir and G. Candea. Execution synthesis: a
technique for automated software debugging. In
Proceedings of the 5th European conference on
Computer systems, pages 321–334. ACM, 2010.

APPENDIX
A. CONTEXT-FREE GRAMMARS

We present here the context-free grammars used in our
experiments. redis’s input language is documented at http:
//redis.io/topics/protocol, and its commands are doc-
umented at http://redis.io/commands. Figures 8 and 9
show the overapproximate grammar used for redis. For the
underapproximate grammar, we expanded all occurrences
of ‘+’ twice and we set the number of arguments (digit in
the figures) accordingly. For example, the MGET and MSET

commands in the underapproximate grammar were

*3\r\n$4\r\nMGET\r\n key key
*5\r\n$4\r\nMSET\r\n key value key value

Also, for the sort command, we omitted all optional argu-
ments, leaving

*2\r\n$4\r\nSORT\r\n key

Next, Figures 10 and 11 show the grammars used to con-
struct vsftpd’s inputs.

These grammars rely on several nonterminals that our
grammar-constraint code generator automatically introduces:

• stringN , for any N , produces a symbolic string of length
N

• digit generates a symbolic string of length 1 constrained
to be in the range [0−9]

• letter generates a symbolic string of length 1 constrained
to be in either [A−Z] or [a−z].

start → command+;

command →
| generic command
| string command
| list command
| set command
| connection command
;

string command →
| *2\r\n$3\r\nGET\r\n key
| *3\r\n$3\r\nSET\r\n key value
| *3\r\n$5\r\nSETNX\r\n key value
| *4\r\n$5\r\nSETEX\r\n key seconds value
| *3\r\n$6\r\nAPPEND\r\n key value
| *2\r\n$6\r\nSTRLEN\r\n key
| *4\r\n$6\r\nSETBIT\r\n key offset $1\r\n (0|1) \r\n

| *3\r\n$6\r\nGETBIT\r\n key offset
| *4\r\n$8\r\nSETRANGE\r\n key offset value
| *4\r\n$8\r\nGETRANGE\r\n key begin end
| *2\r\n$4\r\nINCR\r\n key
| *2\r\n$4\r\nDECR\r\n key
| * digit \r\n$4\r\nMGET\r\n key+
| *3\r\n$6\r\nINCRBY\r\n key increment
| *3\r\n$6\r\nDECRBY\r\n key decrement
| *3\r\n$6\r\nGETSET\r\n key value
| * digit \r\n$4\r\nMSET\r\n (key value)+
| * digit \r\n$6\r\nMSETNX\r\n (key value)+
;

generic command →
| * digit \r\n$3\r\nDEL\r\n key+
| *2\r\n$6\r\nEXISTS\r\n key
| *1\r\n$9\r\nRANDOMKEY\r\n
| *3\r\n$4\r\nMOVE\r\n key db
| *3\r\n$6\r\nRENAME\r\n key key
| *3\r\n$8\r\nRENAMENX\r\n key key
| *3\r\n$6\r\nEXPIRE\r\n key seconds
| *3\r\n$8\r\nEXPIREAT\r\n key timestamp
| *2\r\n$4\r\nKEYS\r\n pattern
| *2\r\n$4\r\nTYPE\r\n key
| * digit \r\n$4\r\nSORT\r\n key [$2\r\nBY\r\n pat-
tern] [$5\r\nLIMIT\r\n offset count] ($3\r\nGET\r\n
($1\r\n#\r\n|pattern))* [$3\r\nASC\r\n|$4\r\nDESC\r\n]
[$5\r\nALPHA\r\n] [$5\r\nSTORE\r\n key]
| *2\r\n$3\r\nTTL\r\n key
| *2\r\n$7\r\nPERSIST\r\n key
;

Figure 8: Overapproximate redis grammar, part 1.

11

list command →
| *3\r\n$5\r\n (L|R) PUSH\r\n key value
| *3\r\n$6\r\n (L|R) PUSHX\r\n key value
| *5\r\n$7\r\nLINSERT\r\n key
($6\r\nBEFORE|$5\r\nAFTER) \r\n pivot value
| *2\r\n$4\r\n (L|R) POP\r\n key
| * digit \r\n$5\r\nB (L|R) POP\r\n key+ timeout
| *4\r\n$10\r\nBRPOPLPUSH\r\n key key timeout
| *2\r\n$4\r\nLLEN\r\n key
| *3\r\n$6\r\nLINDEX\r\n key index
| *4\r\n$4\r\nLSET\r\n key index value
| *4\r\n$6\r\nLRANGE\r\n key begin end
| *4\r\n$5\r\nLTRIM\r\n key begin end
| *4\r\n$4\r\nLREM\r\n key count value
| *3\r\n$9\r\nRPOPLPUSH\r\n key key
;

set command →
| *3\r\n$4\r\nS (ADD|REM) \r\n key member
| *4\r\n$5\r\nSMOVE\r\n key key member
| *3\r\n$9\r\nSISMEMBER\r\n key member
| *2\r\n$5\r\nSCARD\r\n key
| *2\r\n$4\r\nSPOP\r\n key
| *2\r\n$11\r\nSRANDMEMBER\r\n key
| * digit \r\n$6\r\nSINTER\r\n key+
| * digit \r\n$11\r\nSINTERSTORE\r\n key key+
| * digit \r\n$6\r\nSUNION\r\n key+
| * digit \r\n$11\r\nSUNIONSTORE\r\n key key+
| * digit \r\n$5\r\nSDIFF\r\n key+
| * digit \r\n$10\r\nSDIFFSTORE\r\n key key+
| *2\r\n$8\r\nSMEMBERS\r\n key
;

connection command →
| *2\r\n$6\r\nSELECT\r\n db
| *2\r\n$4\r\nAUTH\r\n password
| *1\r\n$4\r\nPING\r\n
| *2\r\n$4\r\nECHO\r\n message
| *1\r\n$4\r\nQUIT\r\n
;

one char arg → $1\r\n string1 \r\n;
one digit arg → $1\r\n digit \r\n;

key → one char arg;
value → one char arg;
pattern → one char arg;
message → one char arg;
member → one char arg;
password → one char arg;

offset → one digit arg;
count → one digit arg;
seconds → one digit arg;
decrement → one digit arg;
increment → one digit arg;
timeout → one digit arg;
begin → one digit arg;
end → one digit arg;
db → one digit arg;
index → one digit arg;
pivot → one digit arg;
timestamp → one digit arg;

Figure 9: Overapproximate redis grammar, part 2.

start → USER username \nPASS password \n (cmd \n)*
QUIT\n;

cmd →
no arg cmd
| upload cmd filename
| REST int \n (APPE | STOR | RETR) filename
| RNFR filename \nRNTO filename
| dir cmd dirname
| file cmd filename
| MODE (S | B | C)
| STRU (F | R | P)
| TYPE ((A | E) (N | T | C) | I | L digit)
| PORT int , int , int , int , int , int
;

no arg cmd → NOOP | CDUP | PWD | HELP | SYST | STAT
| SITE | ABOR | LIST | NLST | PASV;
upload cmd → APPE | STOR | STOU;
dir cmd → CWD | MKD | RMD | LIST | NLST | STAT | SMNT;
file cmd → DELE | RETR | LIST | NLST | STAT;

dirname → [/] filename (/ filename)*;

filename → letter+;
username → string3;
password → string2;
int → digit+;

Figure 10: Full FTP grammar.

start → USER username \nPASS password \n (cmd \n)*
QUIT\n;

cmd →
no arg cmd
| REST int \nRETR filename
| dir cmd dirname
| file cmd filename
| TYPE ((A | E) (N | T | C) | I | L digit)
| PORT int , int , int , int , int , int
;

no arg cmd → PWD | SYST | LIST | PASV;
dir cmd → CWD | LIST;
file cmd → RETR | LIST;

dirname → [/] filename (/ filename)*;

filename → letter+;
username → string3;
password → string2;
int → digit+;

Figure 11: Reduced FTP grammar.

12

B. CONTEXT-FREE GRAMMAR CONSTRAINT
GENERATION CODE

Figure 12 shows OCaml code that implements the pseu-
docode presented in Figure 4. Our actual implementation
is somewhat more complicated still because it frees memory
allocated by concat, but Figure 12 does not free this memory.

type term or nonterm = T of string | N of string
type rhs = term or nonterm list
type productions = { name : string; rhs list : rhs list; }
type grammar = productions list

let get terminals rhs list =
let rec split ts others = function
| [] → ts, others
| [T t]::rhs list → split (t::ts) others rhs list
| rhs::rhs list → split ts (rhs::others) rhs list

in split [] [] rhs list

let iteri f lst =
ignore (List.fold left (fun i x → f i x; succ i) 0 lst)

let print term or nonterm = function
| T t → printf "\"%s\"" t
| N n → printf "generate_%s()" n

let print rhs = function
| [] → failwith "Empty rhs"

| c::cs →
printf "return concat(";
print term or nonterm c;
List.iter (fun c → printf ", "; print term or nonterm c) cs;
printf ", 0);\n"

let print rhs wrapped n rhs =
printf "if (choice == %d) {\n" n;
print rhs rhs;
printf "} else "

let print terminal expansions start t ts =
printf "return ";
iteri (fun i t → printf "choice == %d ? \"%s\" :" (start + i) t) ts;
printf "\"%s\";\n" t

let print definition { name; rhs list } =
printf "char *generate_%s()(void) {\n" name;
printf "int choice; __SYMBOLIC(&choice);\n";
let terminals, others = get terminals rhs list in
begin match terminals with
| terminal :: terminals →

iteri (fun n prod → print rhs wrapped n prod) others;
print terminal expansions (List.length others) terminal terminals
| [] → match others with
| [] → failwith "No productions"

| p :: ps →
iteri (fun n p → print rhs wrapped n p) ps;
print rhs p

end;
printf "}\n"

let print grammar = List.iter print definition

Figure 12: Grammar-constraint code generation.

13

