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Mobile operating systems pervade our modern lives. Security and privacy

is of particular concern on these systems, as they have access to a wide range of

sensitive resources. Apps access these sensitive resources to help users perform

tasks. However, apps may use these sensitive resources in a way that the user does

not expect. For example, an app may look up reviews of restaurants nearby, but

also leak the user’s location to an ad service every hour.

I claim that interaction serves as a valuable component of security decisions,

because the user’s interaction with the app’s user interface (UI) deeply informs

their mental model of how apps access sensitive data. I introduce the notion of

interaction-based security, wherein security decisions are driven by this interaction.

To help understand and enforce interaction-based security, I present four pieces

of work. The first is Redexer, which performs binary instrumentation of off-the-shelf

Android binaries. Binary instrumentation is a useful tool for enforcing and studying



security properties. I demonstrate one example of how Redexer can be used to study

location privacy in apps.

Android permissions constrain how data enters apps, but do not constrain

how the information is used or where it goes. Information-flow allows us to formally

define what it means for data to leak from applications, but it is unclear how to

use information-flow policies for Android apps, because apps frequently declassify

information. I define interaction-based declassification policies, and show how they

can be used to define policies for several example apps. I then implement a symbolic

executor which checks Android apps to ensure they respect these policies.

Next, I test the hypothesis that the app’s UI influences security decisions. I

outline an app study that measures when apps use sensitive resources with respect

to their UI. I then conduct a user study to measure how an app’s UI influences their

expectation that a sensitive resource will be accessed. I find that interactivity plays

a large role in determining user expectation of sensitive resource use, and that apps

largely access sensitive resources interactively. I also find that users may not always

understand background uses of these sensitive resources and using them expectation

requires special care in some circumstances.

Last, I present a tool which can help a security auditor quickly understand

how apps use resources. My tool uses a novel combination of app logging, symbolic

execution, and abstract interpretation to infer a formula that holds on each per-

mission use. I evaluate my tool on several moderately-sized apps and show that it

infers the same formulas we laboriously found by hand.
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Chapter 1: Introduction

Mobile devices pervade our daily lives. Surveys from the Pew Research Center

show that smartphone ownership among US adults grew from just 35% in 2011 to

77% in 2016 [1]. With these devices ever-present in our daily lives, it is crucial that

users be able to understand the devices’ security mechanisms.

Mobile devices have access to a wide range of sensitive resources: the user’s

camera, microphone, text messages, and more. Apps can use these sensitive re-

sources to help perform tasks and create a immersive user-experience. For example,

an app may read the user’s text messages to eliminate spam or take a picture after

some amount of time. But the ability for apps to access these sensitive resources

leaves open the possibility of misuse.

To combat this, mobile operating systems implement security mechanisms.

iOS and Android (together comprising over 99% of the smartphone market [2])

both implement a permission system that apps must honor. Before an app uses

a sensitive resource, the app must have been granted access to the corresponding

permission (e.g., CAMERA).

Permission systems are intended to keep information from being accessed with-

out authorization, however it is unclear if their implementation achieves this. All
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permissions systems balance transparency with habituation. On one hand, the sys-

tem may ask users for permission every time a resource is used by an app. This

may achieve more transparency, but with the risk that users may begin to ignore

notifications [3]. On the other hand, the system may ask for permission only once,

but this risks the user being unaware of certain accesses. At the time of writing,

both Android and iOS ask for permission only once for each app.

It has recently been suggested [4] that security decisions are largely influenced

by context. Specific to mobile devices, there is a large amount of work [5–8] that

suggests app context deeply informs user security decisions. Context is naturally

established in apps by the user’s interactions with the UI. For example, the user

will likely expect that the app may take a picture after clicking on a specific “take

photo” icon, but not when the phone is sitting on their desk.

This motivates the notion of interaction-based security. I define interaction-

based security as security and privacy policies which are informed by the user’s

interaction with the user interface of an application.

Thus, I provide the following thesis:

Interaction-based security can be supported in mobile operating systems

without any changes to the underlying system. Further, formal notions of security

(such as information flow) can be naturally modified to accommodate interaction-

based security. With advances to program understanding tools, we can aid auditors

in quickly discovering interaction-based security policies.

To substantiate this thesis, I present four main pieces of work that illustrate

how program analysis and understanding can be used to support interaction-based
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security. The first is Redexer, a bytecode rewriter for Android. Redexer allows

a variety of transformations to be performed on Android apps. For example, it

allows retrofitting apps with finer grained permissions so that users may control the

granularity of location information given to an app. I introduce interaction-based

information flow policies. These policies formally relate the information released by

an app to sequences of UI interactions made by the user. I implement ClickRelease,

which analyzes Android apps to check that they satisfy interaction-based policies.

Next, I directly study users to understand how user interactions relate to

intuitions about when resources are used. I do this by performing both an app study

and a user study, to understand how top apps access resources and understand how

this relates to user expectations.

Last, I use a novel combination of execution logging, symbolic execution, and

abstract interpretation to design a tool which allows a security auditor to quickly

understand the different circumstances under which permissions may be used by an

app. I conclude by commenting on how we can apply the lessons learned in this

work to enhance app security, and highlight future directions of work in this area.

Note that within this dissertation, I focus on the Android operating system.

I speculate that interaction-based security could offer insight about other mobile

operating systems (such as iOS).
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1.1 Binary Rewriting for Enhanced Security on Android

I begin by describing Redexer [9,10], a tool I (along with my colleagues) built

to perform static binary rewriting on Android apps. Rewriting Dalvik bytecode is

challenging because of the many subtle invariants to which the bytecode structure

must adhere. For example, instructions include register ranges which they are al-

lowed to address. Redexer tackles this by giving the programmer an API that allows

inserting bytecode inside of a method without maintaining these invariants. Redexer

includes passes that clean up rewritten bytecode to maintain these invariants, which

greatly simplifies writing binary transformations. I describe these in Chapter 2.

Binary rewriting is useful for a variety of transformations to Android apps,

and I rely upon Redexer for subsequent chapters of this dissertation. In Chapter

3, I outline one specific use of Redexer to replace the default Android location API

with an API that offers coarser access to the user’s location. I show that most

apps can have their inputs truncated by one kilometer or more without appreciably

degrading the results presented.

1.2 Interaction-Based Declassification Policies

Permissions protect the ways in which data enters apps. However, once apps

read data, permissions do not guard what apps do with that data. Information

flow [11] allows formally reasoning about how sensitive data is released by applica-

tions to (potentially untrusted) observers. One standard information-flow property

4



is noninterference: a public observer can learn nothing about the private inputs to

the program. In practice, information flow is challenging to apply because many

realistic applications leak information by design (e.g., telling the user they entered

the wrong password leaks the fact that the password was not what they guessed).

There has been a large amount of work [12–17] on incorporating declassification

into noninterference. While there is some work [18, 19] that addresses information

flow for interactive systems, no prior work of which I am aware allows incorporating

the user interface into information flow properties.

In chapter 4, I present interaction-based declassification to allow incorporating

an app’s user interface into information flow policies [20]. This allows us to state

policies such as the following:

ph! ∗ ∧(F(sendBtn!unit ∧ last(phBox, true)))� Low

The formalisms speak about channels, time-varying streams of data along

which events occur. Here, the ph!* notation is used to represent a write of any value

on the channel ph, which is used here to represent the phone number. The policy

can be read as follows: “At time i, if the input at time i is on the ph channel, and

at some future (indicated by the stylized F) point j, the send button is pressed

(sendBtn!unit) while the last setting of the phBox was true, the input at time i may

be declassified to security level Low.”

Because these policies rely on precise temporal orderings of program states, I

used symbolic execution, a program analysis that executes the program with sym-

bolic variables to build up sets of states along with formulas that must hold within
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those states. In a previous collaboration I worked on SymDroid [21], a symbolic

executor for Dalvik bytecode. I extended SymDroid to create ClickRelease. Click-

Release checks these interaction-based policies by collecting pairs of program paths

and forming equations over them. These equations encode interaction-based de-

classification to guarantee that apps only leak data in accordance with the policy. I

applied ClickRelease to four synthetic apps including two malicious variants of those

apps. ClickRelease was able to find information flow leaks in the malicious variants

and generate counterexamples.

1.3 User Interactions and Permission Use on Android

After exploring interaction-based declassification, I ran two studies to under-

stand to what extent such policies match user perceptions of security and the extent

to which apps access resources interactively [22]. The first measures 150 top apps to

determine the interaction patterns apps used to access permissions, and the second

one measures users to test how closely those patterns align with user expectation.

I first implement AppTracer, a tool that helps a skilled auditor understand

the relation between an app’s GUI and how it accesses sensitive resources [23].

AppTracer inserts instrumentation into an app that logs its control flow. I can then

run the rewritten app on a device either manually or via automated exploration

and capture an execution log. Next, AppTracer transforms this log of program

behavior into a graph that helps an auditor understand which GUI events caused

which permission uses.
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I used the graph AppTracer produced and a human-curated codebook to as-

sign a set of codes to each permission use within each app. For example, in the

graph below (a subgraph of one produced by AppTracer), the app read the contacts

immediately after a button click, which is coded as a Click use of that permission.

Next, I conducted a user study. This study evaluated when users expected

permission use to occur with respect to the app’s GUI. It is comprised of a walk-

through of an app interspersed with questions about what resources the user expects

will be used. For example, in one scenario the user first sees an app’s home screen,

then presses the “voice order coffee” button. To mirror the current Android per-

missions system, they are then prompted to allow access to the microphone. In

other scenarios this dialog occurs at the beginning of the app or not at all. After

seeing the dialog, the user is asked a series of Likert-style questions assessing their

expectation a given resource will be used at that point in the app. The user is

then shown another interaction with the app, in this case going back to the phone’s

home screen. They are again asked expectation questions to understand how their
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perceptions of permission use changes as context changes.

Combining the results of the two studies, I discovered that apps mostly matched

user expectations, but noted some shortcomings with the permission system. Users

seemed to expect the most invasive permissions (e.g., camera and microphone) to

be used only after a related click. Our app study confirmed this is almost exclu-

sively the case. We recommend that the policy of allowing sensitive resource use

only after relevant clicks be made mandatory with rare exceptions. Even when users

understand resources will be accessed after these clicks, Android still asks users for

explicit permission via a dialog screen. This suggests Android may be too invasive,

and that these interactions alone are sufficient to authorize the permission use, as

the dialog was not providing any additional information. Also, we found that when

users were prompted for authorization immediately after a click, they assumed that

the associated resource was used only after that interaction. For example, if an app

waits until a map screen to ask users for permission to use location, users will be

much less likely to expect the location to be used later in the app (e.g., while the

app is off the screen). We observed infrequent but occasional uses of this in our app

study.

1.4 Permission-Use Provenance in Android Using Sparse Dynamic Anal-

ysis

AppTracer helps skilled auditors understand why apps use permissions, but it

works based on traces of app events. Because of this, AppTracer associates permis-
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sion uses with UI elements that are temporally close to permission uses. This works

well for cases where permissions are used immediately after a button click or navi-

gation to a new screen. However, this heuristic makes it challenging to understand

the root causes of permission uses that happen in the background. Our user study

suggested that these background uses may be tricky for users to understand, so I

decided to pursue tools that would help understand these permission uses.

In Chapter 6, I introduce Hogarth, a system which uses a combination of app

logging, symbolic execution, and abstract interpretation to explain permission uses

within apps. The goal of Hogarth is to summarize why a permission use occurs in

terms of the app’s UI. Android apps are callback-oriented, which makes it challenging

to define what it means to take a path through an app. Hogarth tackles this problem

by building an inter-handler callback graph, based on a model of which callbacks

may run as a result of certain registration methods. It then presents a graph of app

behavior, where nodes in this graph are callbacks (some containing permission uses)

and edges connect callbacks when one callback registers another.

Connecting callbacks allows an auditor to understand roughly where a per-

mission is used within an app’s source code. However, it does not allow a user to

understand why that permission is used. To explain permission use, Hogarth also

reconstructs a path condition that holds along every path to the permission use ob-

served in the set of logs. I applied Hogarth to five moderately-sized Android apps

from the F-Droid app store [24] and the contagio malware dataset [25]. I found

that—while Hogarth is still a prototype—it was effectively able to recover path

conditions that were found by otherwise time-consuming reverse-engineering efforts.
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Chapter 2: Binary Rewriting for Android Apps

This chapter introduces Redexer, a bytecode rewriting tool that allows static

instrumentation of Android binaries. Bytecode rewriting enables a wide range of

dynamic analyses. Several chapters in this dissertations rely on Redexer.

Rewriting Dalvik bytecode requires significant care. For example, one common

pattern in bytecode instrumentation is to add sequences of instructions to methods

in key locations (e.g., before method calls or field lookups). To maintain the original

semantics of the method, we must be careful to ensure that the registers used by

the inserted instructions do not overwrite registers used by the target method. Re-

dexer provides an API for a programmer to traverse the app’s bytecode and insert

instructions without considering these invariants. It then performs various cleanup

passes to ensure the app’s bytecode is corrected.

I begin by describing Redexer in detail, and then I discuss one specific use of

Redexer, where it is applied to study location privacy in Android apps. This demon-

strates how Redexer can be applied to provide enhanced security policies on Android

apps. Redexer has been utilized for both industrial and research applications.
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2.1 Redexer

Redexer is a bytecode transformation framework for Android apps. Android

apps are distributed in the APK file format. Given an input app, Redexer uses

apktool [26] to unpack the APK into its constituent files and directories. It then

parses each Dex file (those files within the APK which contain the bytecode) into

an abstract syntax tree. This allows a programmer to make changes on a high-

level representation of the bytecode, rather than a compact binary representation.

Redexer next performs a variety of passes to perform bytecode manipulation. Fi-

nally, it dumps out the transformed app and repackages it as an output APK. In

the following subsections, I detail the passes that Redexer provides to allow app

transformation.

2.1.1 Parsing Android Bytecode

As a first stage, Redexer includes a parser for Dalvik bytecode. Dalvik byte-

code files are structured as a series of indexed “pools” that contain, among others,

strings, types, field signatures, method signatures, classes, field definitions, and

method definitions. The various pools are tightly intertwined, with many pointers

from one to another, e.g., a method signature contains a list of pointers to the type

pool, and the type pool contains pointers to elements in the string pool (contain-

ing the actual type names). Dalvik bytecode instructions (which appear in method

definitions) often refer to elements in various pools, e.g., method invocation instruc-

tions include a pointer to a method signature. Before the Dalvik Virtual Machine
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executes a bytecode file, it first verifies it to check that, among other things, the file

is well-formed and the method bodies are type safe.

2.1.2 Linking

Redexer includes an API for statically linking Dex files together. This allows a

programmer to instrument an app by inserting method calls to a library they write

that performs the main work. For example, Redexer’s logging library inserts calls

to Logger.logMethodEntry, which subsequently performs more complex work. This

makes writing instrumentation simpler by allowing common utilities to be written

in Java rather than as bytecode sequences.

2.1.3 Modification

Redexer’s modification API allows a programmer to manipulate a Dex file in

various ways. For example, it allows adding and replacing methods, classes, strings,

and other pieces of the Dex file. It also includes an API to allow inserting bytecode

within a method at various points.

Inserting code within a method without altering the app’s original semantics

is particularly tricky for several reasons. First, whenever bytecode is inserted into a

method at some point, we must be careful to do so hygenically: the bytecode may

not overwrite live variables at that point. To handle this, Redexer has a utility that

allows the programmer to shift the registers used by a method by some constant

number. This allows the programmer to use the registers within some range without
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fear that they are disrupting the state of live variables at that point.

Unfortunately, register shifting is complicated by the fact that instructions

include bounds on the registers that they can access. For example, the move in-

struction in Dalvik can only address the first 16 registers. After shifting registers,

it is possible that the method’s bytecode will be malformed. One solution might

be to add registers in the upper range of the set of registers used for the method.

Unfortunately, this does not work: the Android calling convention dictates that the

n arguments to the method are put in the last n registers the method reserves.

To rectify this problem, Redexer includes a cleanup pass that inserts the ap-

propriate transformation to move registers into the right place. For example, a

move instruction will be replaced by a move-from16 instruction which can address

65k registers. This is slightly complicated in the case of comparisons, which can

only address the first 16 registers. In this case, Redexer would insert instructions

to move the register from its incorrect position (above 16) into the a register in

the lower range. However, this requires knowing whether or not the register is an

object or not, because—while the comparison bytecode is polymorphic—the move

instructions are not. Using an incorrect move instruction will result in verification

errors. To account for this, Redexer performs dataflow analysis to recover whether

or not the register is an object.

Inserting instructions is also tricky because of the way exceptions are handled

within Dalvik. Dalvik exceptions are implemented by specifying an exception ta-

ble, which lists ranges of bytecode offsets to denote try blocks and associates those

with exception handlers of a given type. However, within an exception handler the
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Dalvik virtual machine will additionally perform an analysis to ascertain whether

instruction may throw an exception. For example, Dalvik declares that the move

instruction will not throw an exception, while an invoke form might throw an ex-

ception1.

This presents a subtle complication for bytecode insertion: inserting invoke

instructions (or other instructions which may throw exceptions according to the

Dalvik VM) may alter control flow, which subsequently impacts method verification

(in particular, extra live variables may be added which were not present in the

original semantics). To mitigate this, Redexer allows splitting the exception into

two separate handlers: one which ends right before the inserted instructions, and

one which begins after the inserted instructions.

2.1.4 Visitor API and extensions

One common rewriting pattern is to traverse the app’s code and perform some

operation for each part of the app. To accomplish this, Redexer includes a visitor

API. This allows the programmer to define some code that will be called for each

class definition, method body, etc.present in the app.

To aid a programmer in constructing instrumentation, Redexer includes a few

utility APIs to recover intraprocedural facts about a method body. For example,

it includes an intraprocedural control-flow analysis, along with various dataflow

analyses and a constant propagation analysis.
1the complete listing of bytecode instructions and their definitions is given in [27].
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2.1.5 Logging

One particularly useful feature of Redexer is its logging API, which instruments

the bytecode to log the execution of the app. The logging API is configurable to

log a set of user-specified methods. It is used in several of the chapters later in this

dissertation.

The logging API inserts bytecode at the beginning and end of each method

in the app, making a call to logMethodEntry or logMethodExit respectively with

the parameters or return value. This allows recording when specific methods are

invoked. API calls are logged in a similar way: adding a call to logApiEntry and

logApiExit before and after the call.

Note that there are a few complications in inserting these call instructions.

First, the instrumented method’s code must have its registers shifted so that the

inserted bytecode sequence used to invoke logMethodEntry does not overwrite live

variables used by the app. This is done using the modification APIs described in

section 2.1.3. We also must perform intra-procedural control-flow analysis to recover

where the end of the method is (if one exists).

Instrumenting apps with a large amount of logging can be challenging to do

at scale. Apps containing many methods may slow down when logging is not im-

plemented efficiently. logging is configurable via a set of regular expressions, so the

user can choose which subset of methods are logged.

In some circumstances, we need to log all methods in a way which scales to

arbitrarily large apps. We found that this can be achieved via using a combination of
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a worker thread and an efficient buffer to communicate between them. The logging

code is optimized so that it assembles an array of objects to pass as a data structure

to a worker thread. This is crucial, since the Android OS will kill an app if the

main thread (the thread reacting to app UI requests) if it becomes unresponsive.

The worker thread thus performs the relatively slow task of serializing the data

structure to disk. The code being logged communicates with the worker thread

using an efficient lock-free queue (a ConcurrentLinkedQueue described in [28]).

2.2 An Empirical Study of Location Truncation on Android

This section demonstrates one particular application of Redexer to study lo-

cation privacy within Android apps. Many apps use location information. As im-

plemented today, such apps typically send the device location over the Internet, and

hence users may be understandably concerned about potential privacy violations. In

response, researchers have developed a number of location privacy-enhancing mech-

anisms [29–34], using a range of analytical models to estimate the degree of privacy

and anonymity achieved.

However, there has been much less work [35] on understanding how location

privacy-enhancing technology affects the utility of apps—that is, does an app still

work well enough even when location privacy is increased. I tackle this question

by directly measuring how location truncation—quantizing the current location to

a user-specified grid spacing—changes the output of a range of Android apps.

Location truncation is one of the more realistic approaches to location privacy,
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with several advantages: It is easy for users to understand and therefore trust. It

can be implemented easily and efficiently. And it does not require foreknowledge

of the set of locations to be visited. There are also some disadvantages: Location

truncation primarily defeats localization attacks, rather than deanonymization or

tracking [36]. Location truncation may also be overcome through a combination of

prior knowledge (e.g., likely movement speeds, locations of road networks, known

habits, etc) and repeated queries over a long period of time [37], [38]. Even so,

we believe that for many everyday uses, these limitations are not severe for typical

users.

While location truncation potentially increases privacy, it may not be ideal

for all apps (e.g., it defeats turn-by-turn navigation), and its effects may be hard to

measure (e.g., for apps that use location to decide which ads to show). We retrieved

the top 750 apps across all categories of the Google Play store, and found that 275

of these use location. We ran each app to determine how and why they use location,

and found six main categories: ad localization, listing nearby objects, fine-grained

tasks (e.g., turn-by-turn navigation), geotagging content (such as pictures), finding

the nearest city, and getting local weather information. (See Section 2.2.1.)

Based on this result, we chose to study the effect of location truncation on

apps that produce lists of nearby objects. These apps are a good target for a variety

of reasons: First, the effect of truncation is easy to determine, as we can simply

look at the output list. Second, truncation is plausibly useful for these apps: on

Android, most apps do not include internal maps, but rather use Android’s Intent

mechanism to ask the Google Maps app to do any necessary mapping (this was the
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case for all of the apps in our study). Thus, truncating location will help increase

privacy of the user to the subject app, but will not affect the ultimate usage of the

information, assuming that Google and Google Maps are trusted. Finally, location

truncation gives users a very clear tradeoff, in which they can go a little out of their

way in exchange for more privacy.

We implemented location truncation in CloakDroid, a tool built on top of

Redexer. CloakDroid modifies a subject app to use a special location service that

snaps reported locations to a latitude/longitude grid whose spacing is specified by

the user. (See Section 2.2.2 for details of CloakDroid.)

To evaluate how CloakDroid affects app utility, we applied it to six Android

apps and measured how their output changed under a range of conditions. We

developed three different metrics to judge utility of output: The edit distance of the

nominal list under truncation compared to the reference list without truncation; the

additional distance, which computes how much farther away the first list item in the

nominal list is compared to the reference list; and the set intersection size, which

counts the elements common to the reference list and nominal list.

We ran each app against 10 randomly chosen locations spread across 6 regions

of various sizes, ranging from New York, NY, population 8.2 million, to Decatur,

TX, population 6,000. For each location–region pair, we varied the truncation grid

spacing from 0.1 km to 50 km and measured the result. We found that the under

the additional distance metric, there is typically no change in app utility up to 1

or 2 km truncation, and that if the user is willing to go up to 1 km out of their

way, most apps can sustain truncation amounts of 5 km or more. Additionally, the
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most important determinant of acceptable truncation was the density of the objects

listed by the app—the lower the density, the more location could be truncated before

seeing an effect. Across all metrics, most of the subject apps were able to have their

inputs truncated to between 5 km and 20 km without significantly degrading app

utility.

To our knowledge, we are the first to directly and systematically study how

location truncation affects app utility, and our results suggest location can be trun-

cated to a significant degree without compromising app utility.

2.2.1 How Apps Use Location

We began our study by trying to understand how apps use location in practice.

We downloaded the top 750 most popular free apps across all categories of the Google

Play store as of April 2012, and found that 275 of these apps request location

permission. We installed each app on a device or emulator and used the app,

navigating through its screens until we could categorize how the app uses location

information. We identified the following categories of location usage, summarized

in Figure 2.1:

• Ads — Most ad networks deliver location-targeted ads to users, and ads are

very common on Google Play apps. Thus, this was the most popular category

of location usage. However, this category is not a good subject for our study,

as it is unclear how to measure the effect of location truncation on ad selection.

In Figure 2.1, the first row counts apps that use location only for ads. Often
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apps use location both for ads and another purpose; the count of these apps

is called out separately in the remaining rows.

• Listing nearby objects — The second most common category of location usage

is to find some set of objects that are near the user’s current location. For ex-

ample, an app might inform the user of nearby traffic accidents or construction

to avoid. This is the category we selected for our study.

• Fine-grained targeted content — Many apps require very fine-grained location

information to provide their service, e.g., an app that remembers where the

user parked. Location truncation is not likely a good idea for these apps.

• Content tagging or check-in — Location information is often used for geotag-

ging data (e.g., pictures or social network posts) or “checking in” at the current

location. For these apps, location truncation is plausible, but it is difficult to

measure the effect on utility.

• Nearest city — Several apps only need to know the current location to a very

coarse degree, e.g., Living Social and Craigslist just need to know the nearest

city to select the right data to display to the user. Truncating location for these

apps will have essentially no effect, as they already use coarse data (though

clearly it might be good from a security perspective).

• Weather — Weather apps use the current location to choose what weather

data to report. We briefly explored the effect of truncation on these apps, but

found two key problems: First, by nature, small location changes usually have
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w/ ads Total
Only ads 58
Listing nearby objects 6 43
Fine-grained uses 7 34
Content tagging 4 28
Nearest city 1 22
Weather 2 21
Unsure 17
Unable to test 52

Figure 2.1: Location information usage in the top apps

no effect on weather; and second, weather data changes over time, and so it is

hard to get consistent data sets because our experiments can take a few hours

to run for each app.

• Unsure — There were 17 apps for which we could not determine why or how

they use location information. These may be cases of over-permission, app

functionality that we missed in our testing, or possibly malicious information

gathering.

• Unable to test — Finally, we could not test 52 apps because they required

either telephony-specific features not available on our test devices (which did

not have phone or data plans) or subscriptions to paid services. For example,

many vendors offer apps that work only on phones connected to their network.

Based on the results of this study, we decided to investigate the effect of

location truncation on apps that list nearby objects, as this category is common

and it is clearly meaningful to measure the result of truncation on these apps.
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2.2.2 Implementation

Apps that use location information must request ACCESS_COARSE_LOCATION

or ACCESS_FINE_LOCATION; the former allows access to a cell-tower–based loca-

tion and the latter to a GPS location (if available). FINE_LOCATION access is

provided at full device resolution, and COARSE_LOCATION access is truncated to

200 m or 2 km resolution, depending on the device parameters.2 All the apps in our

experiments use FINE_LOCATION.

We implemented location truncation in the form of CloakDroid, a tool that

changes a subject app to receive modified location information. Location access on

Android goes through a fairly narrow API, which makes it easy for CloakDroid to

intercept. Apps first request an instance of class LocationManager, which includes,

among others, methods to retrieve the last known location and to register a handler

for location updates. CloakDroid controls the granularity of location information

by modifying the subject app so that, instead of using Android’s LocationManager,

it uses a replacement class provided by CloakDroid. This leverages the modification

APIs of Redexer described in section 2.1.3. The replacement for LocationManager

delegates all calls to the system’s LocationManager, but adds a user-specified amount

of truncation before returning coordinates.

Once we can intercept calls that pass location information to the app, it is

easy to modify the coordinates however we wish. For our experiments, we truncate

location information, snapping to a user-specified grid, as illustrated in Figure 2.2.
2https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/location/

java/android/location/Location.java
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︷ ︸︸ ︷
10 km

Figure 2.2: The user (represented by the red cross) has their location truncated to
a grid of fixed points.

Formally, our implementation truncates to a grid with spacing s in kilometers using

the formulae:

lat′ = slatdlat/slate long′ = slongdlong/slonge

where lat and long are the actual latitude and longitude, and their primed versions

are the new coordinates. Here slat and slong are the grid spacing translated into

degrees of latitude and longitude, respectively. For latitude we use the WGS 84

approximation for North America [39]:

slat =
s km

111.5 km/deg

For longitude we use a standard approximation [40]:

slong = s km · 180
√

(1− e2 sin2(φ))

πa cos(φ)

23



where e2 = (a2− b2)/b2 is the eccentricity of Earth, φ is the latitude, a is the radius

to the equator, and b is the radius to the poles.

We verified that CloakDroid works correctly in two ways. First, we inserted

logging code in CloakDroid to give the original position and position after location

truncation. We then took the set of locations from our testcases, truncated them to

varying amounts, and then verified the resulting positions were correct. Second, we

confirmed that our subject apps’ behaviors changed in sensible ways as we varied

the location truncation amount.

The Android location manager API also can provide speed information, which

our implementation truncates speed using a similar formula. However, none of our

subject apps use speed information. Moreover, device-reported speed is often unre-

liable, so many apps ignore it, preferring instead to estimate speed using successive

location fixes.

2.2.3 Experimental Design

We conducted a systematic study of the effect of location truncation on apps

that list nearby objects, the largest category in Figure 2.1 for which location trun-

cation’s effect is clearly measurable. We selected a variety of such apps, listed in

Figure 2.3a, from Google Play. We chose apps that rely on a variety of different

data sets and run under our tool chain with minimal difficulty. We then modified

each app using CloakDroid, as outlined in Section 2.2.2. Next, we randomly chose

a set of locations and then captured the output list of each app as we varied the
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Name Objects in List
Gasbuddy Gas stations
Restaurant Finder Restaurants
Hospitals Near Me Hospitals
WebMD Pharmacies and clinics
Walmart Stores
TD Bank ATMs and branches

(a) Descriptions of each subject app.

City Population Radius (km)
New York, NY 8,200,000 30
Dallas, TX 1,200,000 20
New Haven, CT 130,000 10
Baltimore, MD 620,000 12
Redmond, WA 54,000 4
Decatur, TX 6,000 4

(b) Selected population centers.

0 km 0.1 km 0.2 km 0.5 km 1 km
2 km 5 km 10 km 20 km 50 km

(c) Truncation amounts tested.

Figure 2.3: Experimental parameters.
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current location and the amount of truncation applied to it. Finally, we used several

metrics to estimate how each truncation affected the app’s utility.

2.2.3.1 Locations and truncations

In a pilot study, in which we examined the results of CloakDroid on a variety

of apps, locations, and truncations in an ad hoc manner, we noticed that truncation

has quite different effects depending on where apps are run. For example, there

is a significantly higher density of restaurants in a big city than in a rural area,

causing one of our subject apps, Restaurant Finder, to behave very differently under

truncation in each locale. Thus, in selecting locations for our study, we chose them

from a range of population centers of varying sizes, as shown in Figure 2.3b.

We modeled each city as a circle centered on the geographical city center with

a radius estimated from looking at a map of the region. In our pilot study, we

also found that many apps produce error screens if given a location that cannot be

mapped to a real address, e.g., if the current location is in the ocean or a heav-

ily forested area. Thus, we discarded any random points that caused problematic

outputs from our apps, and randomly picked new points until we had a set of 10

points that produced correct output across all apps when the apps were run with

no truncation.

For each random location, we ran each app with 10 different truncation amounts

(including no truncation), listed in Figure 2.3c. We chose an upper limit of 50 km

because many of our subject apps give results up to or less than 50 km, so the
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Figure 2.4: Restaurant Finder without (left) and with (right) 0.2 km of truncation.

metrics would be undefined beyond that level.

2.2.4 Metrics used for evaluation

Recall from Section 2.2.1 that we identified apps that list nearby objects as

the best candidate for our study of location truncation. For example, Figure 2.4

gives two screenshots of the Restaurant Finder app being run on a location in New

York, NY (close to Bloomfield, NJ) both without and with truncation. Here the

lists we consider are the restaurants, in order from closest to farthest, along with

their distances.

We explored three ways to measure location truncation’s effect on the output

list of such apps: edit distance of the changed list from the original, the size of the

intersection of the original and changed lists, and the additional distance of the first

(closest) list item on the changed list.
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2.2.4.1 Edit distance

The first metric we investigated is edit distance, which is the number of edits

(insertions, deletions, or swaps) needed to change one list into another [41]. For

example, the edit distance between the lists in Figure 2.4 is five, because every item

in the list has changed.

Like the other apps we studied, Restaurant Finder returns more than one

screenful of objects. Thus, in performing our measurements, we need to decide how

much of the app’s output to use. We could pick only the first screen of data, but this

restricts edit distance to just a few possible values. We could pick all the results,

but that has the disadvantage that there could be many changes in the long tail of a

list, yet few users would bother looking that far. Thus, as a compromise, we opted

to compute edit distance over the first four screens of an app, which we think covers

typical usage patterns while providing useful data. In each of the apps we tested,

this corresponded to the first twenty list elements.

2.2.4.2 Set intersection size

Edit distance was the first metric we thought of, but when we tried measuring

it, we found it to be problematic: Especially on the first screen of data, many

locations are very close, e.g., on the left of Figure 2.4, distances range from 0.31 km

to 0.37 km. Yet edit distance would count reorderings of those locations in the

metric.

Thus, we also explored using set intersection size as a metric. We ignore
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ordering and compute how many objects are in both the original and changed list.

For example, in Figure 2.4, the set intersection has size three. As with edit distance,

we compute the intersection on the list displayed across the first four screens of

output.

The set intersection metric is also more natural than edit distance in that it

corresponds directly to a common user task of checking whether some particular

object is nearby. For example, we might use Restaurant Finder to ask, is there any

McDonalds nearby, or we might use GasBuddy to look for the closest Shell station.

2.2.4.3 Additional distance incurred

Ideally, we would like to measure how actual users’ behavior is affected by

location truncation, but this is difficult to do without a large number of human

participants. Instead, we developed an additional distance metric that computes

how much farther a user who always picks the first list item would go given the

changed list compared to the original list.

For example, in Figure 2.4, the closest restaurant is actually China Garden,

0.31 km away. However, under truncation, the closest restaurant appears to be an

IHOP. While the IHOP’s reported distance is 0.26 km, that is the result from the

truncated location—we need to look at the original output list to find out how far

away the restaurant actually is. In this case, IHOP appears on the second screen

of the original list, and it is 0.42 km away. For this example, then, the additional

distance is 0.42− 0.31 = 0.11 km.
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Restating this more generally, letD(X) be the distance to objectX on the orig-

inal list. Then the additional distance of a changed list is ∆ = D(First original)−

D(First changed), where First original is the first item of the original list and First

changed is the first item of the changed list. Notice that this metric may be unde-

fined if First changed does not appear on the original list. To reduce the chances

of this, we consider all output screens of an app in computing the metric, and not

just the first four screens. However, in our experiments the metric is still sometimes

undefined for some apps under large truncation amounts.

2.2.4.4 Testing infrastructure

To compute the results of our experiments, we needed to run each subject app

at 60 locations and 10 different truncation amounts. This is clearly far too many

configurations to run by hand. Instead, we developed testing infrastructure to let

us run each configuration automatically, scrape the resulting output lists, and then

run our metrics on the result.

The core technology we used is Troyd [42], an open source, black box testing

framework that can execute apps (e.g., launch them, click buttons, enter text boxes,

scroll the screen, etc.) and gather text from the GUI. Troyd allows us to write a high

level test case (e.g., to click a sequence of buttons and gather some text) that can

be reused for various test configurations. We developed a server that takes an app

modified by CloakDroid; resigns it with a shared user ID so that it can be controlled

by instrumentation; and then runs testcases against the app using Troyd.
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We ran apps on both Google Nexus S devices and on device emulators; our

infrastructure works the same in both cases, and performing some runs on actual

devices acted as a sanity check. In all cases, the Android platform was Gingerbread

2.3.3 with the Google APIs, such as maps, installed. These APIs are special dynamic

libraries licensed by Google and not included on plain Android distributions; these

APIs are needed for the subject programs to run.

We found that, while Troyd mostly did what we wanted, we needed to extend

it to handle additional GUI elements. For example, while Troyd can capture the

currently visible GUI elements, many Views (such as those in ListView elements)

are reused, and their contents only appear when the screen is scrolled. Thus, we

extended Troyd with special functionality to navigate to screens that may have

unrendered information. We also found that, as is usual in large-scale testing,

experimental tests sometimes failed unpredictably, e.g., an emulator or device would

crash for no apparent reason. These are likely due to subtle bugs lurking in the OS

or emulator implementation that were tickled by the experiment’s atypical usage

pattern. Thus, our testing infrastructure catches any failed runs and reschedules

those experiments to be run again. Finally, our testing infrastructure allows multiple

experiments to be done in parallel; the majority of the experiments were done on a

machine with six Intel Xeon processors, each with four cores, and 48 GB of RAM.

Each individual test took on the order of a few minutes to run, depending on the

app. Our tests ran up to fifteen emulators at once.
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Figure 2.5: Graphs of median edit distance versus truncation amount. Higher edit
distance implies lower utility.

2.2.5 Results

Finally, we present the results of our study. At a high level, we found that

across our subject apps and locations, location can be significantly truncated without

significantly harming utility: up to 20 km when an app is used in a lower population

area, and usually (for five of six apps) at least 5 km in more populous areas. We

also found that apps have relatively little change in utility up to a certain amount

of truncation, typically about 5 km, after which the app’s output becomes much

less usable. Finally, we found that the factor that most determines the ability to
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truncate location was the density of the set of locations the app computes over.

In the discussion that follows, we include several plots. In each plot, the x-axis

is the truncation amount; note that because of our choice of truncations, this axis

is essentially log-scale. The y-axis is the median of one of our metrics on the 10

randomly chosen points for each population center.

We next consider each of our three metrics in turn.

2.2.5.1 Edit Distance

Figure 2.5 shows how edit distance varies on our location set. Note that

Hospitals Near Me and TD Bank do not have data for cities for which the app did

not generate enough output to calculate a significant result. For example, there are

no TD banks in Dallas. In some cases, TD Bank and Hospitals Near Me do generate

data, but they generate a very small set of results (Hospitals Near Me only returns

hospitals within 50 miles, for example). Thus, edit distance appears to go down at

large truncation values because in less populous locations they output smaller sets

of locations.

The plots show that in most cases, the output lists change to some degree even

at the smallest truncation level. Moreover, in two cases (Gasbuddy and Restaurant

Finder), the edit distance quickly reaches its maximum value (all items in the list

change) in several locales. WebMD is similar, though it plateaus somehwat later.

The remaining three apps, in contrast, show a generally steady progression of edit

distance versus truncation amount.
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(a) Graphs of median set intersection size versus truncation amount. Lower set intersection
size indicates lower utility.

New York Dallas Baltimore New Haven Redmond Decatur
Gasbuddy 5 5 2 2 5 50
Restaurant Finder 1 0.5 0.1 0.1 0.1 0.2
Walmart 50 10 50 50 · 50
TD Bank 10 · 50 20 · ·
WebMD 10 5 2 10 10 50
Hospitals Near Me 5 · 20 · 20 ·

(b) Largest truncation amount (km) before which the median set intersection size is lower
than 80%.

Figure 2.6: Set intersection size results.

The reason for these trends is density of objects–Gasbuddy, Restaurant Finder,

and WebMD all return lists of items that can commonly be found everywhere,

whereas there may be only a few hospitals, Walmarts, or TD Bank locations. Indeed,
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looking at Gasbuddy, we see that edit distance plateaus quickest for New York, the

most populous locale, and slowest for Decatur, the least populous locale.

One problem with the edit distance metric is that even insignificant reordering

of the output list adds to the distance—yet users likely will not care about the exact

ordering as long as relevant results appear within the first few items of the nominal

list. Additionally, edit distance does not have a clear physical interpretation, nor

does it seem to correspond to any typical tasks a user might want to perform. Thus,

while it provides insight into app behavior under truncation, we think that edit

distance is not the best metric of utility.

2.2.5.2 Set Intersection

Figure 2.6a shows the results for the set intersection size metric, with the

y-axis the percentage of the set intersection size compared to the original set size.

Figure 2.6b shows the truncation amount after which the set intersection percentage

drops below 80% of the original value. More precisely, let I(s) be the median

intersection set size under truncation s, defined as |L ∩ L′|/|L| where L is the list

without truncation and L′ is the list with truncation s. Then the chart lists the

si such that I(si) ≤ 0.8 and I(si+1) > 0.8, where sj is the sequence of location

truncation amounts.

We observe that apps measuring less densely distributed locations can be trun-

cated more aggressively than those measuring more densely distributed locations.

For example, we see that Gasbuddy and Restaurant Finder, which both measure
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(a) Graph of median additional distance versus truncation amount. Higher additional
distance implies lower utility.

New York Dallas Baltimore New Haven Redmond Decatur
Gasbuddy · 5 5 2 5 20
Restaurant Finder 2 2 2 5 5 5
Walmart 20 5 10 10 20 50
TD Bank 5 · 20 10 · ·
WebMD 5 5 5 5 5 10
Hospitals Near Me 20 · 5 · 20 ·

(b) Largest truncation amount (km) before median additional distance exceeds 1 km.

Figure 2.7: Additional distance results.

densely distributed objects, can sustain some truncation, but their utility drops off

much faster than the other apps such as Hospitals Near Me. In the table, we see

this again in that Gasbuddy and Restaurant Finder drop below a set intersection
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size of 80% at a lower truncation amount compared to Hospitals Near Me.

One slightly surprising trend in the table is that for Restaurant Finder, location

can be truncated more in New York than in other location, whereas we would expect

the opposite due to its high density of restaurants. Looking into the results in detail,

we discovered this occurred because of the large radius (20 km) we chose for New

York: Restaurants are typically clustered in the city center and we chose locations

randomly within the radius, so a large radius reduced restaurant density.

2.2.5.3 Additional Distance

Figure 2.7a shows the results for the additional distance metric applied to our

subject apps. Figure 2.7b shows, for each city and each app, the last truncation

amount before median additional distance degrades beyond 1 km. In other words,

if we let ∆(s) be the median additional distance under truncation s, the chart lists

the si such that ∆(si) ≤ 1 km and ∆(si+1) > 1 km.

Note that the additional distance is undefined if a location truncation produces

a new closest location that was not present in the original output list, as in this case

we cannot compute how far the new closest location is from the current location.

In the charts, undefined additional distances are omitted, as thus some lines end

before reaching the maximum truncation. This also limits the number of points on

which we can compute the cutoff. For example, the Gasbuddy app never causes

the user to go more than 1 km out of the way in New York, so it is listed as “·” in

Figure 2.7b.
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From these plots, we see that under the additional distance metric, there is

typically no change in app utility up to 1 or 2 km truncation. Notice that this is

quite different behavior than under the edit distance metric, where the edit distance

is nonzero even with small amounts of location truncation.

In most cases, the lack of change in additional distance is meaningful, but

in a few cases it only reveals the low density of located objects. In particular, in

Redmond, the TD Bank app can sustain location truncation up to 50 km without

any change, but this occurs because the first result on the list is over 100 km away.

This also happens in the Hospitals Near Me app, as there are relatively few hospitals

in any area.

Looking at Figure 2.7b, we see that if a user is willing to go 1 km out of their

way, then in most locations apps can sustain truncation amounts of 5 km or more.

However, as with edit distance the effect is highly dependent on object density, e.g.,

Gasbuddy and Restaurant Finder are limited to 5 km truncation (except in Decatur,

which has fewer gas stations), whereas other apps can be truncated to higher levels.

2.2.5.4 Discussion

Each of the three metrics applies in a different situations: edit distance for

when an exact order is desired, set intersection for when a user wants to find any

number of locations close by, and additional distance for when a user wants to find

a nearest location to visit. The general trend for all three are similar: the metrics

are much more forgiving in less dense areas, which makes intuitive sense. In terms
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of absolute values of truncation that can be sustained, we see that edit distance is

the least permissive, as very small changes have large effects. (We did not include a

table like Figure 2.7b or 2.6b for edit distance because we have no intuition of what

a reasonable cutoff would be.) The next most restrictive metric is set intersection

size, and the most permissive metric is additional distance.

2.3 Related Work

Several other researchers have proposed mechanisms to refine or reduce per-

missions in Android. MockDroid allows users to replace an app’s view of certain

private data with fake information [43]. Apex is similar, and also lets the user en-

force simple constraints such as the number of times per day a resource may be

accessed [44]. TISSA gives users detailed control over an app’s access to selected

private data (phone identity, location, contacts, and the call log), letting the user

decide whether the app can see the true data, empty data, anonymized data, or

mock data [45]. AppFence similarly lets users provide mock data to apps requesting

private information, and can also ensure private data that is released to apps does

not leave the device [46]. A limitation of all of these approaches is that they require

modifications to the Android platform, and hence to be used in practice must ei-

ther be adopted by Google or device providers, or must be run on rooted phones.

In contrast, Dr. Android and Mr. Hide run on stock, unmodified Android systems

available today.

Researchers have also developed other ways to enhance Android’s overall se-
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curity framework. Kirin employs a set of user-defined security rules to flag potential

malware at install time [47]. Saint enriches permissions on Android to support a

variety of installation constraints, e.g., a permission can include a whitelist of apps

that may request it [48]. These approaches are complementary to our system, as

they take the platform permissions as is and do not refine them.

There have been several studies of Android’s permissions, sensitive APIs, and

the use of permissions across apps. Barrera et al. [49] analyze the way permissions

are used in Android apps, and observe that only a small number of Android permis-

sions are widely used but that some of these, in particular Internet permissions, are

overly broad (as we have also found). Vidas et al. [50] describe a tool that, using

documentation-derived information, can statically analyze an app’s source code to

find a minimum set of permissions it needs. Stowaway [51] performs a static anal-

ysis on the Android API itself to discover which APIs require what permissions,

something they found is not always well documented. (We used Stowaway’s data

set in several cases to help determine what adapters we needed to implement in Mr.

Hide.)

Finally, several tools have been developed that look for security issues in An-

droid apps. TaintDroid tracks the flow of sensitive information [52]. Ded [53], a

Dalvik-to-Java decompiler, has been used to discover previously undisclosed device

identifier leaks. ComDroid [54] finds vulnerabilities related to Intent handling. Felt

et al. [55] study the problem of permission redelegation, in which an app is tricked

into providing sensitive capabilities to another app. Woodpecker [56] uses dataflow

analysis to find capability leaks on Android phones. All of these tools focus on im-
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proper use of the current set of Android’s permissions. Dr. Android and Mr. Hide

take a complimentary approach, replacing existing permissions with finer-grained

ones to reduce or eliminate consequences of security issues.

Related Work for Location Privacy There is a large body of work on increasing

location privacy, though we are aware of no other work that directly measures the

resulting utility of mobile Android apps.

The Caché system [57] caches and prefetches content from a server, obfuscating

the user’s location at the cost of potentially stale content and higher bandwidth.

Additionally, application writers must specify rules for caching up front. The system

caches data for a set of regions, quantizing the user’s location as in our approach.

The authors note that app utility will be impacted by their technique, but they do

not measure it explicitly.

Hornyack et al. [46] study apps that use sensitive information (such as loca-

tion), and present AppFence, a system that can fuzz inputs to apps. While the

AppFence authors note the effects of fuzzing app inputs on usability, they do not

study it systematically using any particular metric.

Shokri et al. [30] present a systematic approach to quantifying Location Pri-

vacy Preserving Mechanisms (LPPMs). They also describe an meter on the user’s

devise that continuously informs the user of their privacy. In our work, we imple-

mented a simple truncation-based LPPM (corresponding to a technique they call

precision reduction), and use this to study utility as a function of the degree of

truncation. As future work, we may consider evaluating the utility of other policies
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from their system.

In follow up work, Shokri et al. [31] present an optimal strategy to prevent

localization attacks. Their analysis formulates location privacy as a Bayesian Stack-

elberg game, where a user chooses a location cloaking strategy without knowing

their potential adversary. While their analysis considers service quality, they use

metrics that do not clearly map to utility, such as Euclidean distance from the true

location (rather than the actual effect of the change on the service).

Our study focuses on privacy for a single user at a stationary point. Allowing

the app to collect traces of data reveals much more information [37], [58]. Much of

the existing work on location privacy [29], [32], [33], [34] focuses on k-anonymity: if

a user is making a query to a location based service, they can only be identified to

be within a set of k potential users. One popular technique is to use mix zones [29]:

once a user enters a designated area their location information becomes “mixed” with

others in that same area. This technique requires a trusted middleware layer (to

properly mix location data) and requires these mix zones to be defined. In contrast,

location truncation can be done locally on a mobile device.

None of these previous approaches study the impact of location privacy on app

utility. The work that comes closest is by Shokri et al. [31], but while that frame-

work considers utility as an element of their models, it is not directly measured on

apps. Our work is complementary: we focus not on optimal obfuscation techniques,

but rather we fix an obfuscation strategy and study how utility changes under that

technique. As future work, we intend to couple our empirical utility functions with

the theoretical models presented by Shokri et al. Doing so would allow us to deter-
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mine bounds for k and allow us to study how the optimal strategies presented by

Shokri et al. are affected.

2.4 Conclusion

We presented an empirical study of how location truncation affects mobile app

utility. We began by examining how Android apps use location. Across the apps

we looked at, we found that the second most common pattern is using the current

location to list various sorts of nearby objects. The most common pattern, location-

targeted ads, is not amenable to evaluating utility. We then used Dr. Android and

Mr. Hide to implement CloakDroid, a tool that modifies existing apps’ bytecode

to use truncated location information. We designed an experiment in which we

measured the effect of a range of location truncations (from 0 km to 50 km) on

60 points randomly chosen from various locales (from population 6,000 Decatur,

TX to population 8.2 million New York, NY). We identified three metrics that

approximate app utility: edit distance, set intersection size, and additional distance.

We found that, under these metrics, the factor that most determines the utility–

truncation tradeoff is the density of objects being returned by the app, and that in

many cases, location can be truncated significantly without losing much utility. To

our knowledge, our work provides the first end-to-end evaluation of how location

truncation affects Android app utility. As subject of future work, we plan to apply

CloakDroid to a larger number of apps and test the metrics using user studies.
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Chapter 3: Checking Interaction-Based Declassification Policies

for Android Using Symbolic Execution

The last chapter introduced Redexer, a tool that allows binary rewriting of

Android apps. Redexer allows us to change the dynamic behavior of an Android

app, e.g., to change the way it uses permissions. However, manipulating the way

an app accesses information does not allow us to understand what is done with

the information once it enters the app. In this chapter, I describe how to check

information flow properties using a static analysis. In doing so, I detail a novel

policy framework that allows reasoning about how UI interactions can be used to

declassify information.

3.1 Introduction

The Android platform includes a permission system that aims to prevent apps

from abusing access to sensitive information, such as contacts and location. Unfor-

tunately, once an app is installed, it has carte blanche to use any of its permissions

in arbitrary ways at run time. For example, an app with location and Internet ac-

cess could continuously broadcast the device’s location, even if such behavior is not

expected by the user.
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To address this limitation, I present a new framework for Android app security

based on information flow control [11] and user interactions. The key idea behind

our framework is that users naturally express their intentions about information

release as they interact with an app. For example, clicking a button may permit an

app to release a phone number over the Internet. Or, as another example, toggling a

radio button from “coarse” to “fine” and back to “coarse” may temporarily permit an

app to use fine-grained GPS location rather than a coarse-grained approximation.

To model these kinds of scenarios, we introduce interaction-based declassifi-

cation policies, which extensionally specify what information flows may occur after

which sequences of events. Events are GUI interactions (e.g., clicking a button), in-

puts (e.g., reading the phone number), or outputs (e.g., sending over the Internet).

A policy is a set of declassification conditions, written φ � S, where φ is a linear-

time temporal logic (LTL) [59] formula over events, and S is a sensitivity level. If

φ holds at the time an input occurs, then that input is declassified to level S. We

formalize a semantic security condition, interaction-based noninterference (IBNI),

over sets of event traces generated by an app. Intuitively, IBNI holds of an app and

policy if observational determinism [60] holds after all inputs have been declassi-

fied according to the policy. (Section 5.2 describes policies further, and Section 3.3

presents our formal definitions.)

We introduce ClickRelease, a static analysis tool to check whether an Android

app and its declassification policy satisfy IBNI. ClickRelease generates event traces

using SymDroid [21], a Dalvik bytecode symbolic executor. ClickRelease works

by simulating user interactions with the app and recording the resulting execution
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traces. In practice, it is not feasible to enumerate all program traces, so ClickRe-

lease generates traces up to some input depth of n GUI events. ClickRelease then

synthesizes a set of logical formulae that hold if and only if IBNI holds, and uses

Z3 [61] to check their satisfiability. (Section 5.4 describes ClickRelease in detail.)

To validate ClickRelease, we used it to analyze four Android apps, including

both secure and insecure variants of those apps. We ran each app variant under

a range of input depths, and confirmed that, as expected, ClickRelease scales ex-

ponentially. However, we manually examined each app and its policy, and found

that an input depth of at most 5 is sufficient to guarantee detection of a security

policy violation (if any) for these cases. We ran ClickRelease at these minimum

input depths and found that it correctly passes and fails the secure and insecure

app variants, respectively. Moreover, at these depths, ClickRelease takes just a few

seconds to run. (Section 3.5 describes our experiments.)

In summary, we believe that ClickRelease takes an important step forward in

providing powerful new security mechanisms for mobile devices. We expect that our

approach can also be used in other GUI-based, security-sensitive systems.

3.2 Example Apps and Policies

We begin with two example apps that show interesting aspects of interaction-

based declassification policies.

Bump app. The boxed portion of Fig. 3.1 gives (simplified) source code for an

Android app that releases a device’s unique ID and/or phone number. This app is
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inspired by the Bump app, which let users tap phones to share selected information

with each other. We have interspersed an insecure variant of the app in the red code

on lines 14 and 16, which we will discuss in Section 3.3.1.

Each screen of an Android app is implemented using a class that extends

Activity. When an app is launched, Android invokes the onCreate method for a

designated main activity. (This is part of the activity lifecycle [62], which includes

several methods called in a certain order. For this simple app, and the other apps

used in this chapter, we only need a single activity with this one lifecycle method.)

That method retrieves (lines 3–5) the GUI IDs of a button (marked “send”) and

two checkboxes (marked “ID” and “phone”). The onCreate method next gets an

instance of the TelephonyManager, uses it to retrieve the device’s unique ID and

phone number information, and unchecks the two checkboxes as a default. Then

it creates a new callback (line 11) to be invoked when the “send” button is clicked.

When called, that callback releases the user’s ID and/or phone number, depending

on the checkboxes.

This app is written to work with ClickRelease, a symbolic execution tool we

built to check whether apps satisfy interaction-based declassification policies. As we

discuss further in Section 5.4, ClickRelease uses an executable model of Android that

abstracts away some details that are unimportant with respect to security. While

a real app would release information by sending it to a web server, here we instead

call a method Internet.sendInt. Additionally, while real apps include an XML file

specifying the screen layout of buttons, checkboxes, and so on, ClickRelease creates

those GUI elements on demand at calls to findViewById (since their screen locations
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1 public class BumpApp extends Activity {
2 protected void onCreate(. . .) {
3 Button sendBtn = (Button) findViewById(. . .);
4 CheckBox idBox = (CheckBox) findViewById(. . .);
5 CheckBox phBox = (CheckBox) findViewById(. . .);
6 TelephonyManager manager = TelephonyManager.getTelephonyManager();
7 final int id = manager.getDeviceId();
8 final int ph = manager.getPhoneNumber();
9 idBox.setChecked( false ) ; phBox.setChecked(false) ;

10 sendBtn. setOnClickListener (
11 new OnClickListener() {
12 public void onClick(View v) {
13 if (idBox.isChecked())
14 Internet . sendInt( id) ; //Internet.sendInt(ph);
15 if (phBox.isChecked())
16 Internet . sendInt(ph); //Internet.sendInt(id);
17 }})}}

id! ∗ ∧(F(sendBtn!unit ∧ last(idBox, true)))� Low,
ph! ∗ ∧(F(sendBtn!unit ∧ last(phBox, true)))� Low

Figure 3.1: “Bump” app and policy.

are unimportant). Finally, we model the ID and phone number as integers to keep

the analysis simpler.

ClickRelease symbolically executes paths through subject apps, recording a

trace of events that correspond to certain method calls. For example, one path

through this app generates a trace

id!42, ph!43, idBox!true, sendBtn!unit, netout!42

Each event has a name and a value. Here we have used names id and ph for secret

inputs, idBox and sendBtn for GUI inputs, and netout for the network send. In

particular, the trace above indicates 42 is read as the ID, 43 is read as the phone

number, the ID checkbox is selected, the send button is clicked (carrying no value,
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indicated by unit), and then 42 is sent on the network. In ClickRelease, events are

generated by calling certain methods that are specially recognized. For example,

ClickRelease implements the manager.getDeviceId call as both returning a value and

emitting an event.

Notice here that in the trace, callbacks to methods such as idBox and sendBtn

correspond to user interactions. The key idea behind our framework is that these ac-

tions convey the user’s intent as to which information should be released. Moreover,

traces also contain actions relevant to information release—here the reads of the ID

and phone number, and the network send. Thus, putting both user interactions and

security-sensitive operations together in a single trace allows our policies to enforce

the user’s intent.

The policy for this example app is shown at the bottom of Fig. 3.1. Policies are

comprised of a set of declassification conditions of the form φ�S, where φ is an LTL

formula describing event traces and S is a security level. Such a condition is read,

“At any input event, if φ holds at that position of the event trace, then that input is

declassified at level S.” For this app there are two declassification conditions. The

top condition declassifies (to Low) an input that is a read of the ID at any value

(indicated by ∗), if sometime in the future (indicated by the F modality) the send

button is clicked and, when that button is clicked, the last value of the ID checkbox

was true. (Note that last is not primitive, but is a macro that can be expanded into

regular LTL.) The second declassification condition does the analogous thing for the

phone number.

To check such a policy, ClickRelease symbolic executes the program, gener-
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ating per-path traces; determines the classification level of every input; and checks

that every pair of traces satisfies noninterference. Note that using LTL provides a

very general and expressive way to describe the sequences of events that imply de-

classification. For example, here we precisely capture that only the last value of the

checkbox matters for declassification. For example, if a user selects the ID checkbox

but then unselects it and clicks send, the ID may not be released.

Although this example relies on a direct flow, ClickRelease can also detect

implicit flows. Section 3.3.2 defines an appropriate version of noninterference, and

the experiments in Section 3.5 include a subject program with an implicit flow.

Notice this policy depends on the app reading the ID and phone number when

the app starts. If the app instead waited until after the send button were clicked, it

would violate this policy. We could address this by replacing the F modality by P

(past) in the policy, and we could form a disjunction of the two policies if we wanted

to allow either implementation. More generally, we designed our framework to be

sensitive to such choices to support reasoning about secret values that change over

time. We will see an example next.

Location resolution toggle app. Fig. 3.2 gives code for an app that shares location

information, either at full or truncated resolution depending on a radio button

setting. The app’s onCreate method displays a radio button (code not shown) and

then creates and registers a new instance of RadioManager to be called each time

the radio button is changed. That class maintains field mFine as true when the radio

button is set to full resolution and false when set to truncated resolution.
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18 public class ToggleRes extends Activity { . . .
19 LocSharer mLocSharer = new LocSharer();
20 RadioManager mRadio = new RadioManager();
21 protected void onCreate(. . .) { . . .}
22 private class LocSharer implements LocationListener { . . .
23 public LocSharer(RadioManager rm) {
24 lm = (LocationManager) getSystemService(LOCATION_SERVICE);
25 lm.requestLocationUpdates(mCurrentProvider, SHARE_INTERVAL, distance, this);
26 }
27 public void onLocationChanged(Location l) {
28 if (mRadio.mFine) {
29 Internet . sendInt( l .mLatitude);
30 Internet . sendInt( l .mLongitude);
31 } else {
32 Internet . sendInt( l .mLatitude & 0 xffffff00 ) ;
33 Internet . sendInt( l .mLongitude & 0xffffff00 ) ;
34 } } }
35 private class RadioManager
36 implements OnClickListener {
37 public boolean mFine = false;
38 public void onClick(View v) { mFine = !mFine; }
39 } }

longitude! ∗ ∧last(mRadio, true)� Low,
longitude! ∗ ∧last(mRadio, false)�MaskLower8

Figure 3.2: Location sharing app and policy.

Separately, onCreate registers LocSharer to be called periodically with the cur-

rent location. It requests location updates by registering a callback with the Loca-

tionManager system service. When called, LocSharer releases the location, either at

full resolution or with the lower 8 bits masked, depending on mFine.

The declassification policy for longitude appears below the code; the policy for

latitude is analogous. This policy allows the precise longitude to be released when

mRadio is set to fine, but only the lower eight bits to be released if mRadio is set to

coarse. Here ClickRelease knows that at the MaskLower8 level, it should consider

outputs to be equivalent up to differences in the lower 8 bits.
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Finally, notice that this policy does not use the future modality. This is

deliberate, because location may be read multiple times during the execution, at

multiple values, and the security level of those locations should depend on the state

of the radio button at that time. For example, consider a trace

mRadio!false, longitude!v1,mRadio!true, longitude!v2

The second declassification condition (longitude! ∗ ∧last(mRadio, false)) will match

the event with v1, since the last value of mRadio was false, and thus v1 may be

declassified only to MaskLower8. Whereas the first declassification condition will

match the event with v2, hence it may be declassified to Low.

3.3 Program Traces and Security Definition

Next, we formally define when a set of program traces satisfies an interaction-

based declassification policy.

3.3.1 Program Traces

Fig. 3.3(a) gives the formal syntax of events and traces. Primitives p are terms

that can be carried by events, e.g., values for GUI events, secret inputs, or network

sends. In our formalism, primitives are integers, booleans, and terms constructed

from primitives using uninterpreted constructors f . As programs execute, they

produce a trace t of events η, where each event name!p pairs an event name name

with a primitive p. We assume event names are partitioned into those corresponding
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Primitives p ::= n | true | false | unit | f(p1, . . . , pi)
Events η ::= name!p
Traces t ::= η list

(a) Event and Trace Definitions.

Policies P ::= C1, C2, . . .
Conditions C ::= φ� S
Security Levels S ::= High | Low | MaskLower8 | . . .
Atoms A ::= name!s | s⊕ s
Messages s ::= x | p | ∗
Formulae φ ::= A | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ∃x.φ | ∀x.φ

| Xφ | φ U φ | Gφ | Fφ | φ S φ | Pφ

(b) Interaction-based Declassification Policy Language.

Figure 3.3: Formal definitions.

to inputs and those corresponding to outputs. For all the examples in this chapter,

all names are inputs except netout, which is an output.

Due to space limitations, we omit details of how traces are generated. These

details, along with definition of our LTL formulas, can be found in a companion

tech report [63]. Instead, we simply assume there exists some set T containing all

possible traces a given program may generate. For example, consider the insecure

variant bump app in Fig. 3.1, which replaces the black code with the red code on

lines lines 14 and 16. This app sends the phone number when the email box is

checked and vice-versa. Thus, its set T contains, among others, the following two

traces:

id!0, ph!0, idBox!true, sendBtn!unit, netout!0 (1)

id!0, ph!1, idBox!true, sendBtn!unit, netout!1 (2)

In the first trace, ID and phone number are read as 0, the ID checkbox is selected,
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the button is clicked, and 0 is sent. The second trace is similar, except the phone

number and sent value are 1. Below, we use these traces to show this program

violates its security policy.

3.3.2 Interaction-based Declassification Policies

We now define our policy language precisely. Fig. 3.3(b) gives the formal

syntax of declassification policies. A policy P is a set of declassification conditions

Ci of the form φi � Si, where φi is an LTL formula describing when an input is

declassified, and Si is a security level at which the value in that event is declassified.

As is standard, security levels S form a lattice. For our framework, we re-

quire that this lattice be finite. We include High and Low security levels, and we

can generalize to arbitrary lattices in a straightforward way. Here we include the

MaskLower8 level from Fig. 3.2 as an example, where Low v MaskLower8 v High.

Note that although we include High in the language, in practice there is no reason

to declassify something to level High, since then it remains secret.

The atomic predicates A of LTL formulae match events, e.g., atomic predicate

name!pmatches exactly that event. We include ∗ for matches to arbitrary primitives.

We allow event values to be variables that are bound in an enclosing quantifier. The

atomic predicates also include atomic arithmetic statements; here ⊕ ranges over

standard operations such as +, <, etc. The combination of these lets us describe

complex events. For example, we could write ∃x.spinner!x ∧ x > 2 to indicate the

spinner was selected with a value greater than 2.
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Atomic predicates are combined with the usual boolean connectives (¬, ∧, ∨,

→) and existential and universal quantification. Formulae include standard LTL

modalities X (next), U (until), G (always), F (future), φ S ψ (since), and Pφ

(past). We include a wide range of modalities, rather than a minimal set, to make

policies easier to write. Formulae also include last(name, p), which is syntactic sugar

for ¬(name!∗) S name!p. We assume a standard interpretation of LTL formulae over

traces [64]. We write t, i |= φ if trace t is a model of φ at position i in the trace.

Next consider a trace t ∈ T for an arbitrary program. We write level(t, P, i)

for the security level that policy P assigns to the event t[i]:

level(t, P, i) =





d
φj�Sj∈P{Sj | t, i |= φj} t[i] = name!p

Low t[i] = netout!p

In other words, for inputs, we take the greatest lower bound (the most de-

classified) of the levels from all declassification conditions that apply. We always

consider network outputs to be declassified. Notice that if no policy applies, the

level is H by definition of greatest lower bound.

For example, consider trace (1) above with respect to the policy in Fig. 3.1. At

position 0, the LTL formula holds because the ID box is eventually checked and then

the send button is clicked, so level((1), P, 0) = Low. However, level((1), P, 1) = High

because no declassification condition applies for ph (phBox is never checked). And

level((1), P, 4) = Low, because that position is a network send.

Next consider applying this definition to the GUI inputs. As written, we have

55



level((1), P, 2) = level((1), P, 3) = High. However, our app is designed to leak these

inputs. For example, an adversary will learn the state of idBox if they receive a

message with an ID. Thus, for all the subject apps in this chapter, we also declassify

all GUI inputs as Low. For the example in Fig. 3.1, this means adding the conditions

idBox! ∗�Low, phBox! ∗�Low, and sendBtn! ∗�Low. In general, the security policy

designer should decide the security level of GUI inputs.

Next, we can apply level pointwise across a trace and discard any trace ele-

ments that are below a given level S. We define

level(t, P )S[i] =





t[i] level(t, P, i) v S

τ otherwise

We write level(t, P )S,in for the same filtering, except output events (i.e., network

sends) are removed as well. Considering the traces (1) and (2) again, we have

level((1), P )Low=id!0, idBox!true, sendBtn!unit, netout!0

level((2), P )Low=id!0, idBox!true, sendBtn!unit, netout!1

level((1), P )Low,in=id!0, idBox!true, sendBtn!unit

level((2), P )Low,in=id!0, idBox!true, sendBtn!unit

Finally, we can define a program to satisfy noninterference if, for every pair

of traces such that the inputs at level S are the same, the outputs at level S are

also the same. To account for generalized lattice levels such as MaskLower8, we also

need to treat events that are equivalent at a certain level as the same. For example,
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at MaskLower8, outputs 0xffffffff and 0xffffff00 are the same, since they do

not differ in the upper 24 bits. Thus, we assume for each security level S there is

a appropriate equivalence relation =S, e.g., for MaskLower8, it compares elements

ignoring their lower 8 bits. Note that x =Low y is simply x = y and x =High y is

always true.

Definition 1 (Interaction-based Noninterference (IBNI)) A program satis-

fies security policy P , if for all S and for all t1, t2 ∈ T (the set of traces of the

program) the following holds:

level(t1, P )S,in =S level(t2, P )S,in =⇒ level(t1, P )S =S level(t2, P )S

Looking at traces for the insecure app, we see they violate non-interference,

because level((1), P )Low,in = level((2), P )Low,in, but level((1), P )Low 6= level((2), P )Low

(they differ in the output). We note that our definition of noninterference makes it

a 2-hypersafety property [65,66].

3.4 Implementation

We built a prototype tool, ClickRelease, to check whether Android apps obey

the interaction-based declassification policies described in Section 3.3. ClickRelease

is based on SymDroid [21], a symbolic executor for Dalvik bytecode, which is the

bytecode format to which Android apps are compiled. As is standard, SymDroid

computes with symbolic expressions that may contain symbolic variables represent-

57



ing sets of values. At conditional branches that depend on symbolic variables,

SymDroid invokes Z3 [61] to determine whether one or both branches are feasible.

As it follows branches, SymDroid extends the current path condition, which tracks

branches taken so far, and forks execution when multiple paths are possible. Cadar

and Sen [67] describe symbolic execution in more detail.

SymDroid uses the features of symbolic execution to implement nondetermin-

istic event inputs (such as button clicks or spinner selections), up to a certain bound.

Since we have symbolic variables available, we also use them to represent arbitrary

secret inputs, as discussed below in Sec. 3.4.2. There are several issues that arise in

applying SymDroid to checking our policies, as we discuss next.

3.4.1 Driving App Execution

Android apps use the Android framework’s API, which includes classes for

responding to events via callbacks. We could try to account for these callbacks by

symbolically execution Android framework code directly, but past experience sug-

gests this is intractable: the framework is large, complicated, and includes native

code. Instead, we created an executable model, written in Java, that mimics key

portions of Android needed by our subject apps. Our Android model includes fa-

cilities for generating clicks and other GUI events (such as the View, Button, and

CheckBox classes, among others). It also includes code for LocationManager, Tele-

phonyManager, and other basic Android classes.

In addition to code modeling Android, the model also includes simplified ver-

58



sions of Java library classes such as StringBuffer and StringBuilder. Our versions

of these APIs implement unoptimized versions of methods in Java and escape to

internal SymDroid functions to handle operations that would be unduly complex to

symbolically execute. For instance, SymDroid represents Java String objects with

OCaml strings instead of Java arrays of characters. It thus models methods such as

String.concat with internal calls to OCaml string manipulation functions. Likewise,

reflective methods such as Class.getName are handled internally.

For each app, we created a driver that uses our Android model to simulate

user input to the GUI. The driver is specific to the app since it depends on the

app’s GUI. The driver begins by calling the app’s onCreate method. Next it in-

vokes special methods in the Android model to inject GUI events. There is one

such method for each type of GUI element, e.g., buttons, checkboxes, etc. For ex-

ample, Trace.addClick(id) generates a click event for the given id and then calls the

appropriate event handler. The trace entry contains the event name for that kind of

element, and a value if necessary. Event handlers are those that the app registered

through standard Android framework mechanisms, e.g., in onCreate.

Let m be the number of possible GUI events. To simulate one arbitrary GUI

event, the driver uses a block that branches m ways on a fresh symbolic variable,

with a different GUI action in each branch. Typical Android apps never exit unless

the framework kills them, and thus we explore sequences of events only up to a

user-specified input depth n. Thus, in total, the driver will execute at least mn

paths.
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3.4.2 Symbolic Variables in Traces

In addition to GUI inputs, apps also use secret inputs. We could use SymDroid

to generate concrete secret inputs, but instead we opt to use a fresh symbolic vari-

able for each secret input. For example, the call to manager.getDeviceId in Fig. 3.1

returns a symbolic variable, and the same for the call to manager.getPhoneNumber.

This choice makes checking policies using symbolic execution a bit more powerful,

since, e.g., a symbolic integer variable represents an arbitrary 32-bit integer. Note

that whenever ClickRelease generates a symbolic variable for a secret input, it also

generates a trace event corresponding to the input.

Recall that secret inputs may appear in traces, and thus traces may now

contain symbolic variables. For example, using αi’s as symbolic variables for the

secret ID and phone number inputs, the traces (1) and (2) become

id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (1′)

id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (2′)

We must take care when symbolic variables are in traces. Recall level checks

t, i |= φ and then assigns a security level to position i. If φ depends on symbolic

variables in t, we may not be able to decide this. For example, if the third element in

(1′) were idBox!α3, then we would need to reason with conditional security levels such

as level(t, P, 0) = if α3 then Low else High. We avoid the need for such reasoning

by only using symbolic variables for secret inputs, and by ensuring the level assigned

by a policy does not depend on the value of a secret input. We leave supporting
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more complex reasoning to future work.

3.4.3 Checking Policies with Z3

Each path explored by SymDroid yields a pair (t,Φ), where t is the trace and

Φ is the path condition. ClickRelease uses Z3 to check whether a given set of such

trace–path condition pairs satisfies a policy P . Recall that Definition 1 assumes for

each S there is an =S relation on traces. We use the same relation below, encoding

it as an SMT formula. For our example lattice, =High produces true, =Low produces

a conjunction of equality tests among corresponding trace elements, and =MaskLower8

produces the conjunction of equality tests of the bitwise-and of every element with

0xffffff00.

Given a trace t, let t′ be t with its symbolic variables primed, so that the

symbolic variables of t and t′ are disjoint. Given a path condition Φ, define Φ′

similarly. Now we can give the algorithm for checking a security policy.

Algorithm 1 To check a set T of trace–path condition pairs, do the following. Let

P be the app’s security policy. Apply level across each trace to obtain the level of

each event. For each (t1,Φ1) and (t2,Φ2) in T ×T , and for each S, ask Z3 whether

the following formula (the negation of Definition 1) is unsatisfiable:

level(t1, P )S,in =S level(t′2, P )S,in ∧ level(t1, P )S 6=S level(t′2, P )S ∧ Φ1 ∧ Φ′2

If no such formula is unsatisfiable, then the program satisfies noninterference.
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We include Φ1 and Φ′2 to constrain the symbolic variables in the trace. More pre-

cisely, t1 represents a set of concrete traces in which its symbolic variables are

instantiated in all ways that satisfy Φ1, and analogously for t′2.

If the above algorithm finds an unsatisfiable formula, then Z3 returns a coun-

terexample, which SymDroid uses in turn to generate a pair of concrete traces as

a counterexample. For example, consider traces (1’) and (2’) above, and prime

symbolic variables in (2’). Those traces have the trivial path condition true, since

neither branches on a symbolic input. Thus, the formula passed to Z3 will be:

α1 = α′1 ∧ true = true ∧ unit = unit ∧
(
α1 6= α′1 ∨ true 6= true ∨ unit 6= unit ∨ α2 6= α′2

)

Thus we can see a satisfying assignment with α1 = α′1 and α2 6= α′2, hence noninter-

ference is violated.

3.4.4 Minimizing Calls to Z3

A naive implementation of the noninterference check generates n2 equations,

where n is the number of traces produced by ClickRelease to be checked by Z3.

However, we observed that many of these equations correspond to pairs of traces

with different sequences of GUI events. Since GUI events are low inputs in all

our policies, these pairs trivially satisfy noninterference (the left-hand side of the

implication in Definition 1 is false). Thus, we need not send those equations to Z3

for an (expensive) noninterference check.

We exploit this observation by organizing SymDroid’s output traces into a
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tree, where each node represents an event, with the initial state at the root. Traces

with common prefixes share the same ancestor traces in the tree. We systematically

traverse this tree using a cursor t1, starting from the root. When t1 reaches a new

input event, we then traverse the tree using another cursor t2, also starting from

the root. As t2 visits the tree, we do not invoke Z3 on any traces with fewer input

events than t1 (since they are not low-equivalent to t1). We also skip any subtrees

where input events differ.

3.5 Experiments

To evaluate ClickRelease, we ran it on four apps, including the two described

in Section 5.2. We also ran ClickRelease on several insecure variants of each app, to

ensure it can detect the policy violations. The apps and their variants are:

• Bump. The bump app and its policy appear in Fig. 3.1. The first insecure

variant counts clicks to the send button sends the value of the ID after three

clicks, regardless of the state of the ID checkbox. The second (indicated in

the comments in the program text) swaps the released information—if the ID

box is checked, it releases the phone number, and vice-versa.

• Location toggle. The location toggle app and its policy appear in Fig. 3.2. The

first insecure variant always shares fine-grained location information, regard-

less of the radio button setting. The second checks if coarse-grain information

is selected. If so, it stores the fine-grained location (but does not send it yet).

If later the fine-grained radio button is selected, it sends the stored location.
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Recall this is forbidden by the app’s security policy, which allows the release

only of locations received while the fine-grained option is set.

• Contact picker. We developed a contact picker app that asks the user to select

a contact from a spinner and then click a send button to release the selected

contact information over the network. The security policy for this app requires

that no contact information leaks unless it is the last contact selected before

the button click. (For example, if the user selects contact 1, selects contact 2,

and then clicks the button, only contact 2 may be released.) Note that since

an arbitrarily sized list of contacts would be difficult for symbolic execution

(since then there would be an unbounded number of ways to select a contact),

we limit the app to a fixed set of three contacts. The first insecure variant of

this app scans the set of contacts for a specific one. If found, it sends a message

revealing that contact exists before sending the actual selected contact. The

second insecure variant sends a different contact than was selected.

• WhereRU. Lastly, we developed an app that takes push requests for the user’s

location and shares it depending on user-controlled settings. The app contains

a radio group with three buttons, “Share Always,” “Share Never,” and “Share

On Click.” There is also a “Share Now” button that is enabled when the

“Share On Click” radio button is selected. When a push request arrives, the

security policy allows sharing if (1) the “Always” button is selected, or (2) the

“On Click” button is selected and the user presses “Share Now.” Note that,

in the second case, the location may change between the time the request
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arrives and the time the user authorizes sharing; the location to be shared is

the one in effect when the user authorized sharing, i.e., the one from the most

recent location update before the button click. Also, rather than include the

full Android push request API in our model, we simulated it using a basic

callback. This app has two insecure variants. In the first one, when the user

presses the “Share Now” button, the app begins continuously sharing (instead

of simply sharing the single location captured on the button press). In the

second, the app shares the location immediately in response to all requests.

Scalability. We ran our experiments on a 4-core i7 CPU @3.5GHz with 16GB RAM

running Ubuntu 14. For each experiment we report the median of 10 runs.

In our first set of experiments, we measured how ClickRelease’s performance

varies with input depth. Figure 3.4 shows running time (log scale) versus input

depth for all programs and variants. For each app, we ran to the highest input

depth that completed in one hour.

For each app, we see that running time grows exponentially, as expected. The

maximum input depth before timeout (i.e., where each curve ends) ranges from five

to nine. The differences have to do with the number of possible events at each input

point. For example, WhereRU has seven possible input events, so it has the largest

possible “fan out” and times out with an input depth of five. In contrast, Bump and

Location Toggle have just three input events and time out with an input depth of

nine. Notice also the first insecure variant of Contact Picker times out after fewer

events than the other variants. Investigating further, this occurs due to that app’s
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Figure 3.4: Runtime vs. number of events.

implicit flow (recall the app branches on the value of a secret input). Implicit flows

cause symbolic execution to take additional branches depending on the (symbolic)

secret value.

Minimum Input Depth. Next, for each variant, we manually calculated a minimum

input depth guaranteed to find a policy violation. To do so, first we determined

possible app GUI states. For example, in Bump (Fig. 3.1), there is a state with

idBox and phBox both checked, a state with just idBox checked, etc. Then we
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Input Time (ms)
App Depth Exploration Analysis Total
Bump 3 114 15 142
Bump (insecure 1) 5 2,100 1,577 3,690
Bump (insecure 2) 4 266 70 344
Location toggle 2 113 12 128
Location toggle (insecure 1) 2 143 12 163
Location toggle (insecure 2) 3 117 12 143
Contact picker 2 79 2 94
Contact picker (insecure 1) 2 325 27 361
Contact picker (insecure 2) 2 149 9 170
WhereRU 3 849 183 1,045
WhereRU (insecure 1) 3 860 234 1,108
WhereRU (insecure 2) 2 257 10 280

Figure 3.5: Results at minimum input depth.

examined the policy and recognized that certain input sequences lead to equivalent

states modulo the policy. For example, input sequences that click idBox an even

number of times and then click send are all equivalent. Full analysis reveals that

an input depth of three (which allows the checkboxes to be set any possible way

followed by a button click) is sufficient to reach all possible states for this policy.

We performed similar analysis on other apps and variants.

Fig. 3.5 summarizes the results of running with the minimum input depth

for each variant, with the depths listed in the second column. We confirmed that,

when run with this input depth, ClickRelease correctly reports the benign app vari-

ants as secure and the other app variants as insecure. The remaining columns of

Fig. 3.5 report ClickRelease’s running time (in milliseconds), broken down by the

exploration phase (where SymDroid generates the set of symbolic traces) and the

analysis phase (where SymDroid forms equations about this set and checks them

using Z3). Looking at the breakdown between exploration and analysis, we see that
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the former dominates the running time, i.e., most of the time is spent simply explor-

ing program executions. We see the total running time is typically around a second

or less, while for the first insecure variant of Bump it is closer to 4 seconds, since it

uses the highest input depth.

Our results show that while ClickRelease indeed scales exponentially, to ac-

tually find security policy violations we need only run it with a low input depth,

which takes only a small amount of time.

3.6 Limitations and Future Work

There are several limitations of ClickRelease we plan to address in future work.

Thus far we have applied ClickRelease to a set of small apps that we developed.

There are two main engineering challenges in applying ClickRelease to other apps.

First, our model of Android (Section 3.4.1) only includes part of the framework. To

run on other apps, it will need to be expanded with more Android APIs. Second, we

speculate that larger apps may require longer input depths to go from app launch

to interfering outputs. In these cases, we may be able to start symbolic execution

“in the middle” of an app (e.g., as in the work of Ma et al. [68]) to skip uninteresting

prefixes of input events.

ClickRelease also has several limitations related to its policy language. First,

ClickRelease policies are fairly low level. Complex policies—e.g., in which clicking a

certain button releases multiple pieces of information—can be expressed, but are not

very concise. We expect as we gain more experience writing ClickRelease policies,
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we will discover useful idioms that should be incorporated into the policy language.

Similarly, situations where several methods in sequence operate on and send in-

formation should be supported. Second, currently ClickRelease assumes there is a

single adversary who watches netout. It should be straightforward to generalize to

multiple output channels and multiple observers, e.g., to model inter-app commu-

nication. Third, we do not consider deception by apps, e.g., we assume the policy

writer knows whether the sendBtn is labeled appropriately as “send” rather than as

“exit.” We leave looking for such deceptive practices to future work.

Finally, since ClickRelease explores a limited number of program paths it is

not sound, i.e., it cannot guarantee the absence of policy violations in general.

However, in our experiments we were able to manually analyze apps to show that

exploration up to a certain input depth was sufficient for particular apps, and we

plan to investigate generalizing this technique in future work.

3.7 Related Work

ClickRelease is the first system to enforce extensional declassification policies

in Android apps. It builds on a rich history of research in usable security, information

flow, and declassification.

One of the key ideas in ClickRelease is that GUI interactions indicate the

security desires of users. Roesner et al. [69] similarly propose access control gad-

gets (ACGs), which are GUI elements that, when users interact with them, grant

permissions. Thus, ACGs and ClickRelease both aim to better align security with
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usability [70]. ClickRelease addresses secure information flow, especially propaga-

tion of information after its release, whereas ACGs address only access control.

Android-based systems. TaintDroid [71] is a run-time information-flow tracking

system for Android. It monitors the usage of sensitive information and detects when

that information is sent over insecure channels. Unlike ClickRelease, TaintDroid

does not detect implicit flows.

AppIntent [72] uses symbolic execution to derive the context, meaning inputs

and GUI interactions, that causes sensitive information to be released in an Android

app. A human analyst examines that context and makes an expert judgment as

to whether the release is a security violation. ClickRelease instead uses human-

written LTL formulae to specify whether declassifications are permitted. It is unclear

from [72] whether AppIntent detects implicit flows.

Pegasus [73] combines static analysis, model checking, and run-time monitor-

ing to check whether an app uses API calls and privileges consistently with users’

expectations. Those expectations are expressed using LTL formulae, similarly to

ClickRelease. Pegasus synthesizes a kind of automaton called a permission event

graph from the app’s bytecode then checks whether that automaton is a model for

the formulae. Unlike ClickRelease, Pegasus does not address information flow.

Jia et al. [74] present a system, inspired by Flume [75], for run-time enforce-

ment of information flow policies at the granularity of Android components and

apps. Their system allows components and apps to perform trust declassification

according to capabilities granted to them in security labels. In contrast, ClickRelease
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reasons about declassification in terms of user interactions.

Security type systems Security type systems [76] statically disallow programs that

would leak information. O’Neill et al. [18] and Clark and Hunt [77] define interactive

variants of noninterference and present security type systems that are sound with

respect to these definitions.

Integrating declassification with security type systems has been the focus of

much research. Chong and Myers [14] introduce declassification policies that condi-

tionally downgrade security labels. Their policies use classical propositional logic for

the conditions. ClickRelease can be seen as providing a more expressive language for

conditions by using LTL to express formulae over events. SIF (Servlet Information

Flow) [78] is a framework for building Java servlets with information-flow control.

Information managed by the servlet is annotated in the source code with security

labels, and the compiler ensures that information propagates in ways that are con-

sistent with those labels. The SIF compiler is based on Jif [79], an information-flow

variant of Java.

All of these systems require adding type annotations to terms in the program

code, e.g., method parameters, etc. In contrast, ClickRelease policies are described

in terms of app inputs and outputs.

Event Based Models and Declassification Vaughan and Chong [80] define expres-

sive declassification policies that allow functions of secret information to be released

after events occur, and extend the Jif compiler to infer events. ClickRelease instead
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ties events to user interactions.

Rafnsson et al. [81] investigate models, definitions, and enforcement techniques

for secure information flow in interactive programs in a purely theoretical setting.

Sabelfeld and Sands [12] survey approaches to secure declassification in a language-

based setting. ClickRelease can be seen as addressing their “what” and “when” axes

of declassification goals: users of Android apps interact with the GUI to control

when information may be released, and the GUI is responsible for conveying to the

user what information will be released.

3.8 Conclusion

We introduced interaction-based declassification policies, which describe what

and when information can flow. Policies are defined using LTL formulae describing

event traces, where events include GUI actions, secret inputs, and network sends. We

formalized our policies using a trace-based model of apps based on security relevant

events. Finally, we described ClickRelease, which uses symbolic execution to check

interaction-based declassification policies on Android, and showed that ClickRelease

correctly enforces policies on four apps, with one secure and two insecure variants

each.
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Chapter 4: User Interactions and Permission Use on Android

Our last chapter introduced interaction-based declassification policies. How-

ever, it is unclear whether this matches user intuition about how apps behave. In

this chapter, I introduce a system for studying how permission uses relate to user

interaction within apps. This system, named AppTracer, builds on the logging fa-

cilities present in Redexer. It leverages logging and visualization to help perform an

app study over 150 top apps from the Google Play store. I then follow this up with a

961-participant user study to investigate how users understand permissions as they

relate to the UI. I found that the app’s UI does deeply inform a user’s expectation

that a permission will be used, but that the current implementation of the Android

permission system may mislead users under certain circumstances.

4.1 Introduction

Android has a permission system that asks users for authorization before an

app uses sensitive resources such as contacts or GPS location. A key challenge in

such authorization systems is balancing user interruptions with making sensitive

resource use transparent. We hypothesize that Android’s existing authorization

systems (install-time permission lists or run-time dialog boxes, depending on the
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version) could achieve a better balance by integrating with the app’s user interface

(UI), because the UI deeply informs the user’s mental model of the app’s behavior,

including security-relevant behavior.

In particular, in this chapter we ask whether user interactions—button clicks,

page changes, dialog boxes, etc.—can be taken as evidence of authorization to use

certain sensitive resources. If so, this could reduce the need for separate authoriza-

tion requests. Conversely, I ask whether sensitive resource use without an associated

interaction suggests a need for additional authorization requests. Note that while

our studies are heavily influenced by Android, I believe the results will generalize to

related mobile OS’s and similar settings like web apps.

To answer these questions, I conducted two related studies. First, I (and

another grad studnet) reviewed 150 popular Android apps to determine whether

sensitive resource uses are related to user interactions in existing apps. If so, an

authorization mechanism integrated with the UI could work well with existing app

designs. To carry out this study, we developed AppTracer, a dynamic analysis

tool that instruments Android apps to log UI actions and resource uses, and then

visualizes the logs as graphs that show temporal ordering of logged events. We

used AppTracer to determine whether each observed resource use in each app was

interactive, meaning either it was immediately preceded by a related UI event (e.g.,

accessing contacts after clicking a button marked “contacts”), or it was the main

focus of the current screen (e.g., using location on a map screen).

We found that, across our subject apps, several resources (microphone, camera,

external storage, and calendar) are used almost exclusively interactively; several oth-

74



ers (including bluetooth and phone state) are used mostly non-interactively (which

we call in the background even if the app itself is on screen); and several resources

(most notably contacts and location) exhibit a mix of interactive and background

uses. These results suggest interactive and background uses may call for different

authorization mechanisms, and that these mechanisms cannot necessarily be divided

strictly by resource.

These results informed the design of our second study, a 961-participant online

survey investigating participants’ expectations about interactive and background

permission uses. Each participant viewed a slideshow of two usage scenarios for a

mock mobile app, where each scenario shows a short interaction (e.g., launching the

app, clicking a button, etc.) and then asks if the participant expects microphone,

location, and/or contacts to be used after the interaction. We chose these resources

to reflect a range of interactivity as measured in our app study. We aimed to

gain insight into how different factors affect user expectations, and therefore which

authorization mechanisms might be appropriate for different usage patterns.

As we anticipated, we found that users are much more likely to expect resources

to be accessed after a related interaction than in the background. However, we

also found that seeing one interactive use does not prime the user to expect a

future background use, indicating a potential weakness in the Android M request-on-

first-use authorization model. In contrast, our findings show that an authorization

request at launch does increase expectations for both interactive and background

accesses, perhaps because it better conveys the idea that the resource could be

accessed at any time.
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Drawing on the results of our studies, we make three design recommenda-

tions. First, resource uses should be made after associated interactions as much as

possible. Given the current makeup of apps, this should be achievable for many

commonly used resources without extensive effort. Second, separate authorization

dialogs might be unnecessary for resources that are accessed mostly interactively

(see, e.g., [82]). Finally, authorization for background resource uses should be dis-

tinct from authorization for interactive uses, and these background authorizations

may be most effective when the app is launched.

4.2 Background and Related Work

In earlier versions of Android, users were presented with a list of permissions

requested by an app at install time. The user could then either grant the app full

use of those permissions or not install the app at all. This model had a number

of problems: few users comprehended or even read the list of permissions [83], and

many apps requested more permissions than they used [51]. Because of these issues,

Android M [84] switched to a model where apps ask for a permission the first time

it is needed; the permission is then granted indefinitely.

In our work, we ask whether authorization systems similar to Android’s can be

improved by taking the user interface into account. Note that our work is orthogonal

to the question of whether permissions are at the right level of granularity [9,85] or

protect the right resources [86].
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Contextual Security on Mobile Devices The motivation for our work, that au-

thorization can be better integrated with the UI, exemplifies contextual security [4],

which suggests security decisions should take the context into account. Several re-

searchers have studied contextual security on mobile devices. Almuhimedi et. al [87]

showed users historical data about how apps accessed their locations. They found

95% of users reassessed the apps’ need for location, with 58% of those users further

restricting location access. King [5] found users are more likely to expect sensitive

resource accesses when suggested by the context. Felt et. al [88] proposed a process

for deciding the appropriate authorization mechanism for a permission based on the

a permissions’ use in context. Several researchers [6–8] found users are surprised by

some sensitive resource accesses that occur when apps are in the background. Most

closely related to this paper, in a field study Wijesekera et al. [8] found that context

is an important factor in determining expectation of resource use. Our work builds

on this finding by using a controlled experiment to distinguish how different contex-

tual factors, including consecutive interactions, contribute to user expectations.

The works just mentioned mainly define context as whether the app is on or off

the screen. In contrast, we use a much richer notion of context based on sequences

of UI actions.

Enforcing Contextual Security Many systems have been proposed to enforce

contextual security in apps. Chen et. al [73] present Pegasus, a static analysis

system for analyzing apps and enforcing policies based on permission event graphs

(PEGs). For example, Pegasus can check that contacts are only accessed after click-
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ing a certain button. PEGs inspired the design of AppTracer. However, AppTracer

uses dynamic (rather than static) analysis to reduce issues of false positives—every

behavior AppTracer logs occurred in an actual run, whereas static analysis may

report sensitive resource accesses that can never actually occur.

Yang et al. [72] presented AppIntent, which uses symbolic execution to deter-

mine sequences of UI events that lead to information leakage. Micinski et. al [63]

use symbolic execution to enforce secure information-flow properties based on UI

events. While both systems are promising, in practice symbolic execution is diffi-

cult to run at scale on Android apps due to the complexity of modeling the Android

framework.

Stiegler et al. developed CapDesk [89] and later Polaris [90], two capability-

based desktop system that utilize user interaction to drive access control. However,

CapDesk and Polaris’s focus is limited to file access. Roesner et. al [82] expand

user-driven access control with Access Control Gadgets (ACGs), which tie resource

accesses to certain UI elements, e.g., an ACG might allow location to be used only

after a specific button is clicked. ACGs were later expanded to work on Android,

with and later without modifying the operating system [91, 92]. The original ACG

paper includes a user study measuring expectations related to interactive permission

uses; our work expands on this idea to study a broader variety of factors and use

cases. While the current paper does not directly implement or measure ACGs, our

findings do support the use of ACGs.
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Figure 4.1: App Measurement Survey Procedure.

4.3 App Measurement Survey Methodology

In our first study, we reviewed a set of popular Android apps to determine

how UI actions and resource uses are related. Figure 4.1 gives a high-level overview

of our review process, which ultimately produces a set of resource use codes that

indicate, for each resource use, what event (if any) caused the use. For example, we

might determine that in some app, contacts were accessed just after a button click,

or location was used immediately when the app launched.

The next subsections walk through the review process in detail.

4.3.1 Binary Rewriting and Execution Logging

The first step of our process uses AppTracer, a dynamic analysis tool we

developed. AppTracer instruments the subject app so that, when run, it writes

a log of UI events and permission uses. AppTracer adds instrumentation using

Redexer [9], a rewriting tool for Dalvik bytecode (the language to which Android

apps are compiled). Generally speaking, AppTracer instruments code by appending
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a log method to the bytecode and inserting calls to log at the beginning of UI-

related callbacks (e.g., onClick handlers for button events) and just before calls to

permission-protected methods (e.g., getLastLocation).

We identified methods associated with the UI using the Android documen-

tation. We identified permission-protected methods using the PScout dataset [93],

which attempts to list every security-sensitive method and its associated permis-

sion. PScout also includes information about sensitive content providers, intents,

etc. Note that while PScout is reasonably thorough, we found several cases it missed.

For example, we observed several visual indicators of SD card use that had no cor-

responding log entry AppTracer. After investigating the apps’ decompiled code, we

found the SD card was used via Java IO methods omitted by PSCout. Whenever we

found such cases, we added the missing methods to our copy of the PScout database

and reran our evaluated apps.

Once an app has been instrumented, a tester runs it to generate a log. (Note

that one log is usually sufficient because in most apps, any app state is reachable

from any other app state.) We elide the details of the log, but at a high level, for each

UI event, AppTracer records the type of event and the corresponding parameters

(e.g., what button was clicked, which menu option was selected, etc.). For each

permission use, AppTracer logs the name of the called method and its arguments.

80



(a) Click (b) Uncertain

(c) Startup
(d) Background-
External

Figure 4.2: AppTracer graphs and corresponding resource access patterns in our
codebook.

4.3.2 Log Visualization

After the tester produces a log, the next step is log visualization. Figures 4.2a–

4.2b show example portions of AppTracer’s graph-based visualization, redrawn for

compactness and to omit most package names. Here, light blue boxes represent ac-

tivities, which are the “screens” of the app. Within each activity, gray ovals represent

the beginning of that activity (“entry,” which usually corresponds to the onStart han-

dler), UI events (e.g., “click”), or system events (e.g., BATTERY_CHANGED). Red

rectangles indicate calls to methods protected by the named permission. There is an

edge from node A to node B if A occurs immediately before B in the log. For exam-

ple, in Figure 4.2a, contacts were read immediately after the ImportContactActivity
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activity was started.

Since logs can be quite lengthy, AppTracer heuristically merges nodes that

arise from the same position in the bytecode. This sometimes results in ambiguity.

For example, in Figure 4.2b, the single onReceive node actually represents calls to an

Android broadcast receiver that AppTracer coalesced. We discuss this more below.

Finally, AppTracer also allows the user to directly view the log file entries

corresponding to a node in the graph. This is useful to retrieve more detailed

information about the node. For example, when reviewing Figure 4.2a, we looked

in the log to determine that the clicked button had text associated with contacts.

As another example, we used the logs to distinguish SD card accesses to user files

from accesses to the app’s own storage. We do not count the latter as a sensitive

resource access because it accesses data owned by the app.

4.3.3 Resource Uses

The next step is to examine the AppTracer graph and record a set of codes

that accurately categorize various resource accesses. More precisely, for each red

node in the graph, the coder assigns a pair of the form (resource, pattern), where

resource indicates what is protected by the permission and pattern is one of six

different UI patterns, discussed next.

To keep our results understandable, we grouped together resources according

to Google’s permission groups [94]. For example, the single SMS resource includes

more fine-grained permissions such as READ_SMS and SEND_SMS.

82



We developed an initial codebook for UI patterns based on our knowledge of

Android app development. We then iteratively applied our codebook to sets of five

apps (not in our evaluation set) at a time and adjusted the codes as necessary. After

evaluating a total of twenty apps, we felt we had reached a codebook with a minimal

set of orthogonal patterns.

The six access patterns in our codebook are grouped into three categories.

First are the interactive patterns Click and Page. The code Click indicates resource

use preceded by a UI event (including non-clicks such as swipes). For example,

in Figure 4.2a, we coded READ_CONTACTS as Click because the contacts were

accessed on a straight-line path from the click of a button labeled as importing

contacts. Page codes uses that are clearly associated with an activity but are not

associated with exactly one click. For example, Page would code the use of location

during an activity that shows a list of nearby stores.

Second, in the background patterns Startup, Bg-App, and Bg-Ext, the resource

use has no obviously connected user action. Startup codes a resource accessed right

after app launch but before any screen appears (and is thus disjoint from Page),

e.g., the use of accounts in Figure 4.2c, which occurs in a thread created at app

launch. Bg-App codes a resource used while the app is in the foreground, but with

no clearly related user action. For example, a graph similar to Figure 4.2a would

be coded as Bg-App if a button labeled for importing contacts was followed by

the GET_ACCOUNTS permission rather than READ_CONTACTS. Bg-Ext denotes

a resource used due to a system event, meaning it would be used whether or not

the app is on screen. For example, in Figure 4.2d, accounts are read after the
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BATTERY_CHANGED system event.

Finally, Uncertain denotes a resource access that did not fit any of the pre-

vious patterns. In Figure 4.2b, we see a path from a system event to onReceive to

READ_CONTACTS, which should be coded as Bg-Ext. But, the onReceive node also

has an incoming edge from the click handler and the back button. These uses would

be coded as Bg-App. (The Click and Page codes do not apply because the asso-

ciated buttons do not indicate contacts will be used.) Because there are multiple

possibilities, we code this case as Uncertain.

If desired, an AppTracer user can subsequently review the logs to try to

resolve the uncertainty. For example, here the log entry associated with BAT-

TERY_CHANGED is followed by a call to onReceive and then READ_CONTACTS.

Thus, the permission use is coded as Bg-Ext. We then separately looked at the log

entries for click and back_button, and found they were followed by an onReceive

that was not followed by READ_CONTACTS. Thus, examining the logs allowed us

to distinguish paths that we merged in AppTracer.

Note that for each app we only count each (resource, pattern) pair once, no

matter how often it occurs in the log. A stronger notion of frequency would be hard

to interpret, since it would depend on how AppTracer heuristically coalesces graph

nodes as well as to how the tester explored the app.
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4.3.4 Coding Apps and Resolving Differences

Coding the resource uses of an app is inherently complex. Thus, two coders

reviewed apps independently in sets of 15 and met after each set to resolve differ-

ences. Coders took approximately 10–20 minutes to code each app, and resolving

differences for a set of 15 apps took approximately 30 minutes.

Most differences between coders were due to one coder overlooking a path or

a resource in the AppTracer graph. In almost all such cases, when the other coder

pointed out the omission, the first coder would quickly reach the same conclusion

as the other coder. The remaining differences were caused by disagreements about

whether the resource use was interactive. For example, one app read a user’s ac-

counts within an activity for filling a form. One coder recorded this as Click, since

the accounts were read after a click. The other coder recorded this as Bg-App,

because there was no observable use of the account data, such as pre-filling the

form with data from the user’s existing accounts. After encountering several such

cases, the coders decided on a general principle of coding uses as Bg-App unless the

UI explicitly mentioned that the resource could be used—hence, this example was

resolved as Bg-App.

Inter-rater reliability between our coders for the non-visualization-error dis-

agreements was Krippendorff’s α = 0.897, indicating close agreement [95].
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4.3.5 App Selection

We drew our subject apps from a larger set comprising the 20 top downloaded

free apps1 from the 27 non-gaming categories on Google Play. We excluded gaming

apps because they typically use native code that AppTracer cannot analyze. This

yielded 503 apps (note there is overlap between categories).

We then randomly selected 150 apps to evaluate, subject to the constraint that

no more than two apps were from the same developer. (We wanted to avoid bias

due to overrepresentation of apps coded in the same style.). We excluded any apps

that could not be run with AppTracer, replacing them with new randomly drawn

apps to maintain an evaluation set of 150.

We excluded 48 apps because Redexer fails when rewriting them and 23 apps

because either they refuse to run if modified (due to internal or system signature

checks) or they are primarily implemented in native code. In most cases, we created

accounts when signup was required to fully exercise an app, but we excluded 16

apps because they require accounts that are hard to set up online or require a fee

(e.g., bank accounts).

4.3.6 Limitations

There are several potential limitations to this study. First, the tester may

miss some app behavior, leading to a log that omits some possible resource uses and

contexts. We tried to alleviate this concern by exercising as much of the app as
1as of June 11, 2016
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possible. However, we did not use app features that required payment.

Second, AppTracer has limitations mentioned above: it may miss UI events

or permission-protected methods, and it merges nodes that correspond to the same

position in the bytecode. We tried to address the former issue by looking for cases

where we expected an event to be in a log but it was not, and then adding the missing

events or methods. We addressed the latter issue by manually disambiguating some

of the uncertain cases.

Third, our study reviewed only popular Android apps. Observing that a re-

source is already accessed interactively in popular apps would indicate that changing

the Android framework or system to implement interactivity-related protections for

those accesses may be reasonable. These apps also represent the common case and

likely help to set user expectations about apps and permissions. However, we note

that the apps we examine likely differ from the long tail of other apps in important

ways; popular apps are likely implemented to high standards and unlikely to be

malicious. We leave similar measurements on a broader set of apps as future work.

4.4 App Measurement Survey Results

Figure 4.3 summarizes the resource use patterns we found. For example, across

all apps, the camera was used in the Click pattern 57 times. Orange-shaded bars

indicate interactive use patterns, and blue shades represent background uses. Re-

sources are sorted by percent of interactive patterns.

We see that, to a rough approximation, the more sensitive the resource the
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Figure 4.3: Percent of observed patterns of each type, per resource. Bar labels
indicate how many apps we observed using each pattern, non-normalized.

more likely it is used interactively. Indeed, microphone, media, camera, and calendar

were accessed almost exclusively interactively. We investigated the background and

Uncertain uses for these resources. One calendar use and the two SD card uses

were due to periodic background tasks (calendar syncing or scanning for files). One

camera use took a picture after the passcode was entered incorrectly three times.

One camera use and one calendar use did not seem to access sensitive resources—

the camera use accessed configuration information, and the calendar use got the

current date (which could be done without accessing the calendar). Finally, after

disassembling and reading the bytecode, we found one Uncertain camera use could

actually only happen interactively.
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We next see that contacts, SMS, tasks, location, and calls are used in a mix of

interactive and non-interactive ways. We investigated the background and Uncertain

uses of these resources as well. Contacts were used in the background mainly to pre-

fetch or sync the contact list. Two apps used SMS in the background to listen for a

registration code after the user signed up for an account. Currently running tasks

were polled in the background to monitor battery usage, scan for malicious apps,

look for apps by the same developer (to communicate with them), or for analytics

and tracking purposes. Call-related permissions were used in the background to

block calls from a user-supplied blacklist. While there were too many background

location uses to examine them all, those we did examine frequently had no obvious

reason (as expected [7, 87]), even in apps that elsewhere used location for a clear

purpose.

Finally, four resources—accounts, power, bluetooth, and phone state information—

were mostly accessed in the background. We believe this is either because developers

believe users care less about these accesses [86], the uses are hard to explain clearly to

non-experts, or the uses are not naturally associated with an immediately preceding

interaction.

Looking in more detail at the breakdown between Click and Page, we see that

for most resources, Click is a clear majority of the interactive uses. The exception

is location, which has more Page uses. This was mostly due to location use for map

screens or lists of nearby places. Breaking down the background uses, we see the

use of resources at Startup and in Bg-Ext becomes much more common lower in the

chart.
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Resource # Apps

Location 75
Media/SD Card 69
Camera 69
Phone State 43
Accounts 39
Bluetooth 31
Contacts 30

Resource # Apps

Microphone 14
Tasks 13
Power/Diag. 12
Calendar 5
SMS 4
Calls 2

Table 4.1: Number of apps that used each resource.

4.4.1 Resource Usage Across Apps

We also measured the number of apps that used each resource at least once,

as a rough approximation for how familiar each resource is to users. Table 4.1 shows

the results. We found a wide range across resources, with little correlation between

frequency of appearance in apps and usage patterns. For example, location was used

frequently, and Figure 4.3 shows that it was often used in the background, whereas

media/SD card was also used frequently, but was rarely seen in the background.

4.4.2 Discussion

The results of our app survey suggest several possibilities. Given the large

amount of interactive resource use overall, there seems to be a clear opportunity

for better integrating authorization into the UI. However, the question remains to

what extent interactions make resource use apparent to users. We try to answer

this question in the next two sections.

Our app survey also shows that many resources are used in the background,

and many of these uses seem reasonable, at least to the authors. Moreover, apps
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Figure 4.4: User expectations study procedure. Lower portion shows partial exam-
ples of user actions and survey questions.

sometimes use the same resource both in the foreground and in the background, to

different purposes. This suggests interactive and background uses should be autho-

rized separately. Thus, in the next two sections, we also try to answer questions

about how background uses should be authorized, and about whether users’ expec-

tations of interactive and non-interactive uses are related.

4.5 User Expectations Study Methodology

After our app survey, we conducted an online study to elicit users’ expectations

about resource use as different user actions are performed on a smartphone. Our
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goal was to understand to what extent user expectations align with the interactivity

patterns we observed in our app study. Concretely, our user study examined the

following three hypotheses:

H1. Users are more likely to expect resource accesses with an interactive use

pattern than without.

H2. The more apps that use a resource (as measured in our app survey), the

more likely users are to expect less-interactive uses of that resource.

H3. Users are more likely to expect resource accesses they have seen before.

Note that H1 and H3 have implications for the Android M permission system.

Specifically, if H1 is true, users already expect a resource to be accessed due to user

action, so an explicit authorization request may be unnecessary. Additionally, if H3

is false, then users granting authorization for a resource in one access pattern does

not cause them to expect that resource to be used later in a different pattern. Thus,

requesting authorization only on first use may be insufficient.

H2 is a proxy for a more general hypothesis: that users are more likely to

expect accesses to resources with which they are familiar. Familiarity is likely af-

fected by many factors including how many apps use the resource and how often

they do so, whether passive notifications are present (as for location), coverage in

the news media, etc. For simplicity, we use the frequencies in Table 4.1 as a metric

of familiarity.
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4.5.1 Study Overview

We recruited participants through Amazon’s Mechanical Turk crowdsourcing

service. All participants were at least 18 years old and located in the United States.

Participants were paid $1.00 for completing the survey. The survey was approved

by the University of Maryland IRB. Participants were instructed that we wanted

their opinions about an app; privacy and sensitive resources were not explicitly

mentioned.

Figure 4.4 gives a flowchart of the procedure followed by each study partic-

ipant. First, the participant reads a short description of an app. We used two

mock apps in our study: FindMeCoffee (Coffee) and HealthyFit Tracker (Fitness).

FindMeCoffee locates nearby coffee shops, allows users to share the location of fa-

vorite coffee shops with friends, and supports ordering coffee via voice command.

HealthyFit Tracker tracks workouts, allows sharing workouts with friends, and allows

posting audio “smack talk” on the user’s profile. Note while these apps demonstrate

different categories, we do not attempt to fully study the effect of app type on user

perceptions.

Next the participant views one sequence of user interactions with the app,

shown as a slideshow of app screenshots. To avoid confusion with terminology in

the next section, we refer to such a sequence as a user action. For example, in the

user action in Figure 4.4A, the user clicks the bottom-most button (outlined in red),

and the app then displays an authorization request dialog. In Figure 4.4C, which is

only shown partially, the user exits the app and returns to the device home screen.
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After viewing a user action, the participant answers five-point Likert questions

such as those in Figure 4.4B, which ask whether a resource is “Definitely not” to

“Definitely yes” accessed immediately after the user action. To avoid priming the

user, the survey asks about camera, SMS, flashlight, “accessing credit card infor-

mation,” and “looking up coffee shop reviews” (Coffee) or “reading your heart rate”

(Fitness) as well as the three resources we study.

Next, the participant answers five distractor questions, views another user ac-

tion, and answers the same Likert questions about the second user action. The

distractors are designed to induce a cognitive break and ensure the two access pat-

terns are treated as separate events. For example, one distractor asks users “Which

button would you press if you wanted to find a new coffee shop?” We did not

measure the effectiveness of distractors. The participant concludes the survey by

answering demographic questions. Participants took 4 minutes and 45 seconds on

average to complete the survey.

To understand the effect of resource access patterns on user expectation, we an-

alyze responses about the first user action each participant viewed. We use responses

about the second user action to examine how prior exposure affects expectation.

4.5.2 Conditions

Participants were assigned round-robin to one of 42 conditions, which varied

across four variables: the app, the resource being accessed, the authorization pattern,
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and the pair of interaction (int) patterns.2 Table 4.2 lists possible values for each

variable, and conditions comprise one value from each column.

As mentioned earlier, our study used two mock apps, FindMeCoffee and

HealthyFitTracker, and three resources, chosen to cover a range of int. patterns

observed in our app survey: Microphone (Mic, only interactive accesses observed),

Contacts (Con, mixed interactive and background uses observed), and Location

(Loc, also mixed).

Our study considered three different authorization patterns. First use (Fst)

mimics Android M, presenting an authorization dialog during the first user action

but not the second. Launch (Lch) presents an authorization dialog immediately

after the app’s home page is shown, but before any further screenshots. We noticed

anecdotally that a few apps in our study used this strategy. Never (Nvr) does not

show any authorization dialog at run time. This mimics older versions of Android.

We examined three different int. patterns, also drawn from the app survey:
2Through this section we will use the abbreviation int. pattern to avoid confusion with the

interactions in our regression analysis.

App Resource1 Authorization2 Int. Patterns3

Coffee Mic Fst Clk -Clk 4

Fitness Con 4 Lch Clk -Bg
Loc Nvr Bn-Bg

Bg-Bg 4,5

1 Mic - Microphone, Con - Contacts, Loc - Location
2 Fst - First, Lch - Launch, Nvr - Never
3 Clk - Click, Bn - Background w/Notif., Bg - Background Only
4 Only used with Coffee
5 Only used with Lch

Table 4.2: Possible values for each variable in tested conditions.
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Button Click (Clk), Background with Notification (Bn, uses a resource without inter-

action, but displays an icon and short message in the notification drawer indicating

some condition is met, such as being located near a coffee shop) and Background

Only (Bg, uses a resource in a way not clearly shown in the UI). We can order these

from most (Clk) to least (Bg) interactive. We always label the button clearly for its

use (no deception). We do not test UI widgets besides buttons.

Regardless of a participant’s assigned condition, the survey always asks about

expectations for all resources and auxiliary actions. As a result, we implicitly collect

data about users’ expectations for the Bg-Bg int. pattern pair, with authorization

pattern Nvr , for the two non-targeted resources in each condition. For example,

a participant assigned to the Coffee-Mic-Fst-Clk -Clk condition also answers Likert

questions about contacts and location that are analyzed within the Coffee-Con-Nvr -

Bg-Bg and Coffee-Loc-Nvr -Bg-Bg conditions.

Testing the full-factorial combination of all variables was infeasible, so we elim-

inated conditions that were redundant or less relevant to our hypotheses, resulting

in 42 final conditions. In more detail: We exclude conditions where the second int.

pattern is more interactive than the first, as we assume the participant’s second

expectation would be dominated by the second int. pattern, rather than by the

combination of patterns. We use Bn only in the first user action, because we are

primarily interested in its effect on user expectations for the second user action. We

assume expectations for Bn itself will depend entirely on whether the participant

notices the passive cue, a topic that has been well studied [96, 97] but is somewhat

orthogonal to our work. These two rules limit the int. pattern pairs we study to
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those in the last column of Table 4.2.

We exclude Nvr -Bg-Bg conditions because they provide no evidence of re-

source use, and are therefore identical to the implicit scenarios discussed above. We

also exclude Fst-Bg-Bg because, in our experimental design, they are indistinguish-

able from Lch-Bg-Bg . In Table 4.2, Bg-Bg is highlighted in blue to indicate that it

is only used with the Lch authorization pattern.

Because we do not comprehensively consider the effect of app type, we limit

Fitness conditions to those we anticipated would have the largest variation in ex-

pectations. Specifically, we consider only Loc and Mic and only conditions where

the two user actions exhibit different int. patterns. The Fitness scenarios therefore

include all combinations of variables in Table 4.2 that not are not highlighted in

blue or yellow.

4.5.3 Statistical Analysis

To test H1 and H2, we primarily consider the expectations expressed by par-

ticipants after the first user action. We use a logistic regression, appropriate for

ordinal Likert data, to estimate the effect of the app, resource, authorization pat-

tern, and int. pattern on participants’ expectation. To test H3, which concerns the

effect of the prior user action, we also use a logistic regression, with participants’

expectation for the second user action as the outcome variable. We use the same

input factors as before, this time including both int. patterns.

Each regression includes multiple observations of each participant: the explicit
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condition plus two implicit Nvr -Bg-Bg responses. As is standard, we include a

mixed-model random effect that groups observations from the same participant [98].

Our initial model for each regression included the input variables plus all

possible two-way interaction terms. To prevent overfitting, we tested all possible

combinations of these inputs and selected the model with minimum Akaike Infor-

mation Criterion (AIC), a standard measure of model quality [99]. We present only

the final model for each regression.

4.5.4 Ecological Validity and Limitations

We use a controlled experiment with mock apps. While this limits ecological

validity, it allows us to reason statistically about the effect of specific factors on

participants’ expectations, and to disregard factors such as participants’ history with

an app or reputation of the app’s developer. In a study environment, participants

may be less suspicious than if their real data were at risk. To partially account for

this, we ask about expectation rather than comfort level [100].

By limiting our survey to two apps and restricting the int. patterns and

resources tested, we likely miss factors, and particularly combinations of factors,

that influence expectations. As one example, users likely expect SMS and Calls

to have different usage patterns, and these expectations may vary with app type.

However, based on the results of our app survey, we believe the variables chosen still

provide useful insights.

Each participant sees two user actions in a relatively short time period. We
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do not study the effect of longer sequences of actions or long-term use (e.g., over

days or weeks) of an app.

As is typical for online studies and self-reported data, some participants may

not take the survey seriously, and some may try to complete the survey multiple

times. We limit repeat participants using MTurk ID and browser cookies. While

MTurk has generally been validated for high-quality data [101–104], U.S. MTurkers

are somewhat younger and more male, tech-savvy, and privacy-sensitive than the

general population, which may limit the generalizability of our results [105].

These limitations apply similarly across all conditions; we therefore consider

comparisons among conditions to be valid.

4.6 User Expectations Study Results

We now present the results of our online user study. We found that H1 holds:

users were the most likely to expect a resource use when shown a more interactive

int. pattern. In contrast, we observed that while resource type does affect user

expectation, H2 was not strongly supported. Finally, we found that H3 does not

hold. However, our results indicate that both background notification (Bn) and

on-launch authorization requests (Lch) increase user expectation of future resource

accesses.

For each of our hypotheses, we present key findings from our regression anal-

ysis. Summaries of our regressions are shown in Tables 4.3 and 4.4. Each table

shows the included input variables and their values. Each variable includes a base
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case value (identified by dashes in the remaining columns). The odds ratio (OR)

shows the observed effect of each value relative to the base case, measured as odds

of expectation increasing one unit on our Likert scale. We also provide the 95%

confidence interval (CI) and p-value for each measurement.

For example, the third row of Table 4.3 shows that switching from Bg to Clk

in the first user action, all other variables held constant, is associated with a 106.3×

likelihood of increasing one unit of expectation. The CI expresses 95% confidence

that the “true” odds ratio is between 63.6 and 177.7. A p-value less than 0.05 is

interpreted as statistically significant.

The second half of each table shows interactions between value pairs, given as

the two values separated by a colon. These odds ratio indicate the change in likeli-

hood when the two variables co-occur, relative to considering them independently.

For example, the Loc:Clk odds ratio of 0.2 in Table 4.3 suggests the combined ef-

fect of these two values is subadditive: only 20% as strong as predicted by their

individual effects.

4.6.1 Demographics

A total of 961 participants completed the study. Participants’ ages ranged

from 18 to 70+ years, with 37% age 18-29. Fifty-three percent reported being

male and 47% female. (“Prefer not to answer” and “other” options for gender were

provided.) Participants were required to be from the United States. Forty-five

percent of participants reported holding a college degree, and 25% reported having
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Variable Value Odds Ratio CI p-value

App Coffee – – –
Fitness 1.3 [0.96, 1.78] 0.086

Int
Bg – – –
Clk 106.3 [63.6, 177.7] < 0.001*
Bn 4.1 [2.6, 6.7] < 0.001*

Res
Mic – – –
Loc 17.5 [13.4, 22.9] < 0.001*
Con 0.8 [0.6, 1.0] 0.056

Auth
Nvr – – –
Fst 2.2 [1.2, 4.0] 0.008*
Lch 1.9 [1.2, 3.2] 0.008*

App:Res
Coffee:Mic – – –
Fitness:Loc 0.4 [0.3, 0.6] < 0.001*
Fitness:Con 1.1 [0.8, 1.7] 0.546

Res:Auth

Mic:Nvr – – –
Con:Lch 3.2 [1.5, 6.7] 0.002*
Con:Fst 1.5 [0.6, 3.6] 0.41
Loc:Lch 0.8 [0.4, 1.6] 0.487
Loc:Fst 0.5 [0.2, 1.3] 0.166

Res:Int

Mic:Bg – – –
Loc:Bn 2.4 [1.2, 5.0] 0.021*
Con:Bn 5.0 [2.3, 11.3] < 0.001*
Loc:Clk 0.2 [0.1, 0.4] < 0.001*
Con:Clk 0.2 [0.1, 0.4] < 0.001*

*Significant effect – Base case (OR=1, definitionally)

Table 4.3: Summary of regression over participant expectations after the first user
action.

“far above average” smartphone expertise. Each condition had at least 20 unique

participants. Twenty people dropped out partway through the survey, distributed

evenly across conditions.
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Variable Value Odds Ratio CI p-value

Int 2 Bg – – –
Clk 810.4 [352.2, 1864.9] < 0.001*

Int 1
Bg – – –
Clk 1.0 [0.8, 1.4] 0.9
Bn 2.1 [1.5, 2.8] < 0.001*

Res
Mic – – –
Loc 20.0 [15.5, 25.9] < 0.001*
Con 1.0 [0.8, 1.3] 0.768

Auth
Nvr – – –
Fst 1.4 [0.9, 2.4] 0.174
Lch 1.7 [1.1, 2.7] 0.027*

Res:Auth

Mic:Nvr – – –
Con:Lch 4.4 [2.2,8.5] < 0.001*
Con:Fst 2.1 [1, 4.5] 0.056
Loc:Lch 0.8 [0.4, 1.5] 0.445
Loc:Fst 0.5 [0.2, 0.9] 0.029*

Res:Int 2
Mic:Bg – – –
Loc:Clk 0.1 [0.03, 0.3] < 0.001*
Con:Clk 0.03 [0.01, 0.1] < 0.001*

*Significant effect – Base case (OR=1, definitionally)

Table 4.4: Summary of regression over participant expectations after the second
user action.

4.6.2 H1 – Interactivity v. Expectation

We found that H1 holds: the more interactive the int. pattern, the more likely

the user is to expect the resource access. In fact, interactivity (specifically Clk) is

the strongest indicator of expectation we measured.

Table 4.3 shows that both Clk and Bn significantly increase the likelihood

the user expects a resource access compared to Bg . The effect of Clk is particularly

strong (OR 106.3, p < 0.001). Because the confidence intervals of Clk and Bn do not

overlap, we can also conclude Clk generates significantly more expectation than Bn.
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Table 4.4 confirms that the strong association between Clk and expectation holds

for the second user action as well (OR 810.4, p < 0.001). Figure 4.5a illustrates this

finding, showing that 90% of participants who saw a Clk int. pattern first definitely

or probably expected the associated resource use, compared to 72% for Bn and 25%

for Bg .

Explicit authorization, which is by definition interactive, is also associated with

a significant increase in expectation. Compared to Nvr , both Fst and Lch have odds

ratio effects of about 2× for the first user action (Table 4.3), both significant. This

result makes intuitive sense, as the dialogs for both (Fst and Lch) occur very closely

in time to the first int. pattern.

4.6.3 H2 – Real-World Frequency v. Expectation

We observed an inconsistent relationship between real-world frequency and

expectation. Location was the most frequently seen resource in the app study (75

apps according to Table 4.1) and was also the most expected resource we tested.

As shown in Tables 4.3 and 4.4, Loc was associated with 17-22× higher likelihood

Figure 4.5: Likert-scale expectation responses for (a) the first user action, organized
by int. pattern, and (b) the second user action, organized by authorization pattern.

103



of expectation compared to Con (seen in 30 apps) or Mic (seen in 14 apps). Non-

overlapping CIs and p-values less than 0.05 indicate these effects are significant. This

is consistent with H2 ; however, as our frequency measurement is only a very rough

approximation of user familiarity, we note that this effect could relate to existing

passive notifications for location, the higher volume of academic and media coverage

of the location permission, or other factors.

However, H2 does not hold when comparing Con and Mic. While Con was

seen about twice as often in the app study, there was no significant difference in

expectation between the two resources, at either the first or second user action. This

could be because our app frequency metric does not sufficiently capture differences

(or in this case, similarities) in users’ overall exposure to each resource.

While there was no significant difference between the main effects of Con and

Mic, we found evidence that users rarely expected Mic to be used with Bg . Looking

at the Res:Int interaction in Table 4.3, Loc:Bn and Con:Bn both show significant

superadditive results, indicating that these combinations are even more expected,

relative to the baseline Mic:Bg combination, than those factors’ main effects would

predict. We hypothesize this difference is driven more by low expectation for back-

ground microphone access than high expectations for the other combinations. The

interactions involving Clk are significantly subadditive, but we suspect this is a

ceiling effect: expectations for Clk , which as shown in Figure 4.5a are very high,

cannot increase beyond the end of our Likert scale. We see similar effects for the

Clk interactions in Table 4.4.
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4.6.4 H3 – Effect of Previously Seen Accesses

To examine the effects of prior accesses on participants’ expectations, we focus

on Table 4.4. Overall, we find that H3 does not hold: participants are not more likely

to expect resource accesses they have seen before. In particular, the int. pattern

variable Int1:Int2 does not appear in the final model, suggesting the combination of

int. patterns does not meaningfully influence expectation at the second user action.

However, participants did appear more likely to expect a background access

if they had previously seen an indication that background accesses might be used.

Table 4.4 shows expectation at the second user action was significantly higher when

the first int. pattern was Bn (OR 2.1, p < 0.001) or the Lch authorization request

was shown (OR 1.7, p = 0.027), both of which indicate that background access may

occur. Figure 4.5b illustrates this finding, showing that in the second user action,

more participants definitely or probably expected resource usage in Lch conditions

(47%) than in Fst (42%) or Nvr (22%). Additionally, the superadditive relationship

between Lch and Con in both regressions may suggest a Lch request primes users

to expect non-interactive accesses to contacts.

In contrast, we found evidence that the authorization pattern Fst implies

only a single access. Table 4.4 shows that Fst did not have a significant effect

(p = 0.174) compared to Nvr , indicating that an authorization associated with the

first user action is no more effective than no authorization when thinking about a

second user action. The subadditive relationship between Loc and Fst (OR 0.5,

p = 0.029) also suggests that authorization requests associated with a specific event
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train users to only expect a resource access after an authorization request. This

decreases the otherwise relatively high expectation of background location access.

These relationships, while not particularly strong, are notable because they imply

that the Android M model may in some cases be counterproductive; we explore this

further in the Discussion section below.

4.6.5 App v. Expectation

Finally, we observed that the app type did have some effect on the way other

variables were perceived. We found no significant difference between the two mock

apps with respect to the first user action (p = 0.086), and app effects did not appear

in the final model for the second user action, suggesting no meaningful relationship

with expectation. However, we do observe in Table 4.3 a significant, subadditive

relationship between Fitness and Loc, indicating that location accesses were less

expected in the fitness app than the coffee app. We expect that across a wider

variety of apps, further relationships between app type and expected resource usage

would be observable.

4.7 Conclusions and Design Recommendations

Based on our app survey and user study, we propose several ways to improve

Android’s and similar authorization systems.
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4.7.1 Access Resources As Interactively As Possible

Our app study found that camera, microphone, media, and calendar are al-

ready used almost exclusively interactively in popular apps. Moreover, our user

study found that users overwhelmingly expect resource access after an explicit click

on a related item. We speculate that users would also have higher expectations of

resource access under other interactive uses.

Thus, we recommend expecting (or perhaps even requiring) most or all ac-

cesses to these four resources to be interactive. Other resources are more frequently

used in the background, and it is not always obvious how to associate their uses

with a foreground interaction. However, we argue that developers should prioritize

(and the Android framework should encourage) making background uses more in-

teractive when possible. For example, a social media app that periodically pulls

the user’s contacts to recommend new friends could tie this background access to

a foreground interaction by asking the user to “turn on” this feature at launch and

provide a settings menu where the user could turn the feature off at a later time.

While this design is similar to the authorization mechanism provided by Android

M, implementing it in the app provides context, which we have found is important

to decision making.

We also recommend that when resources that are more typically used interac-

tively will be used in the background, these uses should be documented explicitly

in the app’s description or a similar user-visible location.
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4.7.2 Use Interactions to Grant Authorization

Our results further suggest that if a resource use is interactive, then a sepa-

rate authorization dialog can be eliminated. We speculate that removing explicit

authorization requests in these cases could reduce potential user confusion (e.g.,

“I just clicked ‘Import Contacts,’ why is it asking me if I want the app to access

contacts?”). In addition, removing these requests could reduce annoyance and ha-

bituation, potentially helping the user to focus on other, less clear authorization

decisions. Eliminating request dialogs for interactive use cases could also help moti-

vate developers to prioritize interactivity, as mentioned above. Of course, to handle

potentially malicious apps we must be sure the preceding interaction is clearly re-

lated to the resource use. For example, clicking on a location icon should not cause

the camera to be used.

We envision two main approaches to enforce this principle. One idea is access-

control gadgets [82, 91], which we discussed with Related Work. Another approach

would be to leave apps as they are, but use a program analysis to ensure they con-

form. For example, we could use AppTracer to do so, in one of two possible modes.

AppTracer could be run ahead of time, e.g., by an app market gatekeeper, to exam-

ine app behavior. Even though it would not necessarily observe all app behavior,

results from analyzing behaviors users actually encounter would still be useful. App-

Tracer could also be used for auditing: power users and security experts could use

AppTracer to log an app’s behavior as they use it and then retroactively check the

AppTracer graphs for any suspicious behavior, which could then be reported to the
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broader public.

4.7.3 Handle background authorization separately

We found that users were much less likely to expect background resource access

if authorization dialogs were presented after a prior user action or were not presented

at all. Thus, we recommend requesting authorization separately and explicitly for

background uses. Based on our study, it may be preferable to do so when apps are

first launched. However, because our study showed the increase in expectation is

small (especially compared to the expectation after a click), it may be important

to also show background notifications of use (which also increased expectation) so

users remain aware. We note that while authorization on launch informs many users

that background accesses should be anticipated, Figure 4.5 suggests there are others

who do not recognize this possibility. Further research into the best approach is still

needed.

Resources that have a broad mix of interactive and background uses—such as

contacts—might particularly benefit from separate background authorization and

limited requests for interactive uses. This could help avoid potential misconceptions

about interactive uses being the only uses.

Future work could shed light on how differences in background use cases affect

user expectations and preferences. For example, users might be expected to react

differently when contacts are accessed in the background for pre-fetch (a use case

identified in our app survey) compared to advertising. We also expect that the
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frequency of access will impact the user’s decision. For example, it may be possible

to tie high-frequency background uses to some foreground passive notification (e.g.,

a notification tray icon), similarly to the design presented by Balebako et al. for

informing the user of data leakage [6]. This could make the user aware of the

accesses without requiring additional authorization effort. Program analysis tools

such as AppTracer could potentially be used to separate these cases and apply

different authorization policies accordingly.

We thank the anonymous reviewers, This research was supported in part by

NSF CNS-1064997, a UMIACS contract under the partnership between the Univer-

sity of Maryland and DoD, and a Google Research Award.
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Chapter 5: Permission-Use Provenance in Android Using Sparse Dy-

namic Analysis

5.1 Introduction

Android apps can request permission to access a wide range of sensitive device

resources such as contacts, calendar, GPS location, etc. However, if we wish to

determine whether an app is secure, inspecting its permissions is insufficient, because

permissions give apps unconstrained access to their corresponding resources. For

example, an app that accesses the microphone whenever the app is running might

be suspicious, while an app that accesses the microphone only after the “Mic” button

is clicked may be secure. Yet both have the same microphone permission.

Thus, a better approach to understanding an app’s security implications is

to determine the context of sensitive resource uses [4, 8, 106, 107]: e.g., whether a

use occurred after the user clicked a related button [23]. However, doing so today

is difficult. Manual reverse engineering of app bytecode is time-consuming and

error-prone. Program analysis of Android apps is difficult because Android is a

large, complicated framework and Android apps are callback-oriented, and thus

even an app’s control flow is difficult to model. Moreover, existing program analyses
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Figure 5.1: Overview of Hogarth.

for Android focus primarily on finding taint flows [108–112] and common malware

behaviors [113–117] rather than on explaining sensitive resource uses. (Section 5.6

discusses related work in more detail.)

This paper introduces Hogarth,1 a prototype tool demonstrating a new ap-

proach to program analysis for sensitive resource accesses. Hogarth produces prove-

nance diagrams showing the context of app permission uses. A provenance diagram

is a graph where nodes are either API methods that need permissions, e.g., setAu-

dioSource(...MIC), or callbacks invoked by the Android framework, e.g., a doInBack-

ground method of an asynchronous task. There is an edge from node A to node B

labeled with formula φ if A may call B when φ holds. Thus, provenance diagrams

reveal deep information about the context of sensitive resource uses. For example,

Section 5.2 describes a provenance diagram, inferred from android malware, in which

a background photo capture is triggered by a command received from the network.

Hogarth uses a novel combination of dynamic analysis, symbolic execution,

and abstract interpretation. More specifically, Hogarth performs dynamic analysis

by instrumenting app bytecode so that, when an app is run, it produces a log trace

of the app’s execution. Then, Hogarth uses symbolic execution to replay the paths

seen in the trace and infer path conditions capturing the conditions under which
1In the movie The Iron Giant, the character Hogart helps a robot come out of hiding. Our tool

is designed to reveal potentially hidden Android permission uses.
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each observed bytecode instruction occurred. During this process, Hogarth may

introduce some overapproximation, similarly to abstract interpretation, to shrink

the size of the path conditions and improve performance.

This combination of analyses enables Hogarth to produce provenance diagrams

with very precise information for realistic apps. By using dynamic analysis, Hogarth

restricts its focus to only feasible paths actually seen during program execution. But

then symbolic execution and abstract interpretation enable Hogarth to generalize

observed paths beyond the concrete values seen at runtime. The symbolic execution

and abstract interpretation also allow the dynamic analysis instrumentation to be

sparse so that instrumented apps remain responsive. (Section 5.2 gives an overview

of our approach, and Section 5.3 describes provenance inference formally.)

Hogarth is implemented on top of Redexer [9], a Dalvik bytecode rewriting

tool, and SymDroid [118], a Dalvik bytecode symbolic executor. To validate the

Hogarth prototype, we applied it to a set of five apps, selected from F-Droid [24]

and the Contagio Malware dump [25]. We found that Hogarth discovers provenance

diagrams that match information one of the authors produced manually with a time-

consuming reverse engineering effort. (Section 5.4 describes our implementation, and

Section 5.5 discusses our evaluation.)

In summary, Hogarth introduces a new approach to automatically infer the

provenance of a sensitive resource use, using a novel combination of dynamic anal-

ysis, symbolic execution, and abstract interpretation. The approach demonstrated

in Hogarth has potential applications for app auditing, reverse engineering, and

security evaluation more generally.
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5.2 Overview

Figure 5.1 gives an overview of Hogarth’s architecture. Its input is an An-

droid APK file, which contains the app’s Dalvik bytecode. Its first step is then to

instrument the app so that, when run, it produces a trace of the app’s execution.

The trace is sparse in that it only logs key program points needed to reproduce the

observed execution.

The user runs the modified app to produce a corpus of representative traces,

and then Hogarth performs a process of sparse-trace interpolation to infer a path

condition for every program point in traced callbacks. A path condition is a formula

among inputs to the callback (both its arguments and data it receives from the

Android framework) that holds if that program point is reached.

Next, Hogarth connects distinct handlers into a inter-callback graph, adding

from callback A to callback B if A registered B. In this case, we say A is the

registrar. Finally, Hogarth performs a targeted summarization step which coalesces

all runs of a callback that preceeded a permission use of interest. This process yields

a provenance diagram, which is a directed graph where nodes are either callback

methods or API calls that need permissions. An edge from A to B labeled with

path condition φ indicates that callback A may register callback B, or directly use

permission B, under that condition (φ) on its inputs. Thus, we can use a provenance

diagram to understand the circumstances under which a permission is used, both in

terms of inter-callback control flow and conditions on app data.
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1 class MyService$2 extends Thread { ...
2 public void run() { ...
3 while (true) { ...
4 v14 = v12.readLine(); ...
5 if (v14.contains("takephoto(")) {
6 if (((String)v15.get(0)).equalsIgnoreCase("front(")) {
7 ...
8 new takePhoto(myService, FRONT).execute(new String[0]);
9 } else
10 new takePhoto(myService, BACK).execute(new String[0]);
11 } } } }

12 public class takePhoto extends AsyncTask { ...
13 private void initialiseCamera() { ...
14 if (PackageManager.PERMISSION_GRANTED ==
15 ContextCompat.checkSelfPermission(myService,
16 android.Manifest.permission.CAMERA)) { ...
17 cameraManager.openCamera(camId,mStateCallback,cameraHandler);
18 cameraDevice.createCaptureSession(outputs,
19 mccsStateCallback, cameraHandler);
20 } ... } ...
21 protected Object doInBackground(Object[] arg2) {
22 return this.doInBackground(((String[])arg2));
23 }
24 protected String doInBackground(String[] arg5) {
25 initialiseCamera();
26 return "Executed";
27 } }

Figure 5.2: Code excerpt of the malicious camera use.
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5.2.1 Running Example

In the remainder of this section, we illustrate Hogarth on Camera2Evil, an

app we produced by injecting the Dendroid [119] malware into the Camera2Basic

Android example app [120], which allows the user to take a picture by pressing a

button. Once Dendroid is injected into the app, it allows a remote command-and-

control server to stealthily take a picture, without the user pressing a button, and

upload it.

Figure 5.2 gives an excerpt from the Camera2Evil code, which is a combina-

tion of the open source Camera2Basic app for the Google sample library and the

source of Dendroid was extracted using the JEB decompiler [121]. Here MySer-

vice$2.run, running in a background thread, listens for (adversary) commands. If

it receives the right command, it creates a new instance of takePhoto, which is an

AsyncTask, and executes it (callback registrar shown in blue). This queues up the

takePhoto.doInBackground(Object[]) method to be called by Android in the future.

Once invoked, this method calls initialiseCamera, which checks to see that the cam-

era permission has been acquired already and, if so, it surreptitiously takes a photo

(sensitive API calls shown in red).

5.2.2 Bytecode Instrumentation and Trace Generation

The first step of Hogarth’s process is to add logging instrumentation to the

Camera2Evil bytecode. We do so using Redexer [9], a Dalvik bytecode rewriting

tool. More specifically, we insert a new method log(. . .) that writes its arguments
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and the current thread id to a ConcurrentLinkedQueue. We also insert code that

creates a background thread to dequeue log entries, introspect on these data, and

asynchronously write them to a file. This design helps ensure logging does not slow

down the main app thread.

Then, we add calls to log(. . .) to record key events. More specifically, we insert

code to record the method arguments (including the receiver) at every app method’s

entry. For example, we add logging to the beginning of doInBackground(String[]) that

records the takePhoto receiver and the String[] argument. We also log the arguments

and return values to every API call, e.g., the execute calls in our running example.

Finally, we insert a call to log(. . .) at the entry of every basic block. Hogarth uses

this information later in its process to recover exact control flow.

Figure 5.3 shows two portions of the trace generated by running the instru-

mented Camera2Evil app. The trace at the top is for MyService$2.run, which is an

app method as indicated by the Method > line in the log. Hogarth infers that this

is in fact a callback invoked by the Android framework because this trace entry is

not nested inside any other method call entry. That same trace line lists the thread

id, in this case 977, so that we can distinguish otherwise intertwined log entries

from different threads. It also includes the arguments to the run method, in this

case only the receiver object, which is recorded as the object’s class and method

(here abbreviated) followed by the object id, in this case 244505 (every object has a

unique integer id in the Java runtime). Notice that we do not record object fields—

we only use these values to match up callback registrations to the actual callbacks,

as discussed below.
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Method > 977 com..MyService$2.run(com..MyService$2@244505)
API > 977 java.io.BufferedReader.readLine(java.io.BufferedReader@84370)
API < 977 java.io.BufferedReader.readLine(java.lang.String@765419)
...
API > 977 java.lang.String.contains(java.lang.String@765419,

java.lang.String@923754)
API < 977 java.lang.String.contains(java.lang.Boolean@490195)
BBEntry 977 1119442
...
API > 977 android.os.AsyncTask.execute(com..takePhoto@6720952,

[Ljava.lang.String;@263773)

...

Method > 985 com..takePhoto.doInBackground(com..takePhoto
@6720952,[Ljava.lang.String;@263773)

...
Method > 985 com..takePhoto.initialiseCamera(

com..takePhoto@6720952)
...
API > 985 java.lang.Object.checkSelfPermission(

com..MyService@1131473,java.lang.String@7204364)
API < 985 java.lang.Object.checkSelfPermission(

java.lang.Integer@3382498)
BBEntry 985 1127344
...
API > 985 android..CameraManager.openCamera(

android..CameraManager@1134037,java.lang.String@9683765,
com..takePhoto$1@2286550,android.os.Handler@2206143)

...
API > 985 android..CameraDevice.createCaptureSession(

android..CameraDeviceImpl@122346893,java..ArrayList@122060324,
com..takePhoto$3@367746,android.os.Handler@2206143)

...

Figure 5.3: Two partial sparse traces for Camera2Evil.
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The next lines in the top portion of the trace record the call to (API > 977) and

return (API < 977) from readLine. Redexer marks a call API whenever it cannot find

the target method in the app’s class definitions. During sparse trace interpolation,

API call results are represented abstractly so that path conditions may be in terms

of API calls (details below).

Then after a call/return pair to contains (on line 5 in the code), the line

BBEntry 977 1119442 records the entry to basic block number 1119442, where the

number is assigned by Hogarth. In this case, reaching that basic block tells us that

the true branch of the first conditional (the result of testing contains) was taken. We

will use this information below to build up a path condition. After some additional

entries, this portion of the trace ends with a call to execute.

The bottom portion of Figure 5.3 shows a portion of the log from the sub-

sequent call to takePhoto.doInBackground. Notice that this may occur an arbitrary

amount of time later in the log. The log entries are similar to above, with some

API calls, a basic block entry that records taking the true branch of the condition

in initialiseCamera, and calls to two methods needing the camera permission.

5.2.3 Sparse Trace Interpolation

Next, Hogarth performs sparse trace interpolation by replaying the logs using

a hybrid of abstract interpretation [122, 123] and symbolic execution [124, 125] to

derive a path condition at every point, within app methods, reached while the trace

was generated. Critically, Hogarth can do so even though the logged information is
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φ1 true
φ2 true
φ3 ((equals(“goldfish”,staticfd_119) == 0) &

(startsWith(staticfd_118,“generic”) == 0) &
(startsWith(staticfd_117,“generic”) == 0) &
(equals(“google_sdk”,staticfd_120) == 0) &
(equals(“google_sdk”,staticfd_121) == 0) &
(!(booleanValue(var872550) == 0)) &
(getBoolean(getDefaultSharedPreferences(getApplicationContext(var830452)),
“Start”,0) == 0))

φ6 (getId(argument11) == #x7f0a0059)

Figure 5.4: Camera2Evil: Partial camera-use provenance diagram.

sparse, in particular it only includes method entries and exits, API calls, and the

start of each basic block.

Hogarth implements sparse trace interpolation on top of SymDroid [118], a

Dalvik bytecode symbolic executor. For each callback observed in the trace (in our

example, MyService$2.run and takePhoto.doInBackground), Hogarth steps through

the method’s instructions (and the instructions of any app method called), following

the path seen in the trace and building up a path condition in terms of the callback

method’s inputs and the return values from API calls and field accesses (the latter
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not shown in this example).

For example, Hogarth will start stepping through MyService$2.run. The re-

ceiver this will be bound to an abstract value that records the actual value seen in

the log, in this case com..MyService$2@244505. As Hogarth continues, it builds more

complex abstract values to encode primitive operations and represent returns from

framework calls, as necessary. For example, Hogarth will eventually reach the call

to readLine. For simplicity, suppose that local variable v12 is bound to an abstract

value of the same name (v12 ). Then after the call, v14 will simply be bound to the

abstract symbolic value BufferedReader .readLine(v12 ), where the receiver is listed

as the first argument.

Whenever there is a branch, Hogarth follows the path taken in the trace and

records which way the branch test went in the path condition. For example, recall

that the trace took the true branch when testing the return value of contains. Thus,

Hogarth will take the same path, stepping into the then branch of the conditional,

and it will conjoin a symbolic value

String.contains(BufferedReader.readLine(v12), ..@923754)

to the path condition. As it continues execution, Hogarth will eventually reach the

execute call on line 8 and determine that the following path condition, which we

will refer to as φ4, holds at the call:

(!(isConnected(getActiveNetworkInfo(getSystemService(

getApplicationContext(var832364),“connectivity”))) == 0)) &

(!(getActiveNetworkInfo(getSystemService( getApplicationContext(var832364),
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“connectivity”)) == 0)) & (!(readLine(newClsAt834888) == 0)) &

(find(matcher(compile(“\(([^)]+)\)”),

readLine(newClsAt834888))) == 0) &

(!(contains(readLine(newClsAt834888),“takephoto(”) == 0)) &

(equals(group(matcher(compile(“\(([^)]+)\)”),

readLine(newClsAt834888)),1),“”)==0)

(!(equalsIgnoreCase(get(newClsAt838062,0),“front(”) == 0)) &

We discuss the path condition in more detail below.

Similarly, when Hogarth executes takePhoto.doInBackground, it will eventually

reach the call to createCaptureSession with the path condition φ5:

(! (getCameraIdList(getSystemService(

getApplicationContext(var862168),“camera”)).length <= 1)) &

(checkSelfPermission(var862168,“android.permission.CAMERA”) == 0)

We also discuss this path condition below.

5.2.4 Inter-callback Graphs and Summarization

Hogarth’s final steps are to connect distinct callback traces and summarize

them to construct the provenance diagram from coalesced callbacks and their in-

ferred path conditions.

Figure 5.4 shows a portion of the provenance diagram for Camera2Evil. The

diagram is constructed as follows. First, by default Hogarth assumes that all

permission-related API calls observed in the trace are of interest. Hogarth adds
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a node to the graph for each such method, in this case we have createCaptureSession

and capture. We will begin by focusing on the createCaptureSession, which is the

malicious camera use case. That method was called while doInBackground was exe-

cuted, so Hogarth also adds doInBackground to the graph and adds an edge between

the nodes labeled with the path condition, φ5, that held when the call occurred.

If there were multiple such path conditions, e.g., because createCaptureSession was

called inside doInBackground multiple times, Hogarth labels the edge with the dis-

junction of the path conditions.

Next, Hogarth determines which callbacks were triggered by which other call-

backs. For example, recall that in Camera2Evil, the run method scheduled doInBack-

ground. Hogarth finds these dependencies using a heuristic: We use the EdgeM-

iner [126] data set to identify which API calls might register callbacks. Then if the

trace contains a call to a registration method that passes some object which is later

used as the receiver object in a callback, Hogarth assumes the registration caused

the callback and adds an appropriate edge to the graph.

For example, EdgeMiner reports that AsyncTask.execute is such a registration

method. The trace in Figure 5.3 for MyService$2.run contains a call to execute

(in blue) with object @6720952 as an argument. Subsequently in the trace, the

doInBackground method is invoked with @670952 as the receiver. Thus, Hogarth

adds an edge to the provenance diagram from MyService$2.run to doInBackground,

labeled with the path condition, φ4, that held when execute was called.

In addition to using EdgeMiner to determine callback connections, there are

some cases where this is not possible (e.g. Intent passing) and we have to manually
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establish these connections. We discuss this further in Section 5.4.

Hogarth continues this process, adding callbacks to the graph until it reaches

a fixpoint. We can then use the resulting graph to investigate under what circum-

stances permissions are used. If we trace back the diagram in Figure 5.4, we see that

when the app launches (onCreate), it starts the malicious service (MyService.onStart)

which kicks off another thread (MyService$1.run). Both φ1 and φ2 are shown as

true because these transitions through the program will always occur after the

app is started. In MyService$1.run, φ3 tells us that the malware checks its De-

faultSharedPreferences for two settings, whether it should start and if its Google

Play bypass feature is enabled. If the bypass feature is enabled, then it checks

the build information on the device to determine whether the app is running on

an emulator, i.e. the product or model are “google_sdk”, the brand or device are

“generic” or the hardware is “goldfish”. If φ3 holds, then a second thread MySer-

vice$2 is started to connect to the adversary’s command-and-control server. φ4

states that if the device has an Internet connection (either wifi or cellular), it re-

ceives some commands from the server, and the string “take photo(front(” is in-

cluded in the commands, then it begins a new asynchronous task to take a photo

and send that back to the server (takePhoto.doInBackground). Finally, φ5 states

that if there is at least one camera available on the device and the app has been

granted the permission “android.permission.CAMERA”, then the malware calls Cam-

eraDevice.createCaptureSession to surreptitiously take a picture.

Similarly, Hogarth generates the provenance diagram for the instance of cre-

ateCaptureSession on the right, the benign case. In the benign case, when onClick
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is triggered by a user click, φ6 states that if ID of the button that was clicked is

equal to #x7f0a0059 (the ID of the "take picture" button), then CameraCaptureSes-

sion.capture is called to take a picture. Using these provenance diagrams auditors

can better understand the conditions of a resource use and differentiate between the

malicious and benign cases.

5.3 Provenance Inference

This section gives a formal presentation of the analysis just described. To keep

our presentation compact, we show how to infer provenance using the simplified

Dalvik bytecode language in Figure 5.5. Here and below, we write ~x for a sequence

of zero or more x’s, and we write xi to signify the ith element of such a sequence

(starting from index 0).

In this language, based on SymDroid’s µ-Dalvik intermediate representation, a

program prog consists of a sequence of class definitions
−−→
class . A single class definition

consists of a class name C, its superclass, a sequence of method definitions
−−−−→
method ,

and a sequence of field names ~f . Each method definition includes the method name

m, a sequence of registers ~r for the formal parameters, and a sequence of instructions

~i for the method body.

Instructions are fairly standard. An unconditional jump goto j sets the pro-

gram counter so the instruction at index j is executed next. A conditional jump

if r then j else branches to instruction j if the contents of register r is true. Assign-

ments of the form r ← c write a constant integer, string, or boolean into register
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prog ::=
−−−→
class

class ::= C <: C
−−−−→
method ~f

method ::= m(~r) ~i
i ::= goto j | if r then j else | r ← c | r ← r | r ← r ⊕ r
| r ← r.f | r.f ← r | r ← new C | r ← r.m(r, . . .)
| ret r

c ::= n | str | true | false
⊕ ::= {+,−, ∗, <,¬,∧,∨, . . .}

C ∈ classes m ∈ methods
f ∈ fields r ∈ regs
n ∈ integers str ∈ strings

Figure 5.5: Simplified Dalvik bytecode.

r; assignments r1 ← r2 copy r2 to r1; and assignments r1 ← r2 ⊕ r3 apply some

operation ⊕ to r2 and r3, storing the result in r1. Fields are read with r1 ← r2.f and

written with r1.f ← r2. Allocation r ← new C creates a fresh instance of class C and

stores a pointer to it in r. Method invocation r ← r0.m(r1, . . .) performs dynamic

dispatch of method m with the given receiver r0 and arguments r1, . . ., assigning the

result to r. Lastly, ret r exits the current method, returning r.

Note that this language omits many features of Dalvik bytecode, such as ar-

rays, static methods and fields, etc. We discuss details of handling full Android apps

in Section 5.4.

5.3.1 Sparse Trace Generation

As previously discussed, provenance inference begins by instrumenting and

executing the program to gather a set of dynamic traces. In our implementation

(Section 5.4), we modify the app’s bytecode to add tracing instrumentation. Here

we elide that step, and simply describe the trace this instrumentation yields.
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pt ::= ~ct [program trace]
ct ::= C.m(~v) ~ti [callback trace]
ti ::= C.m [app call]

| C.m(~v) [API call]
| then | else [branch]

v ::= ε | C@id [value]

Figure 5.6: Dynamic traces.

Figure 5.6 gives a grammar for program traces pt , which consists of a sequence

of callback traces ~ct . Each callback trace records what happens from the time An-

droid invokes an app callback to the time the callback returns to the framework. A

callback trace C.m(~v) ~ti records the class C and method m called by the framework,

along with the argument values ~v, where v0 encodes the method receiver. Each value

is either ignored, written ε, or a class C paired with an id . In our implementation,

we log all constants as ε for performance reasons (specifically, writing all strings to

the trace is expensive). Notice that we do not record object fields—we only use

these values to match up callback registrations to the actual callbacks, as discussed

below.

Each callback trace also includes a sequence of trace items ~ti that occurred

during the callback. There are four kinds of trace items. First, C.m logs a call to

an app method m of class C. We elide arguments because these will be recovered

via symbolic execution. Second, C.m(~v) logs a call to an API method m of class C.

In this case, we do record the argument values ~v since they may include possible

callback registrations. Lastly, then and else log which way each if instruction

branched. These model the BBEntry trace entires in Section 5.2.
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5.3.2 Sparse Trace Interpolation

Next, Hogarth uses a hybrid abstract interpretation and symbolic execution to

simulate the app bytecode, in order to infer path conditions describing the paths seen

in the trace. Figure 5.7 formalizes this process as a series of operational rules over

machine states 〈~i, rf , σ, κ, φ, ~ti〉. Here ~i is the sequence of instructions remaining to

be executed. The register file rf maps registers to abstract values a, which include

constants, object ids paired with classes, and operations among abstract values,

which are standard. Abstract values also include r, which stands for the value

read from a register (here, always a parameter to the method); a.f , which stands

the value read from a field of an object; and C.m(~a), which stands for the value

returned from an API call with arguments ~a (where, again, the first argument is

the receiver object). These last three forms allow Hogarth to track the conditions

on “inputs” to the callback from parameters or from values returned by the Android

framework.

A machine state also includes the store/heap σ, which maps abstract values

(representing object locations) and field names to abstract values. The stack κ is a

(possibly-empty) sequence of triples (r, rf ,~i), where r is the register to be written

upon returning, rf is the previous register file to reinstate, and ~i is the sequence of

instructions to resume upon returning. Finally, the path condition φ is a (boolean)

abstract value, and ~ti is the trace to be followed.

Figure 5.7b lists the machine’s operational rules. [Jump] replaces the instruc-

tion sequence with those at the target address, using helper function instr(j) (not
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formalized). [Then] and [Else] handle conditional branches, using the observed trace

to guide the machine. When the head of the trace is then, the concrete execution

took the true branch, so [Then] conjoins the branch condition rf (r) to the current

path condition φ (meaning the abstract value at rf (r) must correspond to true) and

jumps. When the head of the trace is else, execution fell through, so [Else] simply

steps past the branch instruction and conjoins the negation of the branch condition

with the path condition.

[AssnC], [AssnR], and [AssnOp] update the register file so the left-hand side

register r maps to the given constant, register contents, or operation, respectively.

Fields are stored lazily, so when they have never previously been read or assigned,

they will not have a mapping in the store. [AssnF] looks up the contents of a field

that has been previously written into the store. [AssnFExt] handles the case when

f /∈ dom(σ(a)), i.e., when some field is accessed that was not previously written

by the current callback. In this case, the field was written by some external code

(either in Android or a different callback), and Hogarth binds abstract value a.f

to the left-hand side to represent the field read. [FWrite] updates the store so that

the abstract object pointed to by rf (r) has an f field that maps to the symbol

denoted by the right-hand side rf (r′). [New] handles an allocation, in which a fresh

id (meaning one not chosen before and not in the trace) is paired with C and bound

in the register file.

[Call] handles an invocation of one of the app’s methods. At these control

points, the log has recorded C.m, the class and method that was invoked at run time.

Thus, the rules use lookup (not formalized) to retrive the corresponding method
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definition. [Call] then pushes the return register, the current register file, and the

remaining instruction sequence onto the stack. It then begins executing the callee’s

instructions under a new register file mapping the formal parameters to the actual

arguments. [Ret] handles a return by popping the stack frame and updating the

return register. Finally, [API] binds an abstract value representing the call.

To derive path conditions for a program trace pt = ct0, ct1, . . ., for each ct j =

C.m(~v) ~ti , we begin with an entry-point state:

〈lookup(C,m), rf [ri 7→ a(ri, vi)],∅, ε, true, ~ti〉

We begin executing the body of C.m with a register file where each formal parameter

ri is bound to a(ri, vi), where a(ri, C@id) = C@id and a[(ri, ε) = ri. The initial

store and stack are empty, the initial path condition is true, and the initial sequence

of trace items comes from the callback trace. We write ct j ;∗ state if state is

reachable in zero or more steps of the machine starting in the initial (entry-point)

state for ct j.

5.3.3 Inter-callback Graphs and Summarization

Finally, we can build the provenance diagram. We begin by first constructing

an exploded graph as follows. Let pt = ct0, ct1, . . . be the program trace. Initially,

we add to the graph every API method C.m that requires a permission of interest.

Then, until we reach a fixpoint, we pick a node C.m in the graph and add an edge
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C ′.m′
φ−→ C.m for every φ, either: (1) such that we have C ′.m′(~v′) ~ti ∈ pt and

C ′.m′(~v′) ~ti
′
;∗ 〈_,_,_,_, φ, C.m(~v) : ~ti〉

for some C, m, ~v, and ~ti , or, (2) such that C.m(~v) ~ti ∈ pt and there exists, in any

recovered trace, a state

〈_,_,_,_, φ, C ′.m′(~v′) : ~ti
′〉,where v0 = v′i, for some i

This first case handles adding edges from callbacks (C ′.m′) to API calls that

preceed target permissions. At the first iteration of this process, all these API calls

will be the target permissions themselves. The second case handles connecting call-

backs (C.m) back to the API calls that may register them2. This is done by making

an edge back to registrar calls that pass the receiver object (v0) as some argument

(v′i). After this, case (1) will connect these registrars back to their callbacks and

the process continues to work backward. In total, this fixpoint computation builds

a directed graph of callbacks and API calls that lead to a target sensitive resource

use.

The exploded graph may have multiple edges, with different path conditions,

between the same pair of nodes. To create the final summarized graph we combine

these edges. For every connected pair of nodes C ′.m′ and C.m we consider all their
2calls that could be a callback registration according to the EdgeMiner database
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path conditions

C ′.m′
φ0−→ C.m C ′.m′

φ1−→ C.m . . .

and replace them with a single edge

C ′.m′
φ0∨φ1∨...
−−−−→ C.m

Our final provenance diagrams are simply these summarized graphs where each

pair of sequential callback and registrar is rendered as a single node.

5.4 Implementation

We implemented Hogarth by building on top of Redexer [9] and SymDroid [118].

Our extensions were written in Java (for the logging machinery) and OCaml (for

additions to Redexer and Symdroid), and required on the order of 10,000 lines of

code. There were several unique challenges in implementing our approach for full

Android apps.

5.4.1 Logging instrumentation.

We observed that, in practice, it is crucial to ensure Hogarth’s instrumenta-

tion does not affect app performance too much, especially in the UI thread, since

Android kills applications whose UI thread becomes non-responsive. Thus, our in-

serted log calls perform no introspection themselves. They simply add messages to

a ConcurrentLinkedQueue, which uses a wait-free algorithm to communicate with a

132



separate worker thread that retrieves messages from the queue to produce the trace.

In total, the message passing interface adds between 10 and 20 Dalvik instructions

for each inserted log call.

Recall that we log only app code and not Android framework code. For perfor-

mance, we also excluded methods in android.support.* and allow the user to specify

other paths to exclude. In these cases we mark such methods as API calls and do not

add logging instrumentation inside them. In practice this is critical for scalability,

since it greatly reduces the overall amount of logging performed.

In our formalism, API calls do not themselves carry an internal trace. However,

that is insufficient in practice. For example, consider java.util.Collections.sort, which

we treat as an API method. When called, it in turn will call the app’s compare

method for objects passed in, which will have logging calls inside it. To handle this

case, our implementation maintains a phantom context representing the unknown

portion of the stack inside the API call. Our logging instrumentation then records

both the entry and exit of every API call (unlike app methods) so that we know

how to delineate these phantom contexts. Otherwise, we might be unsure whether

encountering log items from user code meant the API call had returned or simply

made another call back into app code.

5.4.2 Sparse Trace Interpolation.

In addition to the language features formalized, Hogarth must handle dynamic

dispatch for instance methods, static methods, static fields, and primitive arrays.
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Dynamic dispatch is performed on a receiver object by looking at the next basic

block address encountered in the log. Static methods and fields are handled in a

manner analagous to instance methods and fields. An initial symbol for static fields

is set in the store and replaced at each assignment as would a register or instance

field’s symbol.

Recall that the abstract values in Figure 5.7a have a fairly rich structure.

As a fairly typical symbolic executor, SymDroid only directly supports constants,

symbolic variables, and operations among symbolic expressions. Thus, Hogarth

encodes registers, field accesses, and method calls as symbolic variables with special

names. For example, an API call value C.m(a) where C is a BufferedReader , m

is a readLine, and a is a new C ′, may be encoded as a symbolic variable named

BufferedReader.readLine(newClsAt534998).

One issue with this encoding is that, in the presence of loops and recursion,

we might wind up reusing a symbolic variable name. This could cause the same

symbolic variable to stand for multiple values, which might then yield multiple,

possibly contradictory branch conditions. To sidestep this issue, we observe that

path condition clauses relevant for permission uses typically do not involve variables

that change with loop iterations. Thus, if Hogarth is in a loop and is about to reuse

a symbolic variable already in the path condition, it heuristically removes all clauses

involving that variable before reusing it. In practice this means path conditions will

only include information about the last iteration of a loop, which in our experience

is sufficient.

As we developed Hogarth, we found that path conditions often contain many
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abstract values for arrays. In practice those values were uninteresting and their pres-

ence in the path conditions decreases performance significantly. Thus, our imple-

mentation includes a special abstract value > that represents any possible abstract

value, and we model all arrays as >. Constraints on > are discarded and not added

to the path condition, and complex abstract values involving > are simply reduced

to >, e.g., >.f is >.

One last issue in sparse trace interpolation is invocations of <clinit> methods,

which are invoked whenever the Dalvik Virtual Machine decides to load a class.

Thus, there is no syntactic call site for such calls, and therefore they do not really

fit well in a provenance diagram. We opted to simply elide such calls from our

analysis. To do so correctly, we add extra logging to the end of <clinit> methods so

we know when they exit (whereas we do not log the return of other app methods).

Inter-callback connections. Recall that we use the EdgeMiner [126] database to

identify possible registrar methods, and then we connect up a registrar with a call-

back if the receiver of the latter was an argument to the former, using the object id

for comparison.

While this approach is largely successful, there are a few cases where Android

reuses the same object for different callbacks, particularly Intents and Threads; thus

we cannot rely on their object ids. We address this issue by using a different id in

these cases. For Intents (which are essentially key-value maps), we add a magic id

field that gets a fresh value each time, and use that in place of the object id . For

Threads, we use the thread id in place of the object id .
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# Triggers # Clauses
App Resources # Log Lines Time (s) Mem (Mb) RE Found RE Found Missed

Camera2Evil Camera 12,298 97 919 2 2 14 30 0
Call Recorder Microphone 4,520 1 799 1 1 5 5 0
Misbothering Contacts 674 1 694 1 1 3 3 0
Contact Merger Contacts 602,422 38 1,606 4 1 8 18 1
Smart Studio Proxy SMS 3,151,374 18 1,606 4 1 4 14 10

Table 5.1: Performance metrics for Hogarth when run across our apps. For number
of triggers, RE indicates ground truth, and Found indicates how many Hogarth
found. For number of clauses, RE indicates the clauses identified by our reverse
engineer, Found indicates the number of clauses identified by Hogarth (which may
include some deemed irrelevant in the manual analysis), and Missed indicates clauses
identified by the manual analysis but not Hogarth.

5.5 Evaluation

We validated Hogarth on a set of five apps, in order to a) check that it worked

correctly and b) evaluate the impact of its approximations on the end result. We ob-

tained ground truth by using five moderately-sized apps that were manually reversed

engineered by the third author, who has professional experience reverse engineering

Android apps. While reverse engineering these apps, we generated a provenance di-

agram in the style of Figure 5.4. Then, we ran Hogarth on each app to ensure that

it produced the same graph of handlers and correctly inferred the path conditions

leading to each registration and permission use.

For our analysis, we selected five apps that use permissions in the background.

The first app is our running example, the Camera2Evil app. Three others are

benign apps from the open-source F-Droid [24] repository. We include an additional

malicious app from the Contagio Malware dump [25].

To obtain ground truth, we first manually identified the permission uses of in-

terest within the app’s source code. Using our knowledge of the Android framework,
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we then examined all of the app’s source code to trace backwards and determine how

each method could be reached via handler registrations. As we went back through

the app, we also collected path conditions we believed were relevant to the use of

the permission. These results were synthesized into a provenance diagram for each

app.

Next, we ran Hogarth on each app to generate a provenance diagram. We

compared the results of Hogarth with our manually-generated provenance diagram.

We also evaluated Hogarth’s performance on each of our apps by measuring the

running time and memory consumption for each app we analyzed. Table 5.1 includes

the performance numbers for the apps we tested. Because Hogarth’s scalability is

impacted by the size of the log being analyzed, we include the number of log entries,

the running time, and maximum amount of memory consumed. Our tests were

performed on a machine with a 3.5 Ghz Core i7 processor and 16 gigabytes of RAM

running Ubuntu 16.04.2 LTS. Runtime results were averaged over the course of

five runs. Hogarth currently handles app logs of around 50-100 MB before it runs

out of memory in processing them. This is because the first step in our analysis

is to generate an interpolated state corresponding to each run in the log. In a

future version of Hogarth we plan to summarize apps in concert with performing

log interpolation, allowing us to scale to much larger logs.

Using this procedure, we found that Hogarth correctly inferred the path con-

ditions for the logs we used. Below, we walk through each example app and discuss

how Hogarth works on each.
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5.5.1 Camera2Evil

The first app in our validation study was our running example, Camera2Evil.

As discussed in previous sections, Camera2Evil has two triggers leading to the use of

the CAMERA permission. One of them is the benign behavior, as a result of clicking

a button, and the other was the malicious trigger, which is invoked when the app

receives a command from the control server.

Hogarth generated a diagram with the same structure as the one we produced

by hand, but with some extra clauses in the path conditions. For example, the

Hogarth path conditions included some additional clauses that our expert did not

identify as relevant to the permission use. These included a few clauses that stated

invariants about the lengths of various arrays that the app iterates over.

Hogarth successfully discovered the path leading to the malicious permis-

sion use, which happens when a line received from the server contains the string

“takephoto(front(.” Camera2Evil makes a call to BufferedReader.readLine until it

finds a string matching the specific name. As we discussed in Section 5.4, Hogarth

uses a strategy to allocate symbolic names in the presence of loops. This helped

ensure that Hogarth correctly included the last iteration of the loop in the summary

path condition.

5.5.2 Call Recorder

The Call Recorder app [127] allows users to record calls and store a copy

on their device. The app registers an Android broadcast receiver [128], which will
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receive messages from the Android system whenever a phone call takes place and

start recording accordingly.

To accomplish this, Call Recorder registers (in its manifest) for a handler

named MyPhoneReceiver.onReceive to listen for phone call events. When the user re-

ceives a phone call, the Android system sends a message to the app, which the onRe-

ceive handles. Within this handler, the app checks that external storage is mounted,

that a phone call is currently underway (off-hook), and that a user-controlled flag

enabling recording is set. If these conditions are met, the app then creates an in-

tent to start an Android Service, named RecordService. Within this service, in the

RecordService.onStartCommand method, the app checks that a phoneNumber field is

non-null and that no other recording is currently in progress. If both these conditions

are true, the app begins recording the user’s audio by callingMediaRecorder.start.

This use of the RECORD_AUDIO permission happens outside of the app’s UI.

Hogarth infers a provenance diagram leading to the RECORD_AUDIO per-

mission and rooted at the MyPhoneReceiver.onReceive handler. (Note that Hogarth

does not currently include machinery to detect which event type—in this case phone

calls—has been registered in the manifest, but we can observe this via manual in-

spection of the manifest.)

Hogarth correctly infers an edge from onReceive to RecordService.onStartCom-

mand, the background service that performs the recording, and correctly infers all

path conditions for this edge: that the user-controller flag has been set, that external

storage is mounted, and that the phone is off-hook.

With respect to the edge from RecordService.onStartCommand to MediaRe-
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corder.start, Hogarth again correctly infers the path condition: that the phone num-

ber is non-null and no other recording is in progress. In total the manual diagram

and the Hogarth diagram matched.

5.5.3 Misbothering

Misbothering SMS [129] is an app that mutes notification for any message sent

by a user not in the contacts list. It works by checking the sender of all incoming

SMS messages and only notifying the user if the sender is the user’s contact list. We

used Hogarth on Misbothering and were correctly able to discover the circumstances

under which it accesses the user’s contacts. Upon receiving an SMS, the app enters

a handler, which executes a set of checks to ensure that particular app variables

are initialized correctly. The handler also checks that a non-empty message was

received. The Hogarth diagram matches the diagram generated by our expert for

this handler.

Note that Misbothering registers a receiver for text data from the system.

While Hogarth observes that this handler is invoked, the handler is registered via

the app’s manifest. As in the call recorder app above, Hogarth does not detect

manifest registrations, and so cannot detect which event is tied to the handler, but

this can be obtained by inspection.
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5.5.4 Contact Merger

The Contact Merger app [130] helps identify duplicate contacts by analyzing

a user’s contact list and recommending entries that may refer to the same person.

Access to the user’s contacts can happen in one of five situations: a direct interaction

in the form of a button click, on app startup, a timer alarm that triggers in the

background at a one-hour interval, a device reboot, or a new app package being

installed.

These five situations are associated with four triggers (reboot and package

install are triggered by the same broadcast receiver). Of these, the timer and the

reboot/install are not covered by our logs, which did not include a restart or a new

package or last an hour. Incomplete logs, of course, are a limitation of dynamic

analysis; this app demonstrates the importance of capturing longer logs containing

a wider variety of events.

Hogarth correctly identified one of the two remaining triggers: app startup.

For this trigger, Hogarth identified path conditions to the READ_CONTACTS per-

mission including that the app’s internal contacts database has been set up (the

source code indicates this is a workaround for a bug), that a specific file (used to

store the contacts) exists, and that the contact analysis has not yet been performed.

Hogarth also gathers some additional path condition clauses that our reverse engi-

neer deemed irrelevant, such as requiring that a particular loop along the path to

READ_CONTACTS has successfully exited.

Hogarth does not find the click trigger because its Android system model is
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incomplete: the click trigger uses an unusual type of intent handler that we do not

currently support. The set of such unusual handlers is small [126], and once they

are identified, adding support for them into Hogarth is straightforward.

5.5.5 Smart Studio Proxy

Smart Studio Proxy (also known as Android Trojan Spy [131]) is a piece of

malware, discovered in 2015, designed to collect a variety of user data and ship

it to the attacker. The malware accesses the user’s SMS messages whenever a

new message arrives, any message is changed by the user, the phone wakes from

sleep mode, the network connectivity changes, or 30 minutes has passed since the

last upload to the attacker (because there was no available network connection

previously). These situations equate to four triggers, as waking and network change

come through the same onReceive handler.

Hogarth was able to correctly identify one of these four triggers: the one for

waking and network change. Within this trigger, Hogarth finds the path condition

for network change, but not the path condition for waking. As with Contact Merger,

the missing triggers and paths reflect the fact that Hogarth’s Android system model

is not yet complete.

5.6 Related Work

There are several threads of related work.
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Contextual Security Analysis for Android. Several researchers have proposed pro-

gram analyses that aim to infer the context, or provenance, of security-relevant

actions in Android apps. Pegasus [115] analyzes apps to infer Permission Event

Graphs (PEGs), which describe the relationship between Android events and per-

mission uses. In contrast to Hogarth’s provenance diagrams, PEGs do not include

predicates about the app state.

AppIntent [110] uses data-flow analysis to identify program paths that may

leak private information, and then employs directed symbolic execution on those

paths to find inputs that could trigger a leak. As the full Android system is too

complicated to effectively apply symbolic execution in a scalable manner, the authors

use a system model to assist the analysis. Our approach is more precise in the sense

that all behaviors we report are witnessed in actual executions, and by actually

running the program, we eschew any need for a system model that would be hard

to construct and maintain—as the system is updated frequently.

AppContext [132] identifies inter-procedure control-flow paths from program

entry points to potentially malicious behaviors and then performs a data-flow anal-

ysis to identify the conditions that may trigger malicious behaviors. AppContext

is similar to our approach in that it identifies the crucial branch conditions and

inter-procedural contexts that lead to sensitive behaviors. As with AppIntent, our

approach is more precise, being grounded with a dynamic analysis (although sound

only with respect to observed behaviors).

TriggerScope [113] uses a combination of static analysis and symbolic execu-

tion to identify particularly complex trigger conditions associated with potentially
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malicious code. They attempt to detect “logic bombs” by identifying path conditions

that are abnormally complex when simplified. Hogarth has three key differences with

TriggerScope. First, our approach depends on gathering a representative corpus of

dynamic traces, relying on the conceit that all permission uses will be exercised;

TriggerScope specifically looks for triggers that are rare and specific. Second, be-

cause we rely on dynamic traces to drive further analysis of the application, we

achieve a more precise result because all events observed in our dynamic traces are

possible. Third, because we rely on a minimal model of the system, our approach

is more resilient to the changes in Android from version to version.

FuzzDroid [133] uses a genetic mutation fuzzer to drive execution of an app

toward a specific target location. IntelliDroid [116] uses static analysis to identify

an overapproximation of inputs that could trigger malicious activity and then dy-

namically executes these inputs to prune false positives. These approaches identify

a single path that reaches a target, in contrast to Hogarth which tries to identify

the set of conditions that could lead to sensitive resource use.

Lastly, AppTracer [23] uses dynamic analysis to discover what user interactions

temporally precede sensitive resource uses. Hogarth builds on AppTracer’s tracing

infrastructure, which also uses Redexer, but adds inter-callback graph generation,

to discover dependencies among callbacks, and symbolic execution/abstract inter-

pretation, to recover path conditions. As a result, Hogarth can infer much richer

contextual information about sensitive resource uses than AppTracer.
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Taint and Flow Analysis for Android. TaintDroid [109] modifies the Android firmware

to perform system-wide dynamic taint-tracking and notifies the user whenever sensi-

tive data is leaked. Phosphor [111] provides similar taint-tracking, but instead mod-

ifies the JVM to improve portability. FlowDroid [108] uses static data-flow analysis

find sensitive data leaks. These tools all focus on data flow, which is orthogonal to

the control-flow (e.g., path conditions) dependencies that Hogarth discovers.

Other Analyses for Android. Yang et al. [114] present a model for tracking callback

sequences in Android called Callback Control-Flow Graphs (CCFG). By connecting

callbacks to their sources through the framework, CCFGs allow a static analysis

to traverse context-sensitive control flow paths and identify callbacks that could be

triggered. Because it is possible for different callbacks to be triggered based on

the invocation context of the handler, e.g. onClick may trigger different callbacks

depending on the widget it is associated with. This context-sensitivity improves the

precision of static analysis in Android.

Building on the concept of CCFGs, EdgeMiner [126] performs a static anal-

ysis that automatically creates API summaries describing the relationship between

callbacks and registrations through the framework via static data-flow analysis. As

mentioned earlier, we use EdgeMiner’s list of API methods that could register call-

backs, but refine it by actual observations of data flows.

User-centric dependence analysis [134] uses a dependence analysis of Android

apps to characterize the data consumption behaviors along paths from user inputs

to sensitive resource uses. This project is a preliminary effort at identifying which
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user inputs a sensitive API call depends upon.

Concolic Execution. One style of symbolic execution is concolic execution [124,

135,136], in which programs are instrumented to track symbolic expressions at run-

time along with their concrete counterparts in the actual run. A benefit of concolic

execution is that when a system call is made, any symbolic expressions passed in

can be concretized, i.e., made equal to, their underlying values. This lets concolic

executors avoid needing to model system calls, though at the expense of less power

(e.g., not all possible paths that system call could take will be modeled). In a sense,

Hogarth’s approach is dual to concolic execution: We start with a concrete trace,

and we then turn system call returns into abstract values so we can track their effect

on program execution.

Text-based Contextual Security. Several researchers have explored natural-language

contextual security for Android. For example, BACKSTAGE [137] mines Android

apps for pairs of UI elements and the API calls they trigger and performs a clustering

analysis to find outliers that invoke APIs atypical for their UI elements and textual

descriptions. AsDroid [138] performs static analysis of top-most app methods and

textual analysis of UI components they are associated with, to detect semantic

mismatches. Slavin, et al. [139] produce a map of API methods to privacy policy

phrases in order to check that natural-language privacy policies match the API uses

in Android apps. TAPVerifier [140] builds a data-flow model of the target app and

a natural-language model of its privacy policy to detect a mismatch. Wijesekera,
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et al. [106] and Olejnik, et al. [107] consider context outside of the app such as

whether the app was in the foreground or background, whether the user was home

or in public.

Our approach is orthogonal to these in that we use inter-callback control flow

and symbolic constraints on data as our notion of context, and rely on a human

auditor to interpret reasonable versus malicious triggers based on provenance dia-

grams.

5.7 Conclusion

In this paper, we introduced a new approach that uses dynamic analysis, sym-

bolic execution, and abstract interpretation to automatically recover the provenance

of permission uses in Android apps. We described Hogarth, a prototype implemen-

tation of our approach, and applied it to a set of five Android apps, demonstrating

that it produces results comparable to a skilled reverse engineer.

In future work, we plan to modify Hogarth to build provenance diagrams

incrementally on demand, to improve performance. We also plan to explore how to

most usefully visualize provenance diagrams to aid skilled auditors in their analysis.

We envision productive interactions between a live visualization of provenance and

an auditor that allows probing down into the source code in a fine-grained way.

We believe that Hogarth provides a promising proof of concept, and we think

the approach has the potential to be of significant aid in app auditing (at the market

level), malware analysis, and reverse engineering.
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state ::= 〈~i, rf , σ, κ, φ, ~ti〉 [machine state]
rf : regs⇀ a [register file]
σ : a→ fields⇀ a [store]
κ ::= ε | (r, rf ,~i) :κ [stack]
φ ::= a [path condition]
a ::= c | C@id | ⊕~a [abstract value]
| r | a.f | C.m(~a)

(a) Abstract machine domains.

〈goto j :~i, rf , σ, κ, φ, ~ti〉; 〈instr(j), rf , σ, κ, φ, ~ti〉 [Jump]

〈if r then j :~i, rf , σ, κ, φ, then : ~ti〉; [Then]
〈instr(j), rf , σ, κ, rf (r)∧φ, ~ti〉

〈if r then j :~i, rf , σ, κ, φ, else : ~ti〉; [Else]
〈~i, rf , σ, κ,¬rf (r)∧φ, ~ti〉

〈r ← c :~i, rf , σ, κ, φ, ~ti〉; 〈~i, rf [r 7→ c], σ, κ, φ, ~ti〉 [AssnC]

〈r ← r′ :~i, rf , σ, κ, φ, ~ti〉; 〈~i, rf [r 7→ rf (r′)], σ, κ, φ, ~ti〉 [AssnR]

〈r1 ← r2 ⊕ r3 :~i, rf , σ, κ, φ, ~ti〉; [AssnOp]
〈~i, rf [r1 7→ ⊕rf (r2),rf (r3)], σ, κ, φ, ~ti〉

〈r′ ← r.f :~i, rf , σ, κ, φ, ~ti〉; 〈~i, rf ′, σ, κ, φ, ~ti〉 [AssnF]
where rf ′ = rf [r′ 7→ σ(a)(f)] ∧ a = rf (r)

〈r′ ← r.f :~i, rf , σ, κ, φ, ~ti〉; 〈~i, rf ′, σ, κ, φ, ~ti〉 [AssnFExt]
where rf ′ = rf [r′ 7→ a.f ] ∧ a = rf (r) ∧ f /∈ dom(σ(a))

〈r.f ← r′ :~i, rf , σ, κ, φ, ~ti〉; 〈~i, rf , σ′, κ, φ, ~ti〉 [FWrite]
where σ′ = σ[rf (r) 7→ f 7→ rf (r′)]

〈r ← new C :~i, rf , σ, κ, φ, ~ti〉; [New]
〈~i, rf [r 7→ C@id ], σ, κ, φ, ~ti〉 where id fresh

〈r′′ ← r.m(~r) :~i, rf , σ, κ, φ, C.m : ~ti
′〉; [Call]
〈~i′, rf ′, σ, κ′, φ, ~ti ′〉

where rf ′ = [~r′ 7→ rf (~r)] ∧m(~r ′) ~i′ = lookup(C.m)

∧ κ′ = (r′′, rf ,~i) :κ

〈ret r :~i, rf , σ, (r′, rf ′,~i′) :κ, φ, ~ti〉; [Ret]
〈~i′, rf ′[r′ 7→ rf (r)], σ, κ, φ, ~ti〉

〈r′ ← r.m(~r) :~i, rf , σ, κ, φ, C.m(~v) : ~ti〉; [API]
〈~i, rf [r′ 7→ C.m(rf (~r))], σ, κ, φ, ~ti〉

(b) Abstract machine semantics.

Figure 5.7: Formalism for sparse trace interpolation.
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Chapter 6: Conclusion and Future Directions

In this dissertation, I defined interaction-based security as security that is in-

formed by the user’s interaction with an app’s UI. I then presented several pieces of

work showing how we could move the space of mobile apps closer towards accomo-

dating interaction-based security. In this chapter, I will briefly review each piece of

work and discuss how it fits in to the larger space of mobile apps and systems going

forward, and detail some future directions of work.

6.1 Binary Rewriting for Android Apps

Much of the work in my dissertation relied on the ability to perform binary

instrumentation of Android apps. Binary instrumentation is a powerful mechanism

that allows us to perform a range of dynamic analyses, only some of which have been

presented here. Chapter 2 detailed some of the key issues involved in transforming

Android apps correctly. I described Redexer—my binary rewriter for Android—and

its implementation, along with a demonstration of how Redexer can be used to study

location truncation in Android apps.

Redexer currently works at scale on arbitrarily large Android apps. In my

work for Chapter 4, we used Redexer on most top apps from Google Play. The
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logging framework was pushed even further during my work on Chapter 5, wherein

we logged every method invocation in several production-sized apps. Generally,

Redexer offers a fairly flexible API for app rewriting and could be used for applica-

tions not described here. For example, we are currently working on using Redexer

to understand which data apps back up. I also envision using Redexer to enforce

the security policies of the sort we discovered might be natural to users in Chapter

5. For example, this might happen by using Hogarth to figure out the policy for an

app and then using a dynamic enforcement mechanism in Redexer to exit the app

if the app goes down a path not observed in the set of analyzed runs.

6.2 Checking Interaction-Based Declassification Policies for Android

Using Symbolic Execution

While Redexer allows rewriting apps to change their dynamic behavior, Chap-

ter 3 explored the complications of understanding information-flow in apps. Infor-

mation flow is a tricky property, because it relies on quantifying over sets of runs,

rather than over a single run.

I did not mention information flow in subsequent chapters, and instead fo-

cused on permission uses. I would like to go back and study user preferences and

security expectations in the presence of information flow. As we saw in Chapter 3,

information-flow is still challenging to apply to production apps, compared to, e.g.,

permission systems. I plan to study what has to be done to support information

flow for production apps and if it would even be beneficial to users (versus better
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permission systems).

6.3 User Interactions and Permission Use on Android

Chapter 4 detailed my work in understanding the relation between user inter-

actions and permission in Android apps. I found that the Android system is largely

heading in the right direction by encouraging apps to request permissions on first

use. However, we found that users may not fully understand background permission

uses, specifically when they occur in apps which also have foreground uses of those

permissions.

I plan to continue this work trying to understand how we could better design

UIs to help users understand background permission uses. This was challenging in

AppTracer, because AppTracer was driven by a temporal notion of influence: it

was hard to reason about why a permission use happened when its cause was far

removed in time from when the use occurred. This motivated me to build Hogarth,

which allows understanding this dependence in a principled way by reasoning about

an interhandler execution graph. However, I have not applied Hogarth to large apps

of the variety in Chapter 4. I plan to continue work on tools like Hogarth, so that

I can apply them to production apps and understand why apps use background

resources. I hope this will help inform knowledge of why these uses are necessary

and what we can do to explain them to users.
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6.4 Permission-Use Provenance in Android Using Sparse Dynamic Anal-

ysis

Finally, Chapter 5 introduced Hogarth, a system which uses app logs as the

basis for program understanding. Understanding interaction-based security requires

very precise knowledge about paths through an app. It is challenging to use tra-

ditional program analyses in this setting because those analyses achieve scalability

by sacrificing precision. Hogarth provides a very precise understanding of why a

permission is used in an app, but sacrifices soundness to do so.

There are many exciting directions to explore following Hogarth. First, the

initial implementation of Hogarth needs to be scaled up to work on realistically

sized apps. I have a number of ideas for how to do so. For example, one limiting

factor in Chapter 5 was that Hogarth ran out of memory processing very large logs.

This was because a symbolic state was created for each entry in the log. Instead,

I will modify Hogarth so that it performs on-the-fly minimization, merging newly

discovered symbolic states as it interpolates the log rather than generating all of the

symbolic states before minimization.

Next, I would like to understand how to make fundamental improvements to

Hogarth. For example, Hogarth will frequently include in its path conditions the

post conditions for each loop through which it passes. Although this is the correct

behavior, I have frequently found that this information is not usually useful. Also,

Hogarth uses only positive examples as it performs its minimization. I speculate
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that Hogarth may be able to present a smaller path condition if it used negative

paths (which did not lead to a permission use).

More generally, I believe Hogarth is just a first step towards using program

analysis to aid reverse engineering. I am uncertain what real reverse engineers would

think of Hogarth. I assume that we would discover many interesting problems if we

were to give Hogarth to professional reverse engineers. I am very much interested in

doing so, and using other techniques from program analysis to help inspire advances

in program understanding.

6.5 High level results and conclusions

Throughout this dissertation I studied how user interaction can help reason

and inform decisions about security in mobile apps. I conclude that user interaction

informs the user’s mental model of app behavior. I formalized interaction-based

security in the form of interaction-based declassification, and I presented several

tools which help check and enforce security interaction-based security policies in

apps. User interaction has both programmatic and conceptual components, and I

conclude that integrating the two can lead to increased security in mobile apps.
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