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In this thesis I show that it is possible to build general-purpose frameworks for

efficient, on-line data transformation in support of flexible system services, especially

dynamic software updates (DSU). This approach generalizes some of the ideas from

prior work on DSU, making those ideas applicable to more situations. In particular,

I generalize DSU’s notion of in-memory state transformation—normally used to

upgrade run-time state to be consistent with the new software—so that it can be

applied to data not necessarily stored in memory, and for services other than DSU.

To support this thesis, I present three artifacts. First, I present C-strider, a

generic, type-aware C heap traversal framework. C-strider constitutes a flexible,

easy-to-use framework with which developers can program reusable services that

have a heap traversal at their core, e.g., serialization, profiling, invariant check-

ing, and state transformation (in support of DSU). C-strider supports both parallel

and single-threaded heap traversals, and I demonstrate that C-strider requires little

programmer effort, and the resulting services are efficient and effective. Second,



I present KVolve, a data transformation service for NoSQL databases. KVolve is

notable in that transformations are carried out on-line and on-demand, as data

is accessed, rather than off-line and all at once, which would reduce service avail-

ability. Experiments with on-line upgrades of services using KVolve show little

overhead during normal operation, and only brief pauses at update-time. Finally,

I present Morpheus, a dynamically updatable software-defined network (SDN) con-

troller. Morpheus’ architecture is fundamentally distributed, with each service run-

ning as a separate process that accesses a shared KVolve instance. Morpheus can

update multiple controller applications without loss of availability or degradation of

performance.
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Chapter 1: Dynamic Upgrades for High Availability Systems

Continuous availability of software systems is increasingly important to users

globally. The effect of an outage can range from minor frustrations to costly to

outright dangerous. Eleven million Americans in seven states experienced a 911

outage for six hours when a software glitch cascaded, causing 6,600 calls to go

unanswered [119]. A 2014 Facebook outage lasting 30 minutes was estimated to

have cost the company $500,000 [69]. One analyst went so far as to estimate that

the economy (retailers, news outlets, and other companies using advertising) could

be losing as much as $25 million per minute of Twitter outage [113]. Unplanned

service outages may have many causes, such as power outages, hardware failures,

or software glitches. However, despite the disruption caused by outages, one study

by Hewlett-Packard Laboratories found that in 426 servers running high-availability

applications, 75% of the 5,921 outages were due to planned maintenance rather than

unexpected downtime [64]. They also found that planned outages lasted around

twice as long as unplanned outages, further highlighting the need to improve the

system maintenance process.
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1.1 Software Upgrades

These planned outages often involve various forms of software upgrades. Even

systems that must be constantly available sometimes need to be upgraded to add

new features or to fix existing security problems or other bugs. Many sites that

provide high availability services such as Amazon Web Services and Salesforce post

a planned maintenance schedule, notifying customers of scheduled unavailability [88,

100]. There are several options for updating software, and this section provides an

overview.

1.1.1 Traditional (shutdown-and-restart) upgrades

The most straightforward way to update a program is to simply shut down

the old version and restart the new version. However, this method loses all of a

program’s state and makes the program unavailable during the switch-over. It is

therefore not practical for systems requiring high availability.

As such, many administrators and end-users find software updates annoying

and in some cases attempt to postpone or evade critical updates [5,27,74]. However,

this practice can be very dangerous, particularly in the case of updates that harden

program security. For example, even after the detection of the the Heartbleed vul-

nerability (a major flaw in OpenSSL’s software), four months later only half of the

servers with the vulnerability were patched [60]. In 2012, Skype announced the

results of a survey of why users do not update their software when prompted, and

found that nearly half of all users fail to update their software regularly, often citing

2



that they don’t know why they should bother to update, and that “upgrades take

too long” [105].

1.1.2 Dynamic software updating

The goal of dynamic software updating (DSU) is to update a program while

it is executing without causing downtime. Because this practice minimizes the

negative impacts of software updates, it mitigates the problem of users ignoring

upgrade prompts or administrators postponing updates, as the users of a system

should be largely unaffected or even unaware of the dynamic upgrade.

Researchers have developed many DSU systems for programs written in several

languages such as C, C++, and Java [16, 22, 37, 46, 48, 65, 71, 78, 111]. Some DSU

systems deal with updates in the form of patches to existing software [13, 75]. In

contrast, many DSU systems such as Kitsune [46] are for whole-program updates,

meaning that the upgrade is from one complete version of a program to the next

complete (updated) version.

Overall, these DSU systems have proven that they can greatly minimize down-

time when applying updates to the systems that they support. Kitsune has been

used to dynamically update various C server programs over several years worth of

these programs’ release history.
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1.1.3 DSU components

The process of performing a dynamic software update consists of two parts:

upgrading a program’s code, and transforming the program’s corresponding state:

Updating the code: Updating a program’s code is the first thing that many

people think of when they think of software updates. This involves changing the

code that is being executed, either by moving from one version of the code to the

next or by applying a specific patch. In dynamic software updating, the DSU system

performs this action in a way that does not incur downtime or prevent connected

users from utilizing the software while it is being updated.

One method of upgrading the code while minimizing downtime is rolling up-

grades, where clients that are connected to a running program are slowly switched

over to the new version of the program. This method of rolling upgrades usually

involves multiple instances running at both the old and the new versions [40, 101].

However, this method alone does not work for many programs that contain state

that must be retained, discussed next. A more nuanced approach involves redirect-

ing the control flow from the old version of the program into the new version of

the program, and then performing a hot swap of versions, which is done with many

DSU systems [46,78].

Updating the state: If a program has state that must be maintained throughout

the update, methods such as rolling updates will not work. Something must be

done to preserve the program’s state, so that the program may logically continue

4



to execute where it left off. Examples of program state are structures on the heap

and socket connections to clients. In the case that the program state representation

does not change in the upgraded version of the software, the state must simply

be maintained such as by serializing the state to disk or preserving it within the

running system in a way that the new program version can access it.

In the case where program state representation changes between upgrades, the

state must be transformed in order to be used by the new program. An example

of such a change is adding a field to a structure, or changing the type of a variable

from an integer to a string. In a case like this, the state must be transformed to

match the new program’s expectations. Most DSU systems do this by modifying

the old in-memory state. Specifically, Kitsune does this by traversing the program’s

entire heap, transforming the in-memory state to conform with the new program’s

state expectations. This in-memory state transformation, coupled with control flow

migration, enables the new program version to utilize the updated state so that it

can seamlessly pick up where the old program left off.

In many DSU systems [46, 65, 71, 78], the processes of “updating the code”

and “updating the state” are effectively intertwined. Streamlining these steps in

DSU makes sense in many cases from an ease-of-use perspective, and helps ensure

an expedient update.
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1.2 Abstracting DSU Principles to General-Purpose Frameworks

My thesis is that it is possible to build general-purpose frameworks for efficient,

on-line data transformation in support of flexible system services, especially dynamic

upgrades. To do this, I build on some of the ideas from prior work on DSU, making

those ideas applicable to a broader variety of situations. Specifically, I generalize

DSU’s notion of in-memory state transformation so that it can be applied to data

not necessarily stored in memory, and for purposes that are not necessarily DSU.

First, I show how we can generalize the upgrade process by decoupling the

data transformation from a code update. I present a general framework, C-strider,

that allows greater flexibility in the application of data transformation, and this

allows us to implement services besides DSU, such as serialization and heap profiling.

These additional services are implemented in a few lines of code that are program-

independent and therefore can easily be reused in other programs.

Next I show how data transformations can be generalized beyond the confines

of a process’ memory with KVolve, a system for NoSQL data migration. I show that

KVolve can be used to transform entries in the NoSQL database Redis in a variety

of use cases, as they are accessed by clients, and present a template framework to

assist programmers in writing their updates. KVolve demonstrates flexibility in data

transformations across disparate kinds of data changes.

Finally, I show how we can extend updating a single server program to coor-

dinating updates for multiple components of a system with Morpheus, an approach

to dynamic software-defined network (SDN) controller updates. Morpheus uses an
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update coordinator to orchestrate update timing throughout the controller, includ-

ing updating multiple applications and program state. I provide the user with a

DSL (Domain-Specific Language) to assist them in writing their updates to work

with the Morpheus framework.

Together, these works show that it is possible to generalize DSU by building

general-purpose frameworks for dynamic data transformation and upgrades in highly

available systems.

1.3 Contribution Overview

In this dissertation, these three contributions are evidence that we can expand

DSU ideas to general frameworks that have broader data transformation purposes.

This section provides an overview of each artifact.

1.3.1 C-strider: a generic type-aware C heap traversal framework

Our C-strider framework (Chapter 2) shows how we can enable flexibility in

both what and how heap data is transformed by generalizing the traversal per-

formed by Kitsune. The first step toward bringing existing DSU work towards a

general transformation framework was the observation we often want to traverse

program state whether or not we are loading new program code. As mentioned in

Section 1.1.3, existing DSU work intertwined updating the state and updating the

code into a single command. While ideal for explicitly performing a dynamic up-

date in a server program, having data transformation locked into a software update

7



constrains the ability to independently transform the data. There are many types of

program transformation that do not involve modifying the software, and separating

out these two actions lead to greater variety of use cases.

Similar to the traversal used with Kitsune, C-strider creates a type-aware,

program-specific heap traversal by generating traversal functions for each type of

heap item in a program. However, the framework that C-strider provides can tailor

the heap traversal to different purposes, assisted by four user-written callbacks.

These callbacks are triggered during the heap traversal and allow the traversal-

writer to support other services that they would normally write by hand, specific to

a program. C-strider also provides an API that allows a programmer to determine

which heap elements to transform (e.g. all heap items or specific elements only), and

provides functions that can be used to direct the traversal and to manipulate type

information. C-strider supports both parallel and single-threaded heap traversals.

We demonstrate how the C-strider framework can be used to implement gen-

eral services such as heap serializing and heap profiling, and apply these services

to three separate open-source programs. For example, we apply serialization to the

in-memory databases Redis and Memcached, and find that serializing 30,000 10-

byte key-value pairs takes ∼190 ms and ∼80 ms, respectively. Implementing both

the serialization and deserialization traversal services takes only 78 lines of total

code to implement the callbacks, and customizing the traversal to serialize only the

database structures took 44 lines of code for Memcached and 46 lines of code for

Redis. We also show how we can use C-strider’s parallel heap traversal to expedite

state transformation in Kitsune, enabling faster updates, such as updating Redis in
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less than half of the time required for Kitsune. C-strider is released open source on

GitHub [92].

1.3.2 KVolve: a data transformation service for NoSQL databases

Prior DSU work focused on updating heap elements stored in a process’ mem-

ory, allowing the newly updated software to utilize heap items correctly. We can

expand this technique to the problem of updating data in a database when the

database schema changes. Similar to the way a program expects a struct to conform

to a particular type, database client programs that are connected to the database

expect the stored data to conform to a particular schema. Therefore to upgrade the

database client software, the data in the database must also be upgraded.

Unlike traditional relational databases, NoSQL schemas are often implicit, de-

fined only by software expectations. With KVolve (Chapter 3), we show how we

can transform data stored in the key-value store Redis (a type of NoSQL database)

so that the stored data reflects the expectations of the implicit schema in the up-

dated client software. KVolve operates by requiring the connecting clients to declare

namespaces, where all key-value pairs belonging to the namespace have the same

schema. These namespaces allow KVolve to track and facilitate updates to the

key-value pairs. In order to update the database data, an administrator submits

an update specification, describing how to update all key-value pair members in a

specific namespace. This update specification consists of a simple framework that

can specify a transformation using C code. KVolve applies this transformation lazily
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as the key-value pairs are accessed by clients, avoiding the pause time of migrating

the entire key-value store all at once.

Lazy updates with KVolve are a significant improvement over the traditional

offline migration. Offline migration, which involves taking the database offline and

migrating all of the data at once, may take several minutes or even hours, resulting

in lengthy downtime for end-users during the database’s unavailability. Lazy migra-

tion with KVolve results in almost no downtime. We show that we can use KVolve

to dynamically and lazily update the data for several types of schema changes in

two open-source programs requiring schema changes as part of a software update.

Specifically, we show that we can apply an update involving key renaming to Amico,

a social networks program, reducing the pause time for renaming ∼800K test keys

from ∼100 seconds in the offline case to almost zero seconds with KVolve. We per-

form an update to both the keys and the values of redisfs, a Redis-backed userspace

file system, and show the pause time to be close to zero as opposed to 12 seconds

for an offline migration. We demonstrate how we can combine our new update

techniques with Kitsune to simultaneously update both the program’s code and the

data stored in the database, by applying both Kitsune and KVolve to redisfs. We

also show that the steady-state overhead for KVolve is in the noise for normal use.

1.3.3 Morpheus: a dynamically updatable SDN controller

In contrast with traditional DSU where updated state was stored within the

context of the process or a single piece of software, KVolve introduced updates for
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data stored in a database. When a program stores some or all of its state in an

external database, this means that any upgrade to that data will affect not only the

updated program, but also any other programs making use of that data. This setup

forces us to generalize the upgrade procedure from a single entity to a multiple-

component system.

An example of such a multiple-component system is a software-defined network

(SDN). Traditional networks have a control plane for making routing and forwarding

decisions, and a data plane physically enacting those decisions. SDNs split out the

implementation of the control plane into one machine in software, the controller, and

leave the physical switches only with the data plane, implementing the controller’s

decisions. Because the SDN controller is the critical “brains” of the network, it

must be constantly available to ensure that the network runs properly. Therefore

controller downtime must be avoided, even during upgrades. Just shutting down and

restarting the controller loses any state it has accumulated, and would necessitate

wiping and reinstalling rules on the switches. At best, this process disrupts network

operations, and at worst it leads to incorrect behavior.

In Chapter 4, we show how we can extend the action of updating a single

self-contained program to the broader action of updating the multiple components

of an SDN controller. Our prototype SDN controller, Morpheus, demonstrates the

necessity of coordinating updates across all applications running in the controller

in order to ensure correctness. All upgrades to applications in Morpheus involve

making sure that code and data updates work together. To do this, we use an update

coordinator to ensure that all applications that use to-be-updated data are notified
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of an update and that no applications ever see outdated (and thus incorrect) data.

Similar to KVolve, an administrator must submit an update specification describing

the update, and we provide a DSL to assist the administrator in using our update

framework.

We use Morpheus to perform a dynamic upgrade to applications including a

firewall, a load balancer, and a routing application. These updates involve upgrad-

ing the state of the application stored in the database and also the applications

themselves. We show that dynamic upgrading by transforming the state is fast

and does not cause disruption, unlike other methods of updating such as simple

restart or record and replay [116]. For example, we show that for a load balancing

application, both the simple restart approach and the record and replay approach

drop connections after applying an upgrade that adds an additional host, whereas

Morpheus does not drop any connection or cause disruption. Additionally, we show

that using our update framework requires minimal programmer effort in our test

applications and find that our framework should be general enough to apply to up-

dates for several widely available open source controller applications. For example,

an update to our firewall application that adds two new fields to each entry requires

only 4 lines of DSL code, and an update to our topology and routing application

requires only 3 lines of DSL code to initialize a new field to a default value.
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Chapter 2: C-Strider: Type-Aware Heap Traversal for C

Researchers have developed many compelling application services that work

by traversing the heap pointer graph of a program, including checkpointing [62,85],

profiling [41], dynamic software updating [46], OS kernel integrity monitoring [77],

and data-structure assertion checking [6,14,52,81,117] and repair [29]. When imple-

mented for programs written in a language like Java, these services can piggyback

on a tracing garbage collector. But supporting programs in C, which lacks both a

garbage collector and the run-time type information, has to date required a heroic

effort.

In this chapter, we present C-strider, a general framework for writing services

that traverse and/or transform a C program’s heap. C-strider generalizes DSU’s no-

tion of in-memory state transformation so that it can be applied in a flexible way for

purposes that are not necessarily DSU. Figure 2.1 depicts C-strider’s architecture.

Given an input C program prog.c, C-strider generates a program-specific traversal

(prog stride.c) that walks the heap starting from any location given its type. As heap

locations are visited, the traversal invokes one of a small set of callbacks that imple-

ment a program-independent service (in service.c), e.g., to implement serialization or

dynamic updating. The service code in turn invokes the C-strider run-time library,
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Figure 2.1: C-strider architecture.

libstride.a, for services such as bookkeeping to ensure locations are visited just once.

C-strider’s API has been designed to be easy to use: Section 2.1 illustrates how to

use C-strider to build a portable serialization and deserialization service (e.g., for

checkpointing).

A key feature of C-strider is that it is type aware—C-strider knows the type t of

each heap location visited, and passes a representation of t to the callback functions,

which can vary their behavior depending on the type. C-strider’s type information

is exact, which is critical for many services. For example, a serialization service

must know the precise size of objects, and must know precisely whether an object

is a pointer and what it points to. As such, conservative garbage collection [20] is

not a suitable starting place because its identification of pointers is approximate,

and it does not know the types of non-pointer values. We observe that in practice,

there is nearly always a statically well-typed pointer/struct chain to any location.

Accordingly, C-strider analyzes the program and statically generates a traversal that

follows well-typed paths to reach most memory, invoking callbacks and passing them

type information along the way. The traversal is (mostly) breadth-first and employs

a work queue serviced by one or more threads. (Section 2.2 describes C-strider’s
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traversal.)

However, most C programs lack some type information needed to describe

the whole heap. For example, C-strider cannot traverse unions or void* pointers

without knowing which arm of the union is valid or what the actual pointed-to type

is, respectively. The programmer can fill in such missing type information in two

ways. One way is programmer annotations, in the style of Deputy [24] and Kitsune,

which can provide array length information and precise types for void* pointers

in generic data structures. The other is by customizing the traversal to consider

an object’s type specifically in the service code callbacks. For example, a callback

can observe when it has reached a union embedded in a struct and use the values

of other fields in that struct to determine how to interpret the union value. This

program-specific code (in prog specific.c) is implemented by proxying the callbacks

and delegating to the service code to perform the underlying service. Thus, C-strider

provides a clean separation between two reusable pieces of code: the program-specific

traversal (the annotations, the generated traversal, and the code in prog specific.c,

all of which can be used for many services in the same program) and the service-

specific code (in service.c, and which can be used by many different programs).

In addition, the code can be arbitrarily customized for particular program/service

pairs, if needed. (Section 2.3 describes the annotations and other forms of program-

specific customization.)

We used C-strider to implement four traversal-based services (details in Sec-

tion 2.5), and used them with three different programs, Memcached (a data caching

service), Redis (a key-value store), and Snort (an intrusion detection system).
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Serialization and deserialization: This service, suitable for checkpointing, is

implemented in just over 60 lines of code (LOC), and is carefully designed to be

robust against changes to the program at load time, e.g., symbol relocations due

to address-space layout randomization. Checkpointing is relatively fast; we could

serialize and deserialize a Memcached heap with 30,000 key-value pairs in under

100ms.

Dynamic Software Updating: We modified Kitsune to implement its state

transformation component using C-strider, requiring only 24 LOC. Taking advan-

tage of C-strider’s ability to perform multi-threaded traversal, we could dynamically

update Redis with a heap of 100,000 key-value pairs in 38% of the time required by

Kitsune.

Heap profiling: We developed a profiling service that counts the number and

amount of memory consumed by objects of different types. The service required 65

LOC and generates an itemized log, which we used to better understand memory

usage in our example programs.

Heap assertion checking: C-strider can be used to check heap assertions in

the style of GC assertions [6]. We implemented several simple assertions such as

ensuring that linked lists are well formed, timestamps are not in the future, and

enum fields are valid.

Each application required some service-agnostic customization to provide missing

type information, and in some cases some service-specific handling, usually to opti-

mize performance. In all cases, traversal customizations required roughly 20 LOC,

16



while type annotations depended on program size. For example, for Snort 143 anno-

tations were required across its 215 KLOC, while for Memcached only 6 annotations

were required across its 4 KLOC.

C-strider has been carefully designed to implement heap traversal as a library

employing entirely standard features of C. In particular, C-strider does not mod-

ify data structure representations (which could break important assumptions about

object size and layout) and does not require custom compilation (which could in-

hibit compiler optimizations). C-strider also deliberately keeps its type annotation

language simple for the common cases, with the ability to drop back to C for rea-

soning about more complex type invariants (e.g., tagged unions); in our experience,

C programs always have unusual, exceptional cases not captured by any sensible

annotation system. Finally, C-strider’s traversal itself is easy to understand—as we

will see in Section 2.2, the entire traversal is simple, written in a few tens of lines

of code. Thus, we believe C-strider is accessible to a broad audience and adaptable

to many uses.

To our knowledge, C-strider is the first general-purpose, type-aware heap

traversal framework for C. We believe C-strider will prove useful for many appli-

cations in addition to the ones explored in this chapter, and we plan to release

C-strider under an open source license.
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struct traversal {
/* Processing primitive values . ( int , float , etc .) */
void (* perfaction prim )(void *in , typ t , void *out);

/* Processing struct values . Return 1 to traverse fields in the struct , else return 0.*/
int (* perfaction struct )(void *in , typ t , void *out);

/* Pointer processing ; first visit . Return 1 to follow the pointer , else return 0. */
int (* perfaction ptr )(void **in , typ t , void **out);

/* Previously encountered pointer processing . */
void (*perfaction ptr mapped)(void **in , typ t , void **out);
};

Figure 2.2: Basic C-strider service API.

2.1 Developing Services with C-strider

This section focuses on the design of C-strider from the developer’s perspective.

The key challenge in C-strider’s design is trading off simplicity—we want the API

to be easy to use—and expressivity—we need it to be useful in many situations. We

will illustrate our design by showing how to use C-strider to build a serialization

and deserialization service.

2.1.1 C-strider API

C-strider traversals aim to visit and transform elements of a program’s heap.

There are three kinds of elements: primitives like integers, enumerated types, etc.;

aggregates like structs, which are single objects that contain multiple elements; and

pointers to other elements. C-strider’s API asks a service developer to write three

18



main callback functions, corresponding to the three kinds of heap elements.1 The

names and type signatures these three callbacks are listed in Figure 2.2; we will dis-

cuss the last callback below. Pointers to the callbacks reside inside struct traversal ,

which is passed as a parameter to initialize C-strider.

Each callback has the same three arguments. The first argument, in, points

to the program data being visited, which has a type represented by t, the second

argument. The last argument’s use depends on whether the programmer is devel-

oping a transformation service that modifies memory locations of heap objects, or

a traversal service that does not. A traversal service like serialization only has one

set of traversal roots, and simply ignores out. For a transformation service, like de-

serialization, out points to replacement memory such that writing out specifies how

in’s data should be transformed.

2.1.2 Implementing serialization

To explain these three callbacks in more depth, we refer to the code in Fig-

ure 2.3a, which implements a serialization service. This service is a traversal service,

so out is unused. The functions are passed as callbacks to C-strider in an instance

of struct traversal from Figure 2.2.

The first callback, serial prim (assigned as a callback for perfaction prim ), han-

dles data of primitive type (e.g., int, double). The traversal calls this function with

the address of each global variable and each struct/union field that is a primitive

1Arrays are another kind of aggregate element; these are handled automatically by the traversal,

as discussed in Section 2.2.
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1 void serial prim (void *in , typ t , void *out){
2 fwrite ( in , get size (t ), 1, ser fp );
3 }
4 int serial struct (void *in , typ t , void *out){

5 return 1;
6 }
7 int serial ptr (void **in , typ t , void **out){
8 if (* in == 0)
9 uintptr t zero = 0;

10 fwrite (&zero, sizeof( uintptr t ), 1, ser fp );
11 else {
12 char *symbol;
13 if ((symbol = lookup addr(*in))) {
14 uintptr t two = 2;
15 fwrite (&two, sizeof( uintptr t ), 1, ser fp );
16 serial string (symbol);
17 } else {
18 serial prim ((void *)in , t );
19 if (t == TYPE PTR CHAR)
20 serial string ((char *)*in );
21 else return 1;
22 } }
23 return 0;
24 }
25

26

27

28

29

30

31

32

33

34 // helper function , not part of API callbacks
35 void serial string (char *str ){
36 /* assumes str != NULL */
37 int len = strlen ( str )+1;
38 fwrite (&len, sizeof( int ), 1, ser fp );
39 fwrite ( str , len , 1, ser fp );
40 }

(a) Serialization

41 void deserial prim (void *in , typ t , void *out){
42 fread(out, get size (t ), 1, ser fp );
43 }
44 int deserial struct (void *in , typ t , void *out){

45 return 1;
46 }
47 int deserial ptr (void **in , typ t , void **out){
48 void *ptr , *tgt ;
49 fread(&ptr, sizeof(void*), 1, ser fp );
50 if (ptr == (void*)2) { // pointer to symbol

51 char * symbol;
52 deserial string (&symbol);
53 *out = lookup key(symbol);
54 free (symbol);
55 }
56 else if (ptr == NULL) // null pointer
57 *out = 0;
58 else if (( tgt = find mapping(ptr))) // revisit

59 *out = tgt;
60 else // haven’t seen it ; read the data
61 if (typ == TYPE PTR CHAR) { // a string
62 deserial string ((char **)&tgt);
63 *out = tgt;
64 add mapping(ptr, tgt );
65 } else {
66 int sz new = get size ( get ptrtype (t ));
67 tgt = malloc(sz new);
68 *out = tgt;
69 add mapping(ptr, tgt );
70 visit (tgt , get ptrtype (typ ), tgt );
71 }
72 return 0;
73 }
74 // helper function , not part of API callbacks
75 void deserial string (char **str ) {
76 int len ;
77 fread(&len, sizeof( int ), 1, ser fp );
78 *str = (char *)malloc(len );
79 fread(* str , len , 1, ser fp );
80 }

(b) Deserialization

Figure 2.3: An example service: serialization and deserialization.
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type, indicating the specific type of primitive with typ t. The code for serializing

primitives using this function is given at the top of Figure 2.3a. It does the obvious

thing: it uses API function get size to compute the number of bytes for type t, and

writes the data via the serialization file handle, ser fp .

The second callback, serial struct (assigned as a callback for perfaction struct ),

is called with the address of every struct reached during the traversal. The particular

struct can be determined by examining t. Oftentimes, as is the case here, this

function does nothing other than return 1, indicating the traversal should continue

by visiting each of the struct’s fields. Alternatively, the callback can return 0 to

indicate traversal should not continue automatically, in which case the function can

call the visit library function (explained in Section 2.1.5) to selectively visit fields.

The third callback, serial ptr (assigned as a callback for perfaction ptr ), is

invoked for each pointer when it is first reached. Here the type of in is void **, rather

than void *, because it is the address of a pointer. For serialization, the callback

checks whether the pointer is null; if so, it writes null to the file. Otherwise, it calls

C-strider’s lookup addr function to check whether the pointer is to a global variable,

i.e., one that has a symbol name. If a symbol name is returned, the code first writes

2, which we assume is not a legal pointer, followed by the symbol name. Otherwise

there is no symbol, so the code writes the pointer value itself. If the pointer is to

a string, as determined by its type, the code writes the contents of the string; note

that if we were to dereference the pointer and continue as usual, we would only write

the first character of the string. Finally, if traversal should continue to the pointer

contents, then we return 1; else we return 0 to prevent further traversal though this
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pointer.

As presented so far, the API has one limitation: If there are cycles among

pointerful data structures in the heap, traversal may loop forever. Rather than

force the programmer to add ad hoc logic to avoid this case, C-strider instead

includes support for tracking previously visited pointers. Thus, the C-strider API

includes a fourth callback, perfaction ptr mapped, which is called for each pointer that

is reached but has been visited previously during the traversal. C-strider maintains

a map from each visited *in pointer to its *out counterpart; this mapping is set when

we return from perfaction ptr , mapping the (original) value of *in to the final value

of *out. When the traversal code considers a pointer to visit, it checks whether that

pointer appears in the mapping table. If so, it calls perfaction ptr mapped; otherwise it

calls perfaction ptr . In the case of serialization, the corresponding serial ptr mapped

callback function is not shown because it is quite similar to the serial ptr function;

the difference is that it knows the pointer cannot be null, so only the else case of

the above code is needed, and the code for writing strings is elided, since the string

has already been written. No further traversal is needed for a mapped pointer, so

nothing is (ever) returned.

2.1.3 Implementing deserialization

While serialization is a traversal service that only reads the heap, deserializa-

tion is a transformation service that modifies the heap during traversal. It begins

by writing global variables and then continues to initialize the heap as it processes
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the serialization file. Deserialization is unusual because the input heap comes from

prior program run, as captured in the serialization file. Thus, we will see that de-

serialization must call API functions that add mappings, read from this file, and

direct the traversal. A more typical transformation service, like dynamic software

updating (Section 2.5.3) or hot swapping [107], would simply traverse the existing

heap while transforming it, requiring no extra programmer assistance.

Figure 2.3b shows the deserialization callbacks, which are passed to C-strider

in an instance of struct traversal . The first callback, deserial prim , is just like serial-

ization, but reads data instead of writes it. deserial struct returns 1, which means

struct fields are traversed as usual, i.e., in the same order they were serialized.

The callback deserial ptr inverts the logic from the serialization case, allocating

new memory as needed and updating the mapping. It starts by reading the pointer

itself from the file. Notice this is the address from the checkpointed program. Since

the address space of the current run of the program may be different, the traversal

uses the mapping table to map the checkpointed run’s addresses to the equivalent

ones in the current run’s address space. There are several cases. The code first

checks whether the pointer is 2. If so, it points to a symbol, whose name is then

read and looked up to find its current address, which is assigned to *out. Otherwise,

if the pointer is null, then null is written to *out. If this particular pointer was seen

before—i.e., it was previously read from the file and therefore is in the mapping

table—then *out is assigned to the value from the map, which is the corresponding

address in the current run of the program.

Otherwise, the code starting on line 60 handles a non-symbol, non-null pointer
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that has not been seen before. If it is a string, the code reads in that string, and

then adds a mapping to between ptr (the address in the file) and tgt (the address

of the same memory in the program). For non-strings, the code extracts the target

type of the pointer and computes its size (if the pointer is to an array then the size of

the target type will cover the entire array). Then it allocates memory for the target

object, assigns the allocated pointer to out, and sets up the mapping. Finally, the

code calls visit to manually direct to the traversal to the newly allocated memory.

Thus, the next read from the file will write into that memory. In all cases the

deserial ptr function returns 0, since either no subsequent traversal is needed, or

the traversal was manually triggered by calling visit .

The deserial ptr mapped function (not shown) will never be called, because

translation of pointers from the serialization file always happens through manual

lookups of the table on line 58. If a pointer from the serialization file is seen again

in deserialization, then there is no attempt to traverse it ( deserial ptr returns 0).

2.1.4 Using serialization for checkpointing

Given the callback definitions, C-strider provides, or generates, the code that

actually traverses the various elements of the heap, invoking the callbacks as it

goes. To use a C-strider service, therefore, the programmer then needs to invoke

the traversal at the appropriate place in their program.

Using the (de)serialization service is simple. Consider Figure 2.4, which uses

this service for checkpoint and restart. Assume the data to be (de)serialized is stored
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81 t1 *global ;
82 t2 * other global ;
83

84 int main(int argc , char **argv){
85 if (! do deserialize (argc ,argv)){
86 /* do standard initialization */
87 }
88 /* long−running loop for
89 rest of the program... */
90 while(1){
91 if (...) checkpoint ();
92 ...
93 }
94 }

95 int do deserialize ( int argc , char **argv){
96 if ((char)argv [1][0] == ’D’){
97 ser = fopen(”ser. txt”, ”rb”);
98 init (& deserial funs , 0);
99 visit (&global, TYPE t1, &global);

100 finish ();
101 fclose ( ser );
102 return 1;
103 }
104 return 0;
105 }
106 void checkpoint(void){
107 ser = fopen(”ser. txt”, ”wb”);
108 init (& serial funs , 0);
109 visit (&global, TYPE t1, &global);
110 finish ();
111 fclose ( ser );
112 }

Figure 2.4: Example program employing checkpointing.

in some variable global of type t1. When the program begins, it calls do deserialize

on line 85 to check whether the user has requested to restart at a checkpoint. If

not, do deserialize simply returns 0, and initialization continues as usual. Other-

wise, the do deserialize function invokes the deserialization traversal to initialize

memory. First, C-strider must be initialized by calling init (line 98), which takes

two parameters: a struct specifying which traversal functions to be used (having

type struct traversal from Figure 2.2), and a flag specifying whether the traversal

should be run in single-threaded mode, guaranteeing an in-order traversal (0), or

parallel mode with multiple threads (1). In this example, for deserialization, the first

init parameter is a struct traversal with the function pointers set to the C-strider

API functions from Figure 2.3b, and the second parameter is 0 to signify a single

threaded traversal, as (de)serialization relies on an in-order traversal to preserve the
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order of the heap data. The init call also initializes some auxiliary data structures

that C-strider uses to perform the traversal.

Next, the programmer selects which objects of the heap to traverse. One op-

tion is to call visit all , a function generated by C-strider that traverses all objects

reachable from global variables. Alternatively, as we do here (line 99), the pro-

grammer can call visit to traverse starting from a specific root. This is useful when

a full heap traversal is not appropriate, e.g., here where we do not want to traverse

other global . Deserialization is a transformation service, but as mentioned earlier,

it is an unusual one: the source heap is read from the serialization file, while the

target heap is that of the current program. As such, we must specify out as &global.

For in, we also use &global but this ends up not being important—as we can see

from Figure 2.3b, the in argument is actually ignored by the deserialization code.

(A more typical transformation service is discussed in Section 2.5.3.)

Lastly, the programmer calls finish , which tells C-strider to clean up the aux-

iliary data structures it uses for the traversal. At this point, all data has been

deserialized, so the program closes the file, and do deserialize returns 1 on line 102,

thereby skipping from-scratch initialization.

The main program now proceeds, entering a long-running loop. Intermittently

it calls checkpoint to serialize the current state. The function checkpoint (line 91) is

similar to do deserialize , except now the programmer uses the serialization functions,

which write to the serialization file rather than read from it. Because serialization is

a traversal service, we specify the in argument to visit as &global; the third argument

is unimportant since serialization will ignore it, but we specify it as &global to be
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// Directing the traversal
void init (struct traversal *funs, int paral );
void visit (void *in , typ t , void *out);
void visit all (void);
void register root (void * in , typ t );
void deregister root (void * in );
void finish (void);
// Functions for querying the symbol table
char *lookup addr(void *addr);
void *lookup key(const char *key);
// Functions for manipulating the pointer
// mapping table
void add mapping(void *in, void *out);
void *find mapping(void *in );

// Functions for manipulating type
// information
int is prim (typ t );
int is ptr (typ t );
int is funptr (typ t );
int is array (typ t );
int get size (typ t );
int get num array elems(typ t );
int get ptrtype (typ t );
// Constructors
typ mktyp ptr(typ t );
typ mktyp arr(int arrlen , typ t );
// Generics
int get maintype(typ t );
typ * get generic args (typ t );
int get num gen args(typ t );
typ mktyp instantiate (typ t , int nargs ,typ *args );

Figure 2.5: C-strider API.

compatible with the expectations of automatically generated code (cf. Figure 2.7

in the next Section). For traversal services such as serialization, a call to visit all

will automatically set out equal to in for all elements of the traversal.

2.1.5 Full C-strider API

We now wrap up our discussion of C-strider’s basic design by discussing the

remainder of the API, given in full in Figure 2.5. Section 2.3 will discuss in more

detail how these functions can be used to customize the generated traversal.

Starting in the upper-left, the first set of functions controls the initialization

( init ), starting points ( visit or visit all ), and conclusion of the traversal ( finish ),

as briefly explained in Section 2.1.4. Figure 2.4 showed how the visit function

can be called on any location to start traversal from that point onward. Certain

applications, however, need to traverse the entire heap. For example, full heap
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traversal is needed for dynamic software updating and for heap profiling. To support

these cases, C-strider provides a function visit all , which traverses the entire heap

automatically by calling a list of generated custom traversal functions for each global

variable in the program. Additionally, the programmer can use register root and

deregister root to add and remove, respectively, additional locations for visit all

to visit. For example, we use this to traverse certain local variables in dynamic

software updating, discussed in Section 2.5.

The next two functions, lookup addr and lookup key, perform lookups in the C-

strider symbol table, mapping from symbol names to addresses or vice-versa. The

last two functions on the left, both of which we saw above, manipulate the mapping

table used in transformation services. While we could have left it up to the user to

implement these features on an ad hoc basis, we incorporated them into C-strider

because we found them useful for a range of services.

Finally, as we saw in the serialization and deserialization code, one of the major

features of C-strider is that it is type aware, which not only allows the traversal

to be precise, but also allows service code to adjust its behavior by type. For

example, strings of TYPE PTR CHAR are serialized differently than other pointer

types. In general, C-strider generates a set of type names for those types that are

statically present in the code, e.g., TYPE INT, TYPE PTR INT. User-defined types

also available at run time, e.g., TYPE STRUCT DLIST for a program that includes

struct dlist .

The functions on the right of the figure manipulate types. The first group of

functions manipulate standard types, e.g., determining whether they are primitives
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( is prim ) or pointers ( is ptr ), calculating their size ( get size , get num array elems),

and returning the pointed-to type ( get ptrtype ). The particular set of queries shown

here was derived from our experience building several services (Section 2.5); other

applications could potentially require other accessors, which are easy to add.

The next two functions, mktyp ptr and mktyp array, create new pointer or array

types, respectively, at run time. We use these to maintain type information for

arrays and other pointed-to blocks whose length is only determined at run time. We

will see an example in Section 2.3. The last set of functions lets us create and query

generic types, e.g., parametrically typed linked lists. Section 2.3 discusses generics

in detail.

Notice that, since types are available at run-time and can be fully queried, it

is not strictly necessary to have four perfaction callbacks. In theory, perfaction prim ,

struct , and ptr could be combined into a single callback that would just test the

type and behave appropriately. However, we have found this particular grouping to

be useful, because we often want to treat each of those groups independently (e.g.,

as in serialization and deserialization).

2.2 Type-aware Traversal

Section 2.1 showed C-strider from the service developer’s perspective. This

section provides details on the inner workings of the traversal, in two parts. First,

we discuss the main components of the traversal, which are the visit function, which

is called for each element of the heap, and the task queue, which organizes the work
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of the traversal. Second, we explain how the visit function relies on several bits

of C-strider-generated code, in particular a table of type representations, a set of

struct-specific visit functions, and finally a visit all function, which can be used to

initiate a heap traversal from the program’s roots.

2.2.1 Main components of the traversal

To perform the traversal, C-strider must determine which perfaction function

to call with which addresses, and it must keep track of those addresses it has visited

and the addresses to visit next. The overall traversal is orchestrated by two pieces of

code: the visit function, shown in Figure 2.6, which calls the appropriate perfaction

function based on an object’s type; and a task queue that contains pointers to structs

or arrays whose elements need to be visited.

Traversal visit function: The visit function is the workhorse of the traversal.

It is invoked for each visited heap object, starting with the roots. As arguments,

visit is given a pointer to the heap object to consider, a representation of that

object’s type (expressed as an object of type typ), and a pointer to the corresponding

object in the transformed heap. We defer discussion of the implementation of type

representations to the end of this section.

The body of visit is straightforward. For primitive types (ints, chars, etc) and

other non-standard terminal primitive types (mutex t, time t, size t ), the traversal

calls perfaction prim on line 115, which in turn calls the user-provided callback from

struct traversal , passing it a pointer to the primitive being traversed.
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If typ is a pointer type, the traversal returns immediately if the pointer is null

(line 117). Otherwise, there are two cases, depending whether the pointer has been

visited before (line 119).

If the pointer has been visited, the code calls perfaction ptr mapped, passing

the address from the mapping as its last (out) parameter. The code passes &lookup

because perfaction ptr mapped takes a void **, i.e., a pointer to a location containing

the pointer of interest. The code then writes the mapped-to value from lookup to

*out.

If the pointer has not been visited, then the code calls perfaction ptr and

updates the mapping to record that the pointer has been visited. Then either

traversal stops (if perfaction ptr so indicated, or if t is a function pointer), or it

continues at the pointed-to type (lines 127– 128).

If the type is a struct, the traversal calls perfaction struct . If that function

indicates the traversal should continue, the code calls enqueue, which creates a task

that will visit t’s fields and adds it to the queue.

Finally, if typ is an array type, the traversal likewise enqueues a task to re-

cursively visit each of the array’s elements. When performing a multi-threaded

traversal, this code will divide this task into sub-tasks covering sub-ranges of the

array; the number of tasks depends on the size of the array and the number of

processors on the machine.

Note that the visit function skips unions. We made this choice because C has

no standardized mechanism for determining which arm of a union is active. Thus,

for these cases the developer has to customize the traversal with program-specific
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113 void visit (void *in , typ t , void *out){
114 if ( is prim (t)){
115 perfaction prim (in , t , out);
116 } else if ( is ptr (t)){
117 if (! in) return;
118 void *lookup;
119 if ((lookup = find mapping(*(void**)in))) {

120 perfaction ptr mapped( in , t , &lookup);
121 *(void**)out = lookup;
122 }
123 else{
124 int retc = perfaction ptr ( in , t , out);

125 add mapping(*(void**)in, *(void**)out);

126 if (! retc || is funptr (t)) return;
127 typ t p = get ptrtype(t );
128 visit (*(void **)in , t p , *(void **)out);

129 }
130 } else if ( is struct (t)){
131 if ( perfaction struct ( in , t , out))
132 enqueue(in, t , out);
133 } else if ( is array (t)){
134 /* enqueue task that calls visit on each array element */
135 } }

Figure 2.6: Traversing using type information.

code (Section 2.3).

The task queue: The task queue consists of traversal work that remains to be

done. It contains two types of tasks: structs whose fields need to be visited, and

arrays whose elements need to be visited. The traversal in the former case is defined

by a custom visit function that C-strider generates for each struct in the program

(as described in Section 2.2.2). The traversal in the latter case is simply a loop

over the specified range of the array. Either way, the traversal function simply calls

visit on each of the elements of in and out and then returns.
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Single and multi-threaded traversal modes: The handling of enqueued tasks

depends on the mode C-strider is used in. In single-threaded mode, the main thread

repeatedly pulls tasks off the queue and calls visit , until the queue is empty, forming

a breadth-first search of the enqueued tasks. Using a queue enables C-strider to

traverse cyclic data structures (which in C must always go through a struct) without

requiring a deep stack.

To speed up the traversal process, C-strider supports multi-threaded traversal.

In this mode, C-strider launches n−1 worker threads in addition to the main thread,

where n is the number of processors. The threads consume tasks that are generated

by enqueue, which are initially produced by C-strider’s main thread.

C-strider uses a work-stealing scheduler: Each thread has a local queue (cre-

ated initially at the call to init ), and when it runs out of tasks it attempts to steal

one from another queue [19]. Each queue is implemented as a large pre-allocated

array and a single lock used for enqueue and dequeue operations. Each queue also

maintains an exact number (using the lock) of in-flight tasks currently being pro-

cessed. This is because even if all queues appear to be empty, if a thread is currently

processing a task, it may enqueue new tasks. Therefore, we are not done traversing

until all queues are empty and no tasks are in-flight.

In a multi-threaded traversal, the map of visited locations needs to be thread-

safe. Using a single lock to protect it would introduce significant contention, so we

use a hash table implementation with bucket-by-bucket locking.

A traversal completes once the service calls finish . At this point, the main

thread and helper threads (if multi-threaded) process all remaining items in the task
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struct dlist { struct dlist * next, *prev; int x; }
struct dlist *head = ...;
struct dlist **phead = &head;

139 void visit struct dlist (void *in , typ t , void *out) {
140 struct dlist i * in l = in;
141 struct dlist o *out l = out;
142

143 visit (&in l→ next, TYPE dlist PTR, &out l→ next));

144 visit (&in l→ prev, TYPE dlist PTR, &out l→ prev));

145 visit (&in l→ x, TYPE INT, &out l→ x);
146 }

Figure 2.7: Generated traversal code for struct dlist .

queues until they are empty. Once complete, temporary data structures are freed

and the helper threads exit.

In C-strider we have made a specific design choice to only create tasks for

structs and arrays. As an alternative design, we could have enqueued tasks for

every element in the heap, including pointers and primitives. However, the cost of

making a task, queuing it, dequeuing it, and executing it, would dwarf the cost of just

executing the task directly, despite the lost opportunity for parallelism. We find that

our current design generally balances overhead with opportunities for parallelism.

2.2.2 Generated code

In addition to the visit function and queues, C-strider relies on per-program

generated code to perform the traversal, including type representations, a set of

traversal functions for each struct in a program, and code to register globals to be

visited by visit all .
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Type representations and the type table: C-strider traversals use type rep-

resentations that describe each type in a program. Such type representations cover

both built-in types (like int and char) and user-defined types. Type representations

have type typ, and are used by both C-strider library functions like visit and the

perfaction callback functions provided by the service developer with struct traversal .

A typ t is represented as an integer that indexes a generated type table. This

table maps types to relevant information about them like their size in bytes, the

number of elements (for arrays), the pointed-to type (for pointers and arrays), and,

for a generic type, the base type and the type arguments this type was instantiated

with (if applicable); Section 2.3 says more about generics.

C-strider creates a unique typ for each type appearing (statically) in the pro-

gram text and gives it a predictable variable name, e.g., TYPE PTR CHAR from

Figure 2.3a. A service developer can refer to such names in the perfaction func-

tions. Types are extracted from the source program by an analysis implemented in

CIL [72]. CIL takes as input preprocessed C source code and outputs information

about the types of all variables and functions of the program.

C-strider also assigns a distinct typ to each type alias, e.g., typedef int size t in

the source would yield a new type TYPE size t with the same associated information

as TYPE INT. Distinguishing type aliases like this is useful for certain applications.

For example, we found that Redis includes a string type that is aliased to char *,

but is actually a pointer to the middle of a data structure. Thus, we can write the

traversal so that when it visits this particular named type, it visits the structure as

a whole and not just the string.

35



A traversal can generate type representations on the fly, using the mktyp

functions (cf. Table 2.5). If the run-time generated type matches one already in

the type table generated statically, then mktyp X will return the associated index.

However, if the type did not appear in the program text then it will not be in the

table already. In this case, a new entry is added to the table dynamically, and the

index to that element is returned.

Traversing structs: As seen in the previous section, the visit function directs the

traversal by handling the pointers and calling the appropriate perfaction functions.

To traverse inside a struct, C-strider must call visit for each field of the struct.

To assist with this, in addition to generating the type table, C-strider generates a

traversal function for each struct and each field within the struct. For example,

Figure 2.7 shows the traversal code for a doubly linked list struct dlist , defined

at the top of the figure. (Code slightly simplified for clarity.) Each generated

traversal function is named by prepending visit to the name of the struct. The

parameters void *in and void * out are the addresses of the struct being traversed,

and parameter typ t is used in the case of generics, as described in Section 2.3.1.

C-strider generates code to assign the parameter addresses to the type of struct

being traversed (shown on lines 140 and 141) to allow the memory to be accessed

properly as struct fields. Finally, C-strider generates code to traverse each field of

the struct (shown on lines 143 - 145) by getting the type information for each

field from CIL. C-strider inserts the corresponding type name generated according

to the pattern used when generating type representations (e.g., TYPE dlist PTR for

36



struct dlist *) and generates a call to visit for each field of the struct.

visit all: During compilation, C-strider gathers a list of all non-static global vari-

ables of a program using CIL. When init is called, C-strider uses the list of non-static

globals to populate hash tables mapping symbol name to address (for lookup key from

Figure 2.5), and address to symbol name (for lookup addr). After initialization, if

the user then calls visit all , C-strider iterates through all entries in the lookup key

table, combines each entry with some auxiliary type information, and uses that in-

formation to call visit on each global. After visit all calls visit on all globals in

the hash table, it then calls visit on all roots the programmer has manually added

with register root . C-strider does not process static global variables, as discussed in

Section 2.4.

2.3 Customizing the Traversal

For many C programs, the standard C types do not provide quite enough

information to support type-accurate traversal. To support such programs, C-strider

lets the programmer customize the traversal in two ways: adding type annotations

to the program (Section 2.3.1), and writing program-specific code in perfaction

functions (Section 2.3.2).

2.3.1 Type annotations

C’s type system is not sufficiently expressive to describe many common pro-

gramming idioms. For example, the type int* could describe a pointer to a single
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typedef struct dlist arr {
int arrlen ;
struct dlist ** T PTRARRAY(self.arrlen) arr head;
} dlist arr ;

151 void visit struct dlist arr (void *in , type t , void *out) {
152 struct dlist arr * in a = in;
153 struct dlist arr *out a = out;
154 visit (&in a→ arrlen , TYPE INT, &out a→ arrlen);
155 visit (&in a→ arr head,
156 mktyp ptr(mktyp arr(in a→ arrlen ,TYPE STRUCT dlist PTR)),
157 out a→ arr head);
158 }

Figure 2.8: Length annotation and generated traversal code.

integer, or a pointer to an array of integers. C-strider permits programmers to

express additional information as type annotations to remove some of the ambi-

guity. These annotations are borrowed from Kitsune and inspired by Deputy [24].

Currently, C-strider supports two kinds of type annotations that encode the most

common missing type information: lengths of arrays, and types of void *’s used in

generic data structures. These annotations can decorate types of either struct fields

or global variables, in which case they modify the generated traversal function for

that struct or global, respectively. We illustrate the annotations by example.

Type annotations for arrays: Depending on how an array is declared, C-strider

may or may not be able to statically determine its length. If an array is declared with

static length information such as struct dlist array x [6] , C-strider can determine

that it needs to process 6 elements for array x . However, when a user declares

an array with dynamic length, such as struct dlist ** arr head, C-strider cannot

statically determine the length of the array and needs additional information to
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struct list { // class List<T> {
void T VAR(@t) *val; // T val ;
struct list T INST(@t) *next; // List<T> next; }
} T FORALL(@t);

163 void visit struct list (void *in , type t , void *out) {
164 struct list * in l = in;
165 struct list *out l = out;
166 typ *args = get generic args (t );
167 int num args = get num gen args(t);
168 assert (num args == 1);
169 typ t0 = args [0];
170

171 visit (&in l→ val, t0 , &out l→ val);
172 visit (&in l→ next,
173 mktyp instantiate (TYPE STRUCT list PTR,num args, args),

174 &out l→ next);
175 }

Figure 2.9: Generic annotation and generated traversal code.

determine how to process arr head. C-strider includes annotations T PTRARRAY(S)

and T ARRAY(S) to decorate a pointer or array, respectively, with a length S, which

may be a constant integer or an expression of the form self . f, where f is a field at

the same level of the current struct. For example, Figure 2.8 shows an annotated

struct type declaration and its corresponding traversal code. The annotation states

that arr head is a pointer to an array whose length is contained in the field arrlen of

the same structure ( self ). Notice that line 156 of the generated traversal code calls

mktyp arr to generate an array type of the appropriate length, and then wraps it in

a pointer type.

If the user does not annotate an array, C-strider will presume it is a singleton.

From the example in Figure 2.8, the code struct dlist ** arr head ; would be treated

by C-strider as a single instance of a “pointer to a struct dlist pointer,” rather than
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a “pointer to array of struct dlist pointer” with the annotation.

Type annotations for generics: Because C-strider uses static type information

to generate the heap traversal code, void *’s in a program present a roadblock to

the traversal generation process as void *’s provide no type information. C-strider

includes several annotations to type void *’s in generic data structures. Figure 2.9

shows a generic linked-list data structure and its corresponding traversal code. Here,

the struct list type is parameterized by type variable @t, introduced with T FORALL.

The type variable is used with T VAR to provide the actual type of val. Then the

code uses T INST to instantiate the type of next. For comparison, the Java generic

linked list equivalent is shown in comments in the example. In the traversal code,

the argument t is an instantiation of the generic type. The calls on lines 166

and 167 get an array with the instantiated arguments and the length of that array,

respectively. The code then binds t0 to the first element of the array, i.e., whatever

@t is instantiated as. That type is used to visit val, and then next is visited at the

type of struct list instantiated with the same arguments (line 173).

If the user does not add an annotation to a void *, C-strider prints out a

warning during the type generation process, reminding the programmer to add an

annotation if necessary. If no annotations are added to a void *, C-strider does not

traverse the pointer as no type information is available.
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struct tagged union {
int tag; /* 1 selects u.x; 0 selects u.c */
union{ int x; char c; } u; /* selected by tag */

};

180 int current service ;
181 #define DESERIALIZE 0
182 #define SERIALIZE 1
183

184 struct traversal deser prog funs = {
185 . perfaction prim = &deserial prim,
186 . perfaction struct = &s d prog struct,
187 . perfaction ptr = &deserial ptr ,
188 .perfaction ptr mapped =
189 &deserial ptr mapped
190 };
191

192 int do deserialize ( int argc , char **argv){

193 if ((char)argv [1][0] == ’D’){
194 current service = DESERIALIZE;
195 ser = fopen(”ser. txt”, ”rb”);
196 init (&deser prog funs , 0);
197 ...
198 }
199 return 0;
200 }

(a) Custom deserialization initializa-

tion code

201 int s d prog struct (void *in , typ t , void *out){
202 /* Service−agnostic, Program−specific */
203 if (type == TYPE STRUCT tagged union) {
204 struct tagged union *in u = in;
205 struct tagged union *out u = out;
206 visit (&in u→ tag, TYPE INT, &out u→ tag);

207 if ( in u→ tag)
208 visit (&in u→ u.x,TYPE INT, &out u→ u.x);
209 else
210 visit (&in u→ u.c,TYPE CHAR, &out u→ u.c);
211 return 0;
212

213 /* Service− specific */
214 } else if ( current service == DESERIALIZE){

215 /* Program−specific */
216 if (t == TYPE ...) {...}
217 /* Program−agnostic */
218 else return deserial struct ( in , t ,out);
219 } else if ( current service == SERIALIZE) {

220 ...
221 return serial struct ( in , type, out);
222 }
223 return 1;
224 }

(b) Custom (de)serialization struct call-

back

Figure 2.10: Customizing traversal in perfaction functions.

2.3.2 Customization in perfaction functions

In some cases, type annotations are insufficient to guide the traversal. For

example, consider the type at the top of Figure 2.10, which defines a struct whose

u field is either int or char, depending the tag field being either 1 or 0, respectively.
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To select the correct field of u to visit, C-strider needs to know how to interpret tag.

To solve this and other problems, the programmer can write program-specific

perfaction functions. Such functions (contained in file prog specific .c in Figure 2.1)

can assist C-strider in performing the traversal in a service-agnostic manner, per

our example. Customizations can also adjust a service’s functioning based on the

particular program. For example, we might know that our program has an array of

structs that all reference each other. Rather than traverse the entire array, we could

customize serialization to write the whole array at once, and thereby avoid further

traversing of the structs. When no customization is needed, the programmer can

just delegate to the relevant service code.

Figure 2.10 provides a modified example of deserialization customized to han-

dle our example tagged union. On line 180, int current service keeps track of the

current service, either SERIALIZE (1) or DESERIALIZE (0); we define this flag be-

cause both services will share code (though we focus on the code for deserialization,

since serialization is similar). On line 184, struct traversal deser prog funs sets up

the callback functions for the new set of program-specific deserialization functions.

For perfaction struct we specify a program-specific function, s d prog struct (defined

on the right side of the figure), while for the rest we use the standard functions

from Figure 2.3b. The function do deserialize (line 192) is similar to the previ-

ous version (Figure 2.4, line 95), with the addition of setting current service on

line 194 and passing deser prog funs to init on line 196. The checkpoint function

(not shown) is similar to the version on line 106, with the addition of setting

current service = SERIALIZE and passing ser prog funs to init (which are initialized
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analogously).

The right side of Figure 2.10 shows the program-specific implementation of

s d prog struct , which acts as a wrapper around serial struct and deserial struct .

The first part of the function is program-specific, but service-agnostic: If s d prog struct

is called on struct tagged union, then we visit the tag on line 206, and then switch

on the tag and call visit on the appropriate sub-field, returning 0 on line 211 to

indicate the default traversal (visit all fields) should not happen. Otherwise, for

any other struct type, we check which service we are running and perform either

a customized action or the default service action. For example, on line 214, if

current service is DESERIALIZE, we first perform service-specific, program-specific

actions, e.g., we check for a particular type (line 216) to optimize serialization for

it (not shown). Otherwise, on line 218 we call the default action, deserial struct ,

which is a wrapper for the reusable service-specific code from Figure 2.3b, line 44.

Similar to deserialization, the code for serialization (or any other service) performs

service-specific checks, and then the default action.

Section 2.5.1 includes more details and examples of customizing the traversal

for service specific customization.

2.4 Limitations

While C-strider is general and flexible, it does have some limitations, which

we discuss here.

A general problem is that by being a generic framework, C-strider’s perfor-
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mance might suffer compared to a purpose-built service for a particular application.

For example, C-strider’s serialization/deserialization service will, by default, serial-

ize an array by serializing each of its elements individually. But if those elements

contain no pointers, then it would be faster to simply write the entire array directly

(similarly to how C-strider serializes strings). C-strider also uses generated type rep-

resentations which might not otherwise be needed for a purpose-built service. That

said, C-strider does allow programmers can customize a service to their program, to

improve performance.

C-strider is intended traverse the heap, but it may come across pointers that

refer to other parts of memory, such as stack-allocated variables. C-strider does not

reliably provide information to a service developer about whether a pointer is to

the heap or not, but in many cases this can be determined simply by looking at

the pointer’s address; e.g., on Linux, the heap is in “low” memory and the stack

is in “high” memory. If necessary, the programmer could write a perfaction rule

based on the memory address of the item being traversed, instructing C-strider to

perform some custom action (such as printing an alert) if the traversed location is

an unexpected memory location.

In principle, C-strider could be used to produce a type-aware garbage collector

for C programs. Doing so would be challenging in practice, however. For one thing,

C-strider would need assistance in finding all of the roots of the heap, which includes

pointers on the stack, thread-local storage, etc. At the moment, this would require

the programmer to explicitly register and deregister these roots (using register root

and deregister root ) when they come into and go out of scope. There is also an issue
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with roots that are static variables, discussed below, and with any roots that might

be stored by external libraries. Some of these problems could be overcome through

a source-to-source transformation that registers and deregisters roots automatically,

similar to the one proposed for Kitsune.

Another limitation of C-strider is that it cannot properly traverse variables

declared as bit fields, because C does not allow taking the address of bit fields. For

example, C-strider does not generate traversal code for a structure with a element

field of unsigned int valid : 1; or else the generated code visit (&in→ valid ... , would

not compile. In our experiments, we modified the program code to not have bit

fields.

C-strider generates the visit all function by analyzing all of the source files

in a program, and generating a single function that registers its global roots. This

function will not have access to static variables in other files. The programmer

either will need to make variables non-static, or only initiate traversals (using visit )

on variables that are in-scope.

2.5 Applications and Experiments

We used C-strider to develop four services: serialization; state transformation

for dynamic software updating; heap profiling ; and heap assertion checking. We im-

plemented each service for a subset of three programs, listed on the left of Table 2.1

along with their version numbers and sizes. Memcached is a widely used, high-

performance data caching system employed by sites such as Flickr and YouTube.
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Redis is a key-value database used by several high-traffic services, including Insta-

gram and stackoverflow. Snort is a network intrusion detection system claiming

millions of downloads and nearly 400,000 registered users.

This section describes the implementation of our services, characterizes the

programmer effort required to write them, and provides some performance measure-

ments. Measurements were conducted on a 32-bit, Intel Core i5-3320M at 2.60GHz,

with 4 cores and 7.5GB mem, running Ubuntu 12.04. Medians were taken over 11

trials. Since C-strider adds no overhead to normal program execution (e.g., because

it does not compile the program any differently), we consider the time from when the

traversal-based service is requested until it completes and normal execution resumes.

2.5.1 Programmer effort

Table 2.1 tabulates three kinds activities involved in using C-strider: writ-

ing service code, customizing a particular program’s traversal, and customizing the

traversal in a service-specific manner. All three cases involve relatively little code,

much of which is a one-time effort that can be shared across different services and/or

different programs.

Writing a service: Writing a C-strider service takes relatively little effort, in

terms of lines of code. The parenthesized number at the top of the last four columns

of Table 2.1 count the lines of service-specific (but program-independent) code,

tabulated by service (dynamic software updating, serialization, profiling, and heap

assertions). Details of the implementation of each service is given in the following
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Traversal DSU s/d prof asrt

Prog. LOC T * Cust. (24) (78) (65) (0)

Memcd 1.2.3 ∼4K 6 0 17 44 9 20

Redis 2.0.2 ∼13K 45 26 19 46 11 36

Snort 2.9.2 ∼215K 143 21 n/a n/a 4 67

Table 2.1: Programmer effort (measured in LOC)

subsections.

Customizing a program’s traversal: While some programs can use a service

out of the box, nontrivial programs will require some customization. The first step

is customizing the traversal for that program, in a service-independent manner, as

described in Section 2.3. The third column of Table 2.1 counts the type annotations

we added, and the fourth column counts the lines of program-specific perfaction

code we wrote. Nearly all of code we wrote was for handling unions or union-like

data structures. For example, of the 26 LOC for the custom traversal for Redis, 17

LOC customizes the traversal of its main database item structure which contains a

flag that determines the type of a void * field in the structure. The other 9 LOC

handles a structure containing a mask that determines whether other fields in the

structure are valid.

Customizing the services: The lower right portion of the table counts the lines

of code that are program- and service-specific. For example, we wrote 17 lines of

code specific to Memcached for dynamic software updating. We write “n/a” where
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225 int perfaction struct (void *in , typ t , void *out){
226 if ( current service == DYNUPDATE){
227 if (t == TYPE STRUCT stats){
228 if (lookup addr(out) != NULL){
229 int in sz = get size (t );
230 int out sz = get out size (t );
231 assert ( in sz == out sz);
232 memcpy(out, in, in sz );
233 }
234 return 0;
235 } else return update struct ( in , t , out);
236 }
237 if ( current service == SERIALIZE){
238 if (t == TYPE item){
239 struct stritem cpy * it = in;
240 int len total = ITEM ntotal(it);
241 // write len total and other struct fields to disk
242 } else return serial struct ( in , t , out);
243 }}

Figure 2.11: perfaction code for Memcached.

we did not implement a service for that program.

We implemented the program- and service-specific code using the pattern

shown in Figure 2.11, which excerpts part of the perfaction struct function for

Memcached. This code switches based on the current service (lines 226 and 237).

For each service, it then either performs type-specific actions (lines 227 and 238)

or calls the service-specific action (lines 235 and 242). The current service flag

is set through the entry point to the service, e.g., the call to do serialize in Fig-

ure 2.4 sets the service to deserialization, and the call to checkpoint sets the service

to serialization (both calls initiate a full traversal after setting the flag).
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2.5.2 Heap serialization

We now turn to the different services we implemented, starting with heap

serialization and deserialization suitable for implementing checkpointing. The im-

plementation of this service was presented in Section 2.1 (Figures 2.3a and 2.3b).

In addition to those 69 lines of code, we have an additional 16 lines of code that

deal with file manipulation (opening, closing, and some wrapper functions around

fread and fwrite for simplicity). We must use a single-threaded traversal for this

application to ensure data is written to the serialization file in a deterministic order.

While implementing serialization for Memcached, we developed one interesting

performance optimization, shown in Figure 2.11. Here on line 240 we use a macro

from Memcached to get the size of a flexible array member (void * end[]) contained

in struct item; the length of this member is the sum of several of the item’s fields.

By tailoring the traversal here, we can write the entire item to disk at once rather

than traversing each byte of the flexible array separately. We also wrote a similar

function for deserialization. In total, we wrote 44 additional lines of perfaction *

code to optimize the traversal of Memcached’s key-value database structures, as

shown in the sixth column of Table 2.1. We performed very similar changes to

optimize the Redis object structure for serialization, totaling 46 additional lines.

Time required for serialization: We measured the time it takes to serialize

and deserialize the key/value database items of Redis and Memcached. (We did not

serialize the rest of the program, such as statistics or connected user information, as
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this information would be stale between program restarts.) Figure 2.12 shows how

performance varies with the size of the heap, in terms of number of key-value pairs.

The keys and values are approximately 10B in length each. (We say “approximately”

because they consist of a string appended with an incrementing integer.) The parts

of the heap that we traverse for serializing 30K key-value pairs contains 5,592KB

of allocated data structures in Redis and 1,477KB for Memcached. We see that

serialization and deserialization take nearly the same amount of time for a given

program. Overall, Memcached traversal is faster; the reason is the performance

optimization mentioned above, which lets C-strider write the key and value to disk

as a single block. In contrast, Redis stores its key and value in separate structures

that must be traversed separately.

Redis itself provides a serialization tool, allowing the user to load/store entries

from/to a file. The Redis serialization process uses a custom iterator to skip to only

populated elements of the array, serializing 20K (∼10B-key,∼10B-value) pairs to disk

in ∼13ms. This is in contrast with C-strider, which must visit every entry of the

database array (215 slots for 20K database entries) and maintain the mapping table,

taking ∼123 ms to serialize the same 20K entries. We suspect we could customize

our traversal to apply similar optimizations but have not investigated further.

2.5.3 State transformation

C-strider grew out of our experience with Kitsune. As described in Sec-

tion 1.1.2, DSU services are implemented by loading the new code (for Kitsune,
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Figure 2.12: Serialization times (color plot).

compiled to a shared object) into the program, and then transforming the existing

state (i.e., heap memory) to meet the expectations of the new code. For example,

in the old version of the program a struct foo might have two fields, while in the

new version it has three. The state transformation code must find all pointers to

struct foo objects in the program, allocate new memory for those objects, initialize

retained fields to the existing values and the new field to a new value, and then

redirect the pointer to the new object after freeing the old one.

State transformation in C-strider: Kitsune state transformation can be im-

plemented as a C-strider transformation service in 24 LOC. This service traverses

and modifies the program heap (thus using both the in and out parameters of the

perfaction functions with the old version of the program as the in set of roots and

the new version of the program as the out set of roots). Additional code (outside

of C-strider) was required to implement other elements of DSU, e.g., for loading

in the new code and managing updating timing. We made one generalization to
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the C-strider API to support updating: we defined two variants of lookup addr and

lookup key (cf. Figure 2.5), one for the old version’s symbol table, and one for the

new version. We also needed to track the size information for the new type’s size,

so we added a function get out size to get the corresponding size of the new version

of a type for the DSU case. (Notice this is a DSU-specific function because it needs

to understand types from a different program version.)

The DSU perfaction functions do one of several things:

� When reaching a location in the new program that must be initialized from the

old program (such as a global variable in the new program’s data segment),

the code simply memcpys the appropriate bytes over.

� When first reaching a pointer to a block of a type that has changed size, the

code allocates a new block to hold the new, differently sized data, and adds

a mapping from the old block to the new block to C-strider’s hash map of

visited locations. The program-specific action is then called to initialize the

new block appropriately.

� When re-visiting a pointer to a malloc’d block for a type that has changed size,

the code looks up the corresponding new block address and overwrites the old

pointer with it (similarly to Figure 2.3b, line 58).

� When visiting a pointer corresponding to a known symbol, the code updates it

with a pointer to the matching symbol from the new program version (similarly

to Figure 2.3b, line 53).

The program-specific actions perform the actual state changes. Referring
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back to our example of struct foo at the top of this section, we would customize

perfaction struct to look at type t, and if it is TYPE STRUCT foo we allocate new

memory, initialize it with the retained values and the new one, and then write the

result to *out.

For the programs we considered, the data representations did not change be-

tween versions, so the only program-specific DSU code we wrote simply optimized

the traversal. For example, for Memcached, Figure 2.11 (line 227) shows how we

cut off the traversal of struct stats since it contains only primitives that need not be

traversed individually (when it is stored in a global variable, it must still be copied

to the new code’s address space).

As mentioned briefly in Section 2.1.5, C-strider allows local variables to be

added as roots of the traversal. This ability is helpful in dealing with the runtime

stack. We used this feature to support updates to Memcached—in particular, we

inserted code to register local variables of the main function. These variables store

information that the user supplies as command line options. Registering these local

variables ensures that the command line option state is propagated to the next

version when we call visit all at the end of the main function. In total, we registered

7 local variables for Memcached.

Time required for a dynamic update: We measured the time it takes to deploy

a dynamic update with single-threaded and multi-threaded traversal (4 threads). We

also compare against the time for the same update with Kitsune.

Figure 2.13 shows how update times vary with heap size measured in terms of
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(∼10B-key,∼10B-value) pairs in the database for both Redis (version 2.0.1 to 2.0.2)

and also for Memcached (version 1.2.2 to 1.2.3), using either one or four threads. For

Redis we see that the benefit of parallelism increases with heap size, whereas with

Memcached performance is flat. Investigating further, we found that Memcached

has a very limited traversal because the majority of its heap can be left unmodified

and thus not traversed at all.

Updating Redis with 4 threads took an average of 68% of the time taken

with a single thread, with the speedup improving as the number of key-value pairs

increases. For Redis we do not achieve perfect speedup as the majority of Redis’

state is in linked lists, effectively serializing a large amount of the traversal.

C-strider’s implementation of dynamic updating performs better than Kitsune

on Redis. Kitsune’s traversal is more heavyweight, allocating several data structures

with type information for each item traversed, and several additional data structures

for each instance of generic types. Redis makes heavy use of generics, which results

in the allocation of a total of 17.16MB worth of data structures when updating
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Redis with 100,000 key-value pairs with Kitsune. Rather than create and allocate

generic type information for each generic instance like Kitsune, C-strider stores type

information and reuses it for each entry by looking it up in the type table, so it does

not incur additional overhead.

Memcached updated with a parallel traversal is slower than when using a

single-threaded one, running at an average of 2.3ms slower than the original time

across all trials, due to the overhead of using multiple threads. However, the update

time for Memcached is quite small to begin with.

2.5.4 Heap profiling

It is often useful to profile a program’s behavior when optimizing its perfor-

mance. With C-strider, we implemented a type-aware heap profiler that is able

to give accurate counts (numbers, and total bytes) of objects present in the heap.

This information can be useful for, say, finding the leading sources of bloat. The

implementation of our profiler is straightforward: the perfaction code simply keeps

a hash table that maps the type t of a visited item to a pair tracking the total count

and size in bytes. We are aware of only one prior C-heap profiler that provides such

fine-grained per-type information [68].

We used our profiler to improve dynamic update times (Figure 2.13). The pro-

filer showed what structs had the most instances, which we then manually inspected.

If the high-count structs did not have any fields that needed to be updated or tra-

versed (such as a structure with only primitive values), we then wrote perfaction
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Total calls Trav. SIQR Uniq Alloc’ed

Program to perf (ms) (ms) types (KB)

Memcd 1.2.3∗ 81,844 49.36 (7.14) 65 360

Redis 2.0.2∗ 494,389 203.21 (16.71) 92 2,189

Snort 2.9.2+ 10,299,744 4412.51 (194.71) 1,019 138,417
∗For 4,000 entries +For traffic at 30 pkts/s

Table 2.2: C-strider profiling heap data

rules directing the traversal for the DSU service to return 0 when we reached them.

For example, the high counts of uint64 t directed us to write a rule for struct stats

in Figure 2.11, line 227.

Time required for profiling: Generating a full profile requires visiting every

object in the heap, whereas for other services we can sometimes halt traversal early.

Table 2.2 shows a summary of the results of profiling. The first column shows the

program name and a footnote explaining the amount of state present at the time

of traversal. The second column shows the total number of calls to perfaction ptr ,

perfaction struct , and perfaction prim . The third column shows the amount of time

it took to profile the heap using 4 threads, and the fourth column shows the semi-

interquartile range (SIQR) for the measured times. (The SIQR, half the numerical

distance between the upper and lower quartile points of our trial runs, is a measure of

variability and shows that for this experiment there was only a moderate amount of

variance in the trials.) The fifth column shows the number of unique types that were

discovered in the traversal, and the final time is the sum in KB of all unique allocated
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structures traversed. The time for traversing all of a Memcached heap with 4,000

key-value pairs is only slightly slower than serializing a Memcached heap with 4,000

key-value pairs. The time for traversing all of the Redis heap for 4,000 key-value

pairs is significantly slower than serializing the Redis heap with the same number

of entries because we did not employ any optimizations for the key-value items and

traversed all fields individually. Snort is by far the largest heap to traverse with

10,299,744 calls to the perfaction functions and 138,417KB of allocated structures.

While Snort has a high traversal time overall, the ratio of traversal time to calls to

perfaction * is similar for all three applications: 0.43 µs/call for Snort, 0.41µs/call

for Redis, and 0.60µs/call for Memcached, which is higher because the smaller heap

does not amortize the startup and teardown costs.

2.5.5 Heap assertion checking

Finally, we also used C-strider to implement a simple heap assertion checking

system, inspired by Aftandilian and Guyer’s GC assertions [6], which employ the

Java garbage collector as a traversal mechanism. Heap assertions are tightly tied to

particular data structures, and with C-strider we can write an assertion specific to

each type. For example, we could assert that a doubly linked list is well-formed by

adding a check during traversal like:

if (type == TYPE linked list PTR)
assert (&in→ next→ prev == &in);

This application has no service-specific code.
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Time required for heap assertions: The amount of time required for heap

assertions varies greatly on the size of the portion of the heap being traversed. For

example, in Memcached, the primary hash table contains a series of doubly linked

lists. Asserting the property above for these lists required essentially the same time

as for serialization (Figure 2.12) as the traversal covers the same portion of the

heap. For Redis, we created a set of assertions checking that timestamps were not

in the future, file descriptors were valid (using fcntl ), database item enum fields were

valid, and that linked list pointers were as expected. We traversed the entire Redis

heap, and the traversal times were similar to the update time shown in Figure 2.13.

For Snort, we implemented a checker that asserts that installed function point-

ers are only drawn from a whitelist, and have not been hijacked to perform malicious

functionality [77]. Additionally, we asserted that structures in the custom memory

pool had valid pointers, that all of the rule list nodes were set to the appropri-

ate mode, and that the rule lists were correctly formed. In total, we asserted the

correctness of 1,749 function pointers and 446 other heap objects in 279.98ms.

2.6 Related Work

There are several threads of related work.

Kitsune: The most closely related work is Kitsune, the DSU system for C that

directly inspired C-strider. There are several major advances that C-strider makes

over Kitsune. First, C-strider is much more general than Kitsune, as it can imple-

ment a variety of services beyond updating. Second, in addition to type annotations,
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Kitsune uses a DSL (Domain-Specific Language), xfgen, to customize the traversal,

rather than customization via perfaction functions in C-strider. The reason for this

difference is that Kitsune does not have a run-time representation of types. We

find C-strider’s approach much simpler and adaptable: xfgen is both over-specific

to DSU and hard to extend to new applications. Third, C-strider’s use of run-time

types improves performance, because arrays and generics can be implemented by

simply making a new type (with mktyp ) and using the standard visit function. In

contrast, Kitsune uses a very complex closure system to traverse arrays and gener-

ics, and the extra levels of indirection cause the slowdown we saw in Figure 2.13.

Finally, C-strider supports parallel traversal, while Kitsune is single-threaded.

Type-directed programming and annotations: In this work, we used annota-

tions to convey the actual type of heap objects to make type-safe traversal possible.

These type annotations are inspired by Deputy [24,121] and Cyclone [51]. Cyclone

is a type-safe variant of C that also uses programmer-supplied annotations (in addi-

tion to an advanced type system, a flow analysis, and run-time checks). Deputy uses

dependent type annotations, e.g., to specify the tag field for a union or to identify

existing pointer bounds information.

Hinze and Löh [49] compare various approaches to datatype-generic program-

ming and generate code based on type definitions. C-strider also generates code

over all of the datatypes in the C program’s heap, but the exact code generated

differs depending which types the program defines.
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Garbage collection: Conservative garbage collectors [20] also traverse the entire

heap, treating everything that looks like a pointer as a pointer. In contrast, C-

strider’s heap traversals must be exact rather than conservative. For example, if we

“conservatively” treat an int as a function pointer that happens to have the same

value, we would serialize and deserialize it incorrectly (because the function pointer

could be at a different address when deserialized in another process).

Applications: As mentioned in the introduction to this chapter, there are several

systems that implement the particular traversals we explored, but in an ad hoc way.

Dynamic Software Updating. DSU systems must traverse the heap to transfer

state from one version of a program to another. We already compared to Kitsune

above. Many other DSU systems [65,71] also implement state transformation. Sim-

ilar to state transformation, hot-swapping object instances [16] allows objects to be

switched to another implementation while the system is running, seamless to the

user. C-strider could be extended to perform a similar function during traversal.

Serialization. In this work, we implemented serialization and deserialization

for the heap. This could be extended to a general checkpoint-and-restart system [33,

62, 85] by keeping some additional information about registers, thread-local data,

and the stack. One benefit of the C-strider approach, compared to full program

checkpoint-and-restart, is that C-strider serialization and deserialization is under

program control and can be used piecemeal on portions of the heap. For example,

it could be used to serialize a particular data structure in lieu of coming up with a

new file format for that data structure.
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Heap Profiling. Heap profilers can be used to determine how much memory

a program uses, locate memory leaks, and find functions that do large amounts of

allocation. Many popular heap profilers focus on function allocation granularity [35,

41, 115] based on calls to malloc rather than providing type-level granularity like

Mihalicza et. al [68] and C-strider.

Heap assertions. Several researchers have developed systems for checking heap

assertions. GC assertions [6] piggyback on top of the Java garbage collector to check

a wide range of heap properties. DeAL [81] implements a language for heap asser-

tions that can express combinations of reachability conditions. QVM [14] also checks

heap properties, but using heap probes to keep overhead low by controlling the fre-

quency of the checking and by sampling. PHALANX [117] extends QVM by adding

checks for reachability; PHALANX also parallelizes the queries. Dynamic shape

analysis [52] summarizes the pointer relationships of data structures and reports

errors when invariants are violated. These systems all run on top of a garbage col-

lector and virtual machine. In contrast, C-strider’s heap assertion checking works

on C, which has no garbage collector or VM.

2.7 Conclusion

We have presented C-strider, which is, to our knowledge, the first general-

purpose, type-aware heap traversal framework for C. C-strider analyzes a target

program and generates traversal code for it, which can be run serially or in par-

allel. The traversal invokes programmer-supplied callbacks as it visits different lo-
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cations, passing along appropriate type information. These callbacks implement,

or customize, a service. We have experimented with several services, including

(de)serialization, dynamic software updating, heap profiling, and heap assertion

checking. Where needed, the programmer can augment the standard C types with

additional information about array sizes and container types using special anno-

tations. For other cases, like tagged unions, programmers can write arbitrary C

code to customize the traversal itself. We found that writing services and customiz-

ing traversals with C-strider generally requires a small amount of code, and that

performance is reasonable and scales appropriately with heap size.

Author Contributions: This chapter was published in Software: Practice and

Experience [96]. I was lead author on that paper and performed all of the program-

ming, development, and experiments, and led in the writing and overall design. My

collaborators, Michael Hicks and Jeffrey S. Foster, contributed to the writing and

to refining the ideas and the design of this work.
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Chapter 3: KVolve: Evolving NoSQL Databases Without Downtime

NoSQL databases, such Redis [89], Cassandra [11], and MongoDB [2], are

increasingly the go-to choice for storing persistent data, dominating traditional SQL-

based database management systems [15,42]. NoSQL databases are often organized

as key-value stores, in that they provide a simple key-based lookup and update

service (i.e., “no SQL”). While these databases do not provide a formal language

for specifying a schema, applications attach meaning to the format of the keys and

values stored in the database. Keys are typically structured strings, and values store

objects represented according to various formats [67], e.g., as Protocol Buffers [39],

Thrift [12], Avro [10], or JSON [50] objects.

Database schemas change frequently when applications must support new fea-

tures and business needs; for example, multiple schema changes are applied every

week to Google’s AdWords database [79]. Applications that use NoSQL databases

also evolve data formats over time, and may require modifying objects to add or

delete fields, splitting objects so they are mapped to by multiple keys rather than a

single key, renaming of keys or value fields, etc. When changes are not compatible

with the old version of an application, a straightforward way to deploy them in the

field would be to shut down the running applications; migrate each affected object
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in the database from the old format to the new format; and then start the new

versions of the applications.

Performing these changes online is more challenging. The parsers for Thrift,

Protocol Buffers, and Avro provide some support for format changes, e.g., by skip-

ping unknown fields or by attempting to translate data from the writer schema into

the reader schema [57]. This leaves the task of updating each object in the database

(e.g., by iterating over all of its keys [90]). For large amounts of data, this can create

an unacceptably long pause. For example, Wikipedia was locked for editing during

the upgrade to MediaWiki 1.5, and the schema was converted to the new version

in about 22 hours [120]. Developers could avoid shutting down the application by

making the new format backward-compatible with the old format, but this would

impose a significant constraint on the future evolution of the application. It may

also be possible to grant applications read-only access to the old database while the

migration takes place, but applications that have even occasional writes will suffer.

One way to avoid downtime and database locking is to migrate data lazily.

When the application accesses an object in the old format, the object is converted to

the new format on-the-fly. Thus, the only update-time pause is due to updating the

application—the far longer pause due to migrating the data is now amortized over

the new version’s execution, causing slower queries immediately after the update but

no full stoppage. Disruption due to shutting down and restarting the application

can be reduced using techniques like DSU or by switching between parallel versions

on-line, as in parallel AppEngine [38].

Currently, the task of lazy data migration falls on the developer: applications
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are written to expect data in both old and new formats and to migrate from to the

new format when the old one is encountered [17, 83, 87, 109]. This approach adds

work for the programmer and results in code that mixes application and format-

maintenance logic. Since there is no guarantee that all data will ultimately be

migrated, the migration code expands with each format change, becoming more

confusing and harder to maintain.

This chapter presents KVolve1, an extension to the popular Redis NoSQL

database, as a solution to the problem of evolving a NoSQL database online. To

simplify development, KVolve presents the logical view to applications that data is

at the newest version of the format. Rather than convert all data at once, keys and

values are converted as they are accessed in a way that requires almost no changes to

applications—they simply indicate the data version they expect when they connect

to the database, and they are permitted to proceed if their expected version and

the logical view’s version match. To avoid downtime, applications can use a DSU

tool such as Kitsune in conjunction with KVolve to update the client-side code

along with the server-side data. Commands submitted to Redis by a client that has

just upgraded the application code trigger data conversions automatically. These

happen in KVolve code that interposes between the client request and the normal

request handling by Redis. To track its progress, KVolve attaches a version identifier

to the value of each entry, converting only those keys/values that are out of date.

Conversions must be written by the developer, and are specified as functions from

the old key/value format to the new one. KVolve allows the conversion functions

1KVolve stands for Key-Value store evolution.
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to perform additional calls to Redis, enabling the conversion function to access or

modify other keys if necessary. However, KVolve does not support conversions in

which a new key/value is a format of several old key/values; this is necessary to

maintain the required logical view. Many applications we have considered easily

satisfy this restriction.

Experiments with our implementation show that KVolve imposes essentially

no overhead during normal operation. Using the standard Redis benchmark that

repeatedly queries the database (the worst case as far as application performance is

concerned), we observe the overhead to be in the noise. We also find that laziness

significantly reduces the update-time disruption. We applied KVolve to upgrade

redisfs [56], a full-scale file system that uses Redis as the back end. The upgrade

in question (to version 0.7), required a significant data format change: keys rep-

resenting file directories were renamed, and data containing the file contents were

compressed. While KVolve took care of the changes to the database, we used Kit-

sune to dynamically update the redisfs driver. Doing so allowed us to seamlessly

maintain the file system mount point and other in-memory state. The result was

zero downtime compared to 11 seconds in the case where we migrated the keys ea-

gerly. We also tested our approach on a social networks program called Amico [7],

and showed that we could reduce the pause time for renaming all 792,711 keys from

100 seconds in the eager case to almost zero seconds with KVolve.

In summary, we make three contributions:

� We define a general approach to updating data formats in NoSQL databases
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lazily. For large databases, this approach gives the appearance of an instant

update, as the applications can start using the new data format without delay,

and it amortizes the cost of migration over the normal execution. Additionally,

this approach does not limit the client-side interactions (e.g., to read-only

execution) and requires very few changes to applications. (Section 3.1.)

� Our implementation with the Redis NoSQL database requires minimal changes

to Redis itself: it is implemented in a modular way and does not interfere with

Redis command processing. (Section 3.2.)

� Experiments show that KVolve adds essentially no overhead during normal op-

eration, with the corresponding benefit of very little performance degradation

during the lazy update rather than a full stoppage, especially compared to the

eager approach. We also show how KVolve can be integrated with Kitsune to

perform end-to-end upgrades with no downtime (Section 3.3.)

In Section 3.4, we also present a Python client-side implementation of KVolve,

Py-KVolve. Py-KVolve assists users in writing their updates by providing a DSL

(Domain-Specific Language) and does not require modifications to Redis, but has

several drawbacks, especially performance.

To the best of our knowledge (see Section 3.5), KVolve represents the first

general-purpose solution to the problem of evolving a NoSQL database without

downtime. We plan to make our code freely available.
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3.1 Overview

This section presents an overview of KVolve, describing its various pieces and

how they fit together using a simple example.

3.1.1 Background on Redis and NoSQL databases

NoSQL databases are distinguished from traditional relational database man-

agement systems (RDBMSs), in supporting a very simple, lightweight interface. Our

focus is on a variant referred to as key-value stores which, as the name implies, focus

on mapping keys to values. We chose to work with the key-value store Redis [89],

one of the most widely used key-value databases [106]. The main operations in

Redis, in particular, are: GET k, which returns the value v to which k maps in the

database (or “none” if none is present); and SET k v, which adds (or overwrites)

the mapping k → v in the database.

Redis supports variations of these operations (e.g., setting values only if no

prior version exists, or defining mappings that will time out). It also supports ad-

ditional data structures (the main data structures include strings, sets lists, hashes,

and sorted sets) and their corresponding operations, such as appending an item to

a list. KVolve supports 36 primary Redis commands and their variations, including

support for all of the main Redis data structures. Although we have not yet imple-

mented all commands for KVolve, we expect this to be straightforward, as discussed

in Section 3.2.2.

Many applications store string values that adhere to formats such as JSON [50],
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Avro [10], or Protocol Buffers (“Proto Bufs”) [39]. In the example in this section,

we focus on Redis databases that store JSON objects. JSON defines four primitive

types: numbers, strings, booleans, and null. It also defines two container types:

arrays, which are an ordered list of values of the same JSON type; and objects,

which are an unordered collection of values of any JSON type, with field labels.

Our basic approach should apply to other formats as well, and it would arguably be

easier to do so, as Avro and Proto Bufs also define a notion of schema that could

be analyzed to understand the effect of a change.

A common programming practice for key-value stores is the use of namespaces,

which conceptually divide up the kinds of objects stored in the database. Redis

does not provide native support for namespaces, but rather advises their use by

convention: Keys should have the format n :k where n identifies the namespace, and

k identifies the proper key name. The assumption is that objects in namespace n

will all have the same type. Of course, n might be further partitioned into sub-

namespaces, as required. We also support having a global namespace, treating all

of the keys in the database as the same type.

3.1.2 Example data format change

As an example, consider an online store (borrowed from an example by Sadalage

and Fowler [87]). Such an application may store purchase orders in its database.

Keys have the format order :n where order is the namespace, and n is a unique

number, representing an invoice number. Such keys map to values that describe a
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{ ” id”: ”4BD8AE97C47016442AF4A580”,
”customerid”: 99999,
”name”: ”Foo Sushi Inc”,
”since”: ”12/12/2012”,
”order”: {

”orderid”: ”UXWE−122012”,
”orderdate”: ”12/12/2001”,
”orderItems”: [
{ ”product”: ”Fortune Cookies”,

” price ”: 19.99 }
]

} }

(a) JSON object, version 0

”orderItems”: [
{ ”product”: ”Fortune Cookies”,

” fullPrice ”: 19.99,
”discountedPrice”: 16.99 }

]

(b) Update to orderItems field, for version 1

Figure 3.1: Evolving a purchase order object

purchase, formatted as JSON as shown in Figure 3.1a.

Suppose we wish to upgrade the application to support differentiated pricing,

which necessitates changing the data format as follows: rename the field price to

fullprice , and insert a new field named discountedPrice that is a markdown from the

original price. The updated orderItems array (the last element of the JSON object)

for the example, that adheres to the new format, is shown in Figure 3.1b.

To support migrating from the old to the new version of the application,

Sadalage and Fowler suggest that the programmer can modify the new version’s

code to essentially handle both formats, and migrate data from the old format to

the new one when it is encountered.
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Figure 3.2: KVolve architecture.

This approach is efficacious but creates extra effort for the application pro-

grammer, as they have to write code that deals with the differing versions, and this

code must reside in the application indefinitely. Sadalage and Fowler also do not ex-

plicitly consider the complications of concurrent clients, which could read/upgrade

the data at the same time and produce inconsistencies. KVolve avoids this problem

by ensuring that the key will be updated exactly once and that subsequent client

requests will only read up-to-date data.

3.1.3 Database upgrades using KVolve

KVolve is a minimal extension to standard Redis with some update-enabling

elements. (The implementation inner workings are described in detail in Sec-

tion 3.2.2.) KVolve’s architecture is depicted in Figure 3.2, with its update elements

depicted in blue. In particular, the figure shows (at the top) Client U installing an
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update specification in the database, signaling that the database’s contents need to

be upgraded. And it shows two clients that are interacting with Redis, Client X

and Client Y, trying to retrieve key Kx and key Ky respectively. The connection

order is as follows: Client X connects first at v0 and runs for a while. After the

update is installed by Client U, Client Y connects at v1.

An update specification indicates the expected, current version identifier (in

the figure, it is v0 ); the new version identifier (here, v1 ); and code that can be

used to migrate data from the current version to the new version (not shown). This

code is written in C with the help of some template functions, described in detail

in Section 3.1.4.

When a client connects, it declares what data version(s) it expects for each

namespace it will use. KVolve uses this information to ensure that all clients are

connected at only the current version of the namespace’s schema, and does not allow

clients to connect that request outdated versions. When a version is declared for a

specific namespace, KVolve automatically adds the version number to values so that

KVolve may track what data it must lazily migrate when an update is requested.

The version information also allows KVolve to help orchestrate a switchover to the

newest application version by notifying out-of-date clients when/if they fall behind

the logical version of the data they are using.

The bottom of the figure shows Client Y interacting with the database after

the update and illustrates a lazy update taking place. Each requested value is

checked by KVolve to see if an upgrade is necessary. Now, just after an update,

there will be no keys at the newest version—all of the data is still at the last (or
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even older) versions. As such, KVolve performs an update on the value valY before

having Redis return the value to the client at v1 with the value valYupd. The newly

updated version information and value is also stored in Redis, and the old version

of the key is freed.

In the figure, we see that Client X is still at v0. When the update is submitted,

KVolve closes the connection to all outdated clients, and they will not be permitted

to reconnect with the old version of the software. If we consider our purchase

order example, we can see that the new version of the data will not work for older

clients: They will be expecting JSON objects to contain field price but the data will

(eventually) be stored under fields discountedPrice and fullPrice , instead. As such,

the old client cannot safely access the data any longer, and must be terminated.

When data is updated in a backward-incompatible manner, clients designed

to use that data will have been re-coded to use the new format. As such, when

the old version is notified, it can start a new-version replacement that connects to

the database. (To continue, Client X must upgrade to v1.) The new version then

migrates the data as it accesses it, as described above. This approach simplifies

application development as each application version can assume a particular data

version, and KVolve ensures data is migrated as it is needed. In fact, the only

changes required to an application to support lazy data updates are to (a) change

the call to connect to Redis to also declare the expected version of the data, and

(b) to gracefully terminate and upgrade to the new version when the connection is

closed. Graceful termination involves saving any final state locally if necessary, as

database access is no longer allowed. These changes amount to only a few lines of
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code for the entire application.

3.1.4 Describing data updates

The programmer must write update functions that will convert the old version

of a key and/or value to the new version. These functions will be applied on demand

by KVolve, but we want to present the logical view to the application that the data

was converted eagerly. To ensure this illusion, the new key or value should be a

function of only the old key or value, and not any other data in the database, since

there is no guarantee about the order this data will be changed.

An example update function is given in Figure 3.3. The old key (a string) and

value (binary data) are passed in by reference, and the function will update them to

the new versions via these references. In this case, the body of the function uses the

Jansson library [59] to implement the change to the purchase order example from

Figure 3.1 described in Section 3.1.2; the last two lines update the value (the key

is not changed). This function is installed by an initialization function called when

the update is loaded in KVolve:

kvolve upd spec(”order”,”order”, 0, 1, 1, test fun updval );

This indicates that the order namespace doesn’t change, from version 0 to version

1, while the test fun updval should be called for each key in the namespace order.

Namespaces can be changed without requiring an update function. For ex-

ample, in the Amico program described later in Section 3.3.3, the keys are re-

named from the namespace prefix of amico: followers to the namespace prefix of
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1 void test fun updval (char ** key, void ** value ,
2 size t * val len ){
3 json t *root, *arr , *ele , *price ;
4 int i ; double pval; json error t error ;
5 root = json loads ((char*)*value, 0, &error);
6 arr = json object get (
7 json object get (root , ”order”), ”orderItems”);
8 for( i = 0; i < json array size ( arr ); i++){
9 ele = json array get ( arr , i );

10 price = json object get ( ele , ” price ”);
11 json object set ( ele , ”discountedPrice”,
12 json real ( json real value ( price )−3.0));
13 json object set ( ele , ” fullPrice ”, price );
14 json object del ( ele , ” price ”);
15 }
16 *value = json dumps(root,0);// Set the updated value
17 * val len = strlen(*value );// Set the updated val length
18 }

Figure 3.3: Example update function for JSON

amico: followers :default. To describe this update, the update-writer should specify:

kvolve upd spec(”amico: followers ”, ”amico: followers : default ”, 1, 2, 0);

where the version numbers are 1 and 2, and the 0 indicates that there are no functions

to manipulate the value.

3.2 KVolve Implementation

We designed KVolve to be as modular as possible and to avoid disrupting

Redis’s normal command-processing control flow. This section describes our imple-

mentation of KVolve as an extension to Redis.
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3.2.1 Design goals

When designing KVolve, we wanted it to be general-purpose, efficient, and

easy to maintain. We initially built an application-side wrapper written in Python,

which has the virtue that no changes to Redis are required at all [95], which will

be presented in Section 3.4 and Appendix A. But this wrapper is limited to Python

Redis clients, and imposes a fair bit of overhead (5–8% on normal operations).

We then experimented with a network proxy, written in C, that intercepts Redis-

application communications. This approach also requires no changes to Redis, and

supports applications written in any language. But we still found it to be slower

than we’d like (about 3% overhead), and tricky to write, especially when trying to

ensure transaction atomicity.

In the end, we designed KVolve as a separate library that is compiled into

Redis itself. Our changes add a vers version field to the Redis robj data structure,

which represents data values stored in the database. They also hook the command

processing logic to support lazy migration. In total, 7 lines of Redis (v2.8.17) needed

to be changed: 2 lines of code to add and initialize vers to a default value, 2 lines

of code to add a function call into the KVolve library right before Redis processes

commands, and 3 lines of code to allow the vers data to be serialized and deserialized

to and from disk using the normal Redis serialization commands. This approach

has proved to be the most efficient, most general, and easiest to get right, thanks to

Redis’s single-threaded design. That is, Redis serializes the commands it receives

from clients, processing one in its entirety before moving to the next. As such, added
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set 
Kx

my_val

Redis + KVolve

void processInputBuffer(redisClient *c){
  processInlineBuffer(c);
  kvProcessCmd(c);
  processCmd(c);
}

kvProcessCmd(c){
 robj *v = c->arg[2];
 v->vers = 1;

}

robj * v
type : string
ptr : “my_val”
encoding : 0
vers : 1

1
2

processCmd(c){
 c->cmd->proc(c);
 addReply(c)
}
procSet(c){
 robj *k = c->arg[1];
 robj *v = c->arg[2];
 setKey(k,v);
 c->reply = “OK”;
}

KVolve3

4

Figure 3.4: Control flow for Redis and KVolve

KVolve processing can be easily made atomic with respect to normal processing of

a command. Finally, we believe our current implementation should be easy to

maintain: The data structure we modified to add a version field has not changed

significantly for several years, in particular, between versions 2.0.0 (2010) and 3.0.2

(2015).

KVolve currently supports 36 Redis commands and all of the main Redis data

structures (string, set, list, hash, sorted set). The commands we implemented for

our prototype were chosen after examining roughly 30 programs on GitHub that

used Redis to see which Redis commands were most commonly used.

3.2.2 KVolve implementation overview

KVolve works by preprocessing commands coming in from the client before

passing them along to Redis, as depicted in Figure 3.4. In Step 1, the client issues

77



the command set Kx my val. In Step 2 kvProcessCmd, KVolve’s hook, is called to

preprocess the command (the dashed green box is the KVolve library). Once the

KVolve preprocessing is complete (which might involve changes to data’s contents

and version field), control returns to normal Redis. In Step 3, Redis’s processCmd

function calls the function pointer shown in blue (which depends on the choice

of command—here it is procSet because the client requested set), and this adds

the affected object to the database, including any changes to the version field set

during KVolve’s processing. Finally, in Step 4 Redis responds to the client’s request,

acknowledging to the client that it successfully executed the set command.

All of KVolve’s operations are informed by a data structure it maintains called

the version hash table. This hash table is constructed from the update specifications

submitted to KVolve. (It is not stored in the persistent DB, so if the database goes

down, then the update specifications will have to be resubmitted when it comes back

up, to reproduce it.) The hash table maps a namespace2 to a record that notes the

namespace’s current and previous versions, as well as update functions that move

data from one version to the next. It also tracks a list of identifiers for the client

connections that have declared interest in the current version of this namespace. Be-

cause a logical namespace can change its representation (e.g., from foo: to foo:bar :),

the record also tracks prior and subsequent namespace representations (which can

themselves be looked up in the version hash to get the associated information). The

version hash table maintains a history of all updates over time, as keys that are

2As described in Section 3.1.1, namespaces are commonly used in key-value stores and concep-

tually divide up the kinds of objects in the database.

78



rarely accessed may require updates far into the future. (Alternatively, we could

force-update stale keys using a background thread and purge old updates when

all key-value pairs have applied an update. However, we find that stored update

information takes up very little space relative to the rest of the database.)

When KVolve processes a command, it parses out the entire namespace prefix

from the command’s key (based on the rightmost colon in the key name) and looks

it up in the version hash table. If a match is found, the lookup returns the relevant

record. If no match is found and there are other colons in the key substring, KVolve

will recursively search for the next longest matching prefix, starting at the next

rightmost colon. If still no match is found (as in the case where the database

administrator does not wish to track any versions or implement updates), KVolve

returns control to Redis without further action.

After the namespace lookup has completed, KVolve passes a pointer to the

record containing the namespace information along with the parsed client request

to the appropriate KVolve preprocessor function, such as kvolve get for the get com-

mand. We describe these next, by type.

3.2.3 String types

Redis supports five main data structures. Strings are the only type of data

structures that are not containers, in that the value consists of a structure storing

a single string. For that reason, we discuss string types separately.

79



robj * string
type : STRING
ptr : 
encoding : 0
lru : 234234
refcount : 1
vers : 1

robj * set
type : SET
ptr : 
encoding : 0
lru: 234234
refcount : 0
vers : 1

robj * set
type : SET
ptr : 
encoding : 6
lru : 234234
refcount : 1
vers : 1

“my val”

robj * set
type : SET
ptr : 
encoding : 0
lru: 234234
refcount : 0
vers : 1

robj * hash
type : HASH
ptr : 
encoding : 2
lru : 234234
refcount : 1
vers : 1

intset * i
encod: 2
length: 10
int contents[1,
   2, 3, ...];

dict * d
ht: {“val1”,
      “val2”,...}
size: 4
iterator: 0
….

Vals:

Keys:  “key1:string_str”  “key2:string_hash”     “key3:int_set”

Figure 3.5: Storing different data types

Getting strings: If the client request involves getting a string data structure,

KVolve must first prelookup the existing robj value structure in the database to get

the version information. An example of the key-value pair for string types is shown

for key1: string str in the first column of Figure 3.5. This action retrieves a pointer

to the actual object structure that is stored in the database, so any modifications

that KVolve makes to this object will be automatically stored in Redis. Note that

this requires an additional database lookup by KVolve, on top of the one that Redis

will do later when it does its own lookup to handle the client request. However,

this is an O(1) operation and does not incur excessive overhead relative to the other

operations that KVolve must already perform, and does not interfere with normal

Redis operations.

If the version field of the robj (in this example the version is 1 shown in red for

key1: string str in Figure 3.5) is current for the namespace of the key, or if the key is

not present under the current or any former namespace (and therefore no robj exists
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for the key), then KVolve returns control to Redis and does no further processing.

If the version is not current, either in the current namespace or a former namespace,

KVolve will update the key and value as necessary. All of the necessary information

to perform the update (the update functions themselves, and the meta-data about

which namespaces and versions the updates apply to) is stored in the version hash

table, and KVolve uses that information to apply the update as follows:

� In the case of a namespace change, KVolve uses the update information from

the version hash table to perform the key rename, leaving the value untouched.

� In the case of a value change, KVolve calls any applicable user-supplied func-

tions and applies them to the value, starting from the oldest needed update

and working forward to the current version. After all of the update func-

tions have been applied, KVolve stores the updated value in the robj (which

is a pointer to the actual structure stored in the database) and updates the

version string to match the current version by setting the field in the robj.

If both actions (namespace and value change) are necessary, KVolve will perform

both. KVolve then returns control flow to Redis, and when Redis performs its own

get, it will retrieve and return the newly updated key to the client.

Setting strings: If the client request involves setting a string data structure,

KVolve first checks to see if the request has any flags that would prevent the value

from getting set. These flags, XX or NX, respectively, specify to only set the key

if it already exists, or only set the key if it does not already exist. If necessary,
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KVolve does a lookup in the database to determine if the key exists, indicating if

the value will be set for the requested key. If the value will not be set due to the

flags, KVolve does nothing and returns control to Redis. In this set command, and

also for any such command where Redis will be adding the robj to the database,

Redis deletes the old robj and replaces it with the new one from the parsed client’s

request. Therefore, all that KVolve must do is set the most current version string in

the robj for the namespace of the key. (Remember that there is no need to attempt

to update the value in the key, because the client’s provided value is guaranteed to

be at the up-to-date version.)

If this set occurs after a namespace change, KVolve must delete the old value

for the key to ensure that deprecated key versions are not unnecessarily bloating

Redis. For example, in a change to redisfs (presented in Section 3.3.2), an old

namespace key was named skx:/ but after an update, the new namespace postfixes

DIR such that the key is now named skx:DIR:/. If the user were to set the key

skx:DIR:/root before getting (and updating) it, this would leave the old key skx:/root

still in the database. Therefore, KVolve must check to see if the existing version

under the old namespace exists, and if it does, delete it. It does this by first checking

if the namespace had any previous namespace changes. If not, it does nothing. If so,

it checks and deletes the old key if necessary. At this point, KVolve returns control

to Redis, and Redis adds the robj structure to the database, which also contains the

updated version string to be retrieved later if necessary.
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3.2.4 Sets, hashes, lists, and sorted sets

The other Redis data structures are containers of sub-values. Although the

exact substructure is different for each type, the basic implementation is the same,

so we describe them together. The base of Redis containers are all robj structures,

and they store the actual data in other ways to maximize efficiency of both space

and speed. Figure 3.5 shows an example in columns two and three of value robjs

that contain a hash of strings and a set of integers respectively. Because not all sub-

values (individual set members, individual list items, etc) are stored directly in a robj

structure, it is not possible to store the version information for the individual sub-

values without further modifying Redis. Therefore KVolve must store the version

information in the robj of the set/list/etc container robj itself, and KVolve must

keep all members of the sub-values at the same version.

Getting elements from container types: The process for doing a get on one

of the container elements is exactly the same as for the string type described in

Section 3.2.3, except that if necessary, the update is performed for all of the sub-

elements. KVolve uses a Redis-provided iterator to access and update the sub-

elements as necessary. If a container type has a namespace change, the rename

process is exactly the same as it is for string types, as the keys are the same regardless

of value type.

Setting container types: The set process for container types is essentially equiv-

alent to the get process described in the previous paragraph. For example, suppose
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key foo maps to the set of strings { ‘s1’ , ‘s2’ , ‘s3’ } at version 1. Then say an

update to version 2 replaces the letter s with the letter t for each element in the set.

If a command, post-update, wishes to add string ‘ t4 ’ to foo’s set, then the version

in the set’s robj must be updated, along with the other values in the same set. This

is done by performing a get to update the sub-elements, changing the value for foo

to be { ‘ t1 ’ , ‘ t2 ’ , ‘ t3 ’ }. KVolve will also update the version in the robj to be 2, and

then return control to Redis, which will add ‘ t4 ’ to the set. This process is similar

for lists, sorted sets, and hashes: when any sub-element is accessed, KVolve iterates

over and updates all the other sub-elements.

3.2.5 Installing an update

We conclude with a few more details about how updates are installed in

KVolve.

The programmer compiles the update specifications into a shared object file

that she can direct KVolve to load. In particular, the shared object file will con-

tain the update functions (e.g., Figure 3.3), and a function kvolve declare update ,

which consists of a sequence of calls to kvolve upd spec that define the per-namespace

changes defined by the update (again, see Section 3.1.4 for examples).

A client (or system admin) can load an update into KVolve by issuing a (repur-

posed Redis) command that includes the path to the location of the shared object.

KVolve will load the shared object from the indicated location, which results in the

kvolve declare update being run (it is declared as a “constructor” for the shared ob-
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ject, so it will be automatically called immediately after the shared object is loaded).

For each call to kvolve upd spec (...) that is made, KVolve verifies that the specified

old namespace exists at the specified old version, and that the specified new version

does not exist (which could happen if a different client already loaded the update).

In the case of a namespace change, KVolve verifies that the specified new namespace

does not exist. If all these checks pass, the code is registered and loaded into the

version hash table, so that it will be applied to any keys matching the namespace

and version.

At this point, KVolve will close the connection to all clients using the old

version of the namespace(s). (Clients not using the updated namespace(s) will not

be affected.) Redis provides a client id for each connection, and as mentioned these

ids are stored in the version hash table as each client connects. Note that this does

not automatically kill the client’s application, it just closes the connection and the

client will not be allowed to reconnect until it is upgraded to the new version.

3.3 Experimental Results

This section considers the performance impact of KVolve, during normal op-

eration and during an update. Our experimental results are summarized as follows:

� Using the standard benchmark that is included with Redis, we found that

KVolve adds essentially no overhead during normal operation, and we deter-

mined that storing the version and update information in Redis adds only

about a 15% overhead in space.
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� We updated the redisfs file system which included renaming some keys and

compressing some data stored in keys, and found the operating overhead to

be in noise, and the pause time to be close to zero as opposed to 12 seconds

for an offline migration of the data.

� We updated the Amico social network system and found no added overhead,

with a pause time of close to zero as opposed to 87 seconds for an offline

migration of the data.

All experiments were performed on a computer with 24 processors (Intel(R) Xeon(R)

CPU E5-2430 0 @ 2.20GHz) and 32 GB RAM with GCC 4.4.7 on Red Hat Enterprise

Linux Server release 6.5. All tests report the median of 11 trials, and communication

was via localhost with ∼.03 ms latency.

3.3.1 Steady state overhead

First we report the steady state overhead for KVolve reported by Redis’s in-

cluded benchmark, Redis-bench . Redis-bench acts as a client that repeatedly issues

commands to Redis. The default settings for Redis-bench are with 50 clients, with

10,000 repetitions of a single operation at a time (only 1 request per round trip),

and with a single key (getting or setting a single key multiple times). However,

Redis-bench allows many different configurations. For a longer benchmark, we in-

creased the number of operations to 5 million operations and for a more realistic

benchmark we performed these operations over 1 million keys, leaving the rest of the

default settings alone. We ran this experiment over localhost which had a latency
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Program Max RSS

Redis, empty 7.7MB

Redis, 1M 10-byte values 112.1MB

KVolve, empty 7.7MB

KVolve, 5 namespaces, 1M 10-byte values 128.6MB

Table 3.3: Max resident set size (RSS)

of ∼.03ms. We chose three types of get operations (string gets, set pops, and list

pops) and three types of set operations (string sets, set adds, and list pushes), as

these were part of the default benchmark operations test suite.

Table 3.1 shows the steady state overhead of this experiment. We show un-

modified Redis in column 2 for comparison and broke the overhead into separate

categories: KVolve with no namespace declared (causing KVolve to return immedi-

ately for each key) in column 3, KVolve with a single namespace declared (causing

a hash lookup and a version check for each key) in column 4, and KVolve with a

previous namespace declared but no previous keys at the old namespace (causing a

hash lookup, a version check, and a string concatenation to look for a non-existent

previous key) in column 5. Each sub-column of Table 3.1 shows the total time for

the test, the SIQR to show the variance, and the overhead as a comparison against

unmodified Redis. We ran this benchmark many times with various configurations

(multiple namespaces, less or fewer keys, less or fewer clients, etc) and found that

the overhead varied generally around ±3%, with no consistent pattern between any

of the tests, even repeated tests with the exact same setup. The numbers presented
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in the table show some negative and some positive overhead, reflecting this varia-

tion. Notice that the SIQR numbers show that the variance is relatively high, as

high as 1.49s for setting strings with KVolve and a namespace, shown in the sixth

row of the fourth column.

Table 3.2 shows a modification of the original overhead experiment, using a

pipeline to feed 10 instructions into each round trip to Redis-bench over localhost.

This reduced the I/O overhead, putting more emphasis on KVolve operations. We

found that these numbers showed a bit more overhead, and allowed us to bound the

overhead at 5.74% for 10 subsequent pipelined instructions. This test demonstrated

that although there is some overhead added by KVolve, for the non-pipelined version

and most commonly-used scenario (Table 3.1), the overhead is mostly buried in I/O

and very low overall. (In our test programs, described next, Amico pipelined at

most 3 instructions per round trip, and redisfs did not use pipelineing.)

In addition to time overhead, KVolve incurs some additional memory overhead

due to tracking the version information. Table 3.3 shows the maximum resident set

size as reported by ps. Empty, Redis and KVolve take up about the same amount

of size in memory. With 1 million keys each mapping to 10-byte values and with

5 namespaces declared, KVolve takes up about 16.5MB (∼15%) more memory than

unmodified Redis. This includes the extra version field (4 bytes) on each value

structure, the amount of space it takes to store the version lookup information

and hash table, and any extra padding that may be automatically added to the

additional structures.
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Figure 3.6: Lazy vs. eager updates for RedisFS

3.3.2 Redisfs

Redisfs [56] uses Redis as the backend to the FUSE [112] file system. The

inode information, directory information, and all file system data are stored in

Redis. On startup, FUSE mounts a directory with Redis as the backend, and a

user can perform all of the normal operations of a file system, with the data silently

being stored in Redis. Redisfs has 8 releases, ∼2.2K lines of C code each. In redisfs.5,

released March 4th, 2011, file data is stored in a Redis as a binary string with no

compression, and the directory keys have the format skx:/path/todir. In redisfs.7,

released March 11th, 2011, file data is compressed using zlib , and directory keys

have the format skx:DIR:/path/todir. (Note that redisfs.6 contained an error and was

retracted, so we use versions .5 and .7.) This change makes it impossible to view

the directories or any of the files using redisfs.7 for any files created using redisfs.5.

In all versions, the inode data is stored across about 12 Redis keys with meta

information such as modification time, creation time, file size, and also the data
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itself. All file system information is represented in redisfs with four namespaces:

the skx:/ namespace to represent the directories (which is updated to skx:DIR/ in

redisfs.7), the skx:NODE namespace to represent the inodes (some of which is up-

dated to add compression in redisfs.7), and also skx:PATH for paths to directories

and skx:GLOBAL to track internal structure, neither of which are updated. To make

redisfs compatible with KVolve, we added the same 6 lines of code in both versions

which consisted of an additional call to Redis on start-up to declare that we would

be using those 4 namespaces at either version .5 or .7, along with a few additional

lines of error handling to make sure that the namespaces were properly set. No

additional changes were made to redisfs for KVolve.

We performed an update from redisfs.5 to redisfs.7, both by migrating the keys

offline (referred to as the Eager version), and with KVolve to automatically rename

the directory keys as they are accessed and to add compression to the files as they

are accessed. In addition to updating redisfs with KVolve, we also used Kitsune,

whole-program update software for C, to allow us to also dynamically update redisfs

along with the data so that the users experience no downtime; the switchover from

.5 to .7 is completely seamless. Normally, killing redisfs.5 and restarting at redisfs.7

also causes the mount point to be unmounted then remounted (causing the user to

have to switch back into the mounted directory after remount), but with Kitsune,

the mount point is not disrupted during the switchover. We used the file system

benchmark PostMark [54] to generate a workload for redisfs, creating an initial

10,000 files ranging from 4-1024 bytes in 250 subdirectories plus the root directory,

for a total of 251 directories. We ran PostMark outside the root directory mount
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point, accessing the files via full path name to avoid having to change directories

due to the restart for the Eager (non-KVolve/Kitsune) version.

Figure 3.6 shows the results of the redisfs experiment. After about 60 seconds,

PostMark switched from creating the new files to reading from or appending to

existing files. Both KVolve and the Eager version had a very similar average Queries

Per Seconds (QPS), as shown by the solid and finely dashed lines which correspond

to the left y-axis. At 80 seconds, we killed redisfs.5. For KVolve, we used Kitsune

to dynamically update to redisfs.7 without pause, maintaining the mount point so

that the benchmark never lost access to the files or the directory structure, and

KVolve continued to process queries throughout the update. For the Eager version,

we halted all traffic to Redis and migrated the data, performing the renames and

compression as necessary. In this update, not all of the keys needed to be updated,

only the 251 directory keys that needed to be renamed and the 10,000 data keys

that needed to be compressed. However, the database contained 123,002 total keys,

and the to-be-updated keys were searched for in the database, adding to the pause

time. This offline update process took about 12 seconds, as shown in Table 3.4.

In addition to showing the QPS lines, the green widely-dashed line in Fig-

ure 3.6 shows the number of lazy updates per second for KVolve, corresponding to

the right y-axis. Immediately after the update, this number burst to about 3,000

keys per second, and quickly trailed off as keys were lazily updated. KVolve re-

named the 251 directory keys, updated the version tag on all 112,752 keys in the

skx:INODE namespace, and added compression to the 10,000 keys in that namespace

that contained file data.
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Figure 3.7: Lazy vs. eager updates for Amico

Overall the impact on the update experienced by redisfs was minimal, as the

QPS dipped only slightly right after the update before it quickly returned to full

speed around the 120 second mark of the experiment. After the update, the overall

QPS was slower for both KVolve and redisfs because the files must be compressed

and decompressed as they were accessed.

3.3.3 Amico

Amico [7] maps relationships in the style of a social network, defining a set

of users and the relationships between them. Amico provides an API that allows

queries over a data set of users: a user may be following or be followed by any

number of other users. Amico is backed by Redis, has 10 versions created between

2012-2013, and is written in ∼200 lines of Ruby code. Amico version 1.2.0, released

Feb 22, 2012, stores these relationships in 5 different types of Redis keys with the

following prefixes: amico: followers , amico: following , amico:blocked, amico: reciprocated ,

and amico:pending. In version 2.0.0, released Feb 28, 2012 (the next consecutive
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version after 1.2.0), the developers added the concept of a “scope” so that there

could be different graphs stored in Redis with prefixes to keep them separate, such

as “school” network and a “home” network. The default name for the scope is

“default”, such that all of the keys are prefixed with amico: followers :default for

example. This change makes databases created with Amico 1.2.0 incompatible with

Amico 2.0.0. To make Amico work with KVolve, we only changed the same 4 lines of

code in each version to declare the namespaces right after Amico connects to Redis.

For this experiment, we used the LiveJournal data set from the SNAP [61]

library. The LiveJournal data set has 4,847,571 nodes and 68,993,773 directed edges

defined by ordered node id numbers A follows B such as 186032 2345471, which we

shuffled into two separate files for reading in a random order. To create a workload,

we started two programs with calls to the Amico 1.2.0 API: one program to read

from the first random file and add nodes to the Amico network, and one program

to read from the second random file and perform queries over nodes in the network

such as querying if USER A followed USER B or querying the number of followers of

USER A. After letting the programs run for 900 seconds (15 minutes), the Redis

database was filed with 792,711 keys containing nodes and edge data.

At the 900 second mark, as shown in Figure 3.7, we stopped both of the Amico

1.2.0 programs. For the Eager case (finely dashed line), we then updated all 792,711

keys, renaming them to have the default scope prefix in all of the key names. This

migration took about 87 seconds as shown in Table 3.4. In addition to the pause, the

Eager case shows a continued disruption until around the 1,000 second mark. After

the migration was complete, we started the same writer/reader programs, this time
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Pause (s) Update Events

Amico 87s 792,711 : rename

redisfs 12s 10,000 : compress, 251 : rename

(123,002 total keys in database)

Table 3.4: Offline update pause times

using the Amico 2.0.0 API. For the KVolve case (solid line), we immediately started

the two Amico 2.0.0 programs after the update so that the keys could be lazily

migrated. Right at the update point, there is a ∼2K drop in the QPS, before a brief

spike and a return to the original rate. The widely-dashed green line corresponds to

the right y-axis and shows the number of lazy updates that take place each second.

Because this is a very large data set, many of the keys are not accessed immediately,

taking full advantage of laziness. Although the lazy updates continue at a rate of

about 500 per second at the 1,100 second mark, this does not significantly impact

overall queries per second, as shown by the solid line maintaining a similar QPS

before and after the update.

3.4 A Python client-side version of KVolve: Py-KVolve

This section describes the basics of Py-KVolve, a Python client-side implemen-

tation of KVolve. In contrast to KVolve, Py-KVolve exists as a wrapper sitting at a

Python client, intercepting Redis API calls, rather than at Redis, intercepting Redis

commands. One of the benefits of Py-KVolve is that it presents a DSL to assist with
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Figure 3.8: Py-KVolve architecture.

writing the update functions. Py-KVolve also has the benefit of not needing any

modifications to Redis. However, Py-KVolve has some major drawbacks, including

the large amount of overhead (4.95%-8.6% overhead in general use) and the limi-

tation of only working with Python Redis clients. This section presents only the

basics of Py-KVolve. Additional details, including the DSL specifics, are presented

in full in Appendix A.

3.4.1 DB upgrades using Py-KVolve

The basic components of Py-KVolve are similar to KVolve, with some large

implementation differences. Py-KVolve’s architecture is depicted in Figure 3.8. Py-

KVolve’s client-side wrapper, shown on the clients in green, interposes on the basic

Redis commands, i.e., gets and sets. Unlike KVolve, Py-KVolve’s wrapper is an

extension of Redis-Py [66], the Python client suggested by the Redis website. And

unlike KVolve’s update function, the update code for Py-KVolve is written in our

DSL, illustrated in the next section and described in detail in Section A.1.1.

In contrast with KVolve, all of the update functionality occurs entirely on
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the client-side. The wrapper used by clients provides roughly the same API as a

standard Redis client, but performs three extra functions. The wrapper adds version

information to keys, rather than values, as shown in Figure 3.8. (This is because

Py-KVolve does not have access to the underlying database structures, and keys

always consist of only a simple string, whereas the values may vary greatly.) The

wrapper is also responsible for the lazy migration of old data it encounters. Finally,

the wrapper orchestrates a switchover to the newest application version when/if it

falls behind the logical version of the data it is using.

Like KVolve, the only changes required to an application to support lazy data

updates are to (a) change the call to connect to Redis to also declare the expected

version of the data, and (b) to gracefully terminate when signaled to do so. These

changes amount to only a few lines of code for the entire application.

Updating data using Py-KVolve’s DSL: To make it easier for programmers

to migrate data that has changed format, we developed a DSL for specifying the

required changes. Our language supports changes to key names, as well as modifi-

cations to the contents of JSON objects; for the latter we support adding, deleting,

renaming, and updating fields.

For the purchase order schema change example from Figure 3.1, the corre-

sponding update is expressed in Figure 3.9a. The for statement indicates that all

keys matching the regular expression order :* should be migrated from version v0 to

version v1. Py-KVolve does not presume any particular versioning scheme; strings

like v0 and v1 are chosen by the developer. Py-KVolve checks that the names corre-
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1 for order :* v0→ v1 {
2 INIT [ ’ order ’ , [ ’ orderItems ’ ], ’ discountedPrice ’ ] {
3 $out = round($base[’ price ’ ] * 0.7, 2)
4 }
5 REN [’order’ , [ ’ orderItems ’ ], ’ price ’ ]→
6 [ ’ order ’ , [ ’ orderItems ’ ], ’ fullprice ’ ]
7 };

(a) DSL code specifying transformation

1 def group 0 update order( rediskey , jsonobj ):
2 e = jsonobj.get( ’ order ’ ). get( ’ orderItems ’ )
3 assert (e is not None)
4 for f in e:
5 assert ( f is not None)
6 f [ ’ discountedPrice ’ ] = round(f[ ’ price ’ ] * 0.7,2)
7 f [ ’ fullprice ’ ] = f.pop(’ price ’ )
8 return ( rediskey , jsonobj )

(b) Generated Python code

Figure 3.9: Specified update to purchase order objects

spond to a single chain of version updates, meaning that the developer cannot write

an update for v0 to v1, and then later write an update for v0 to v2.

The body of this statement defines the changes to the values. First, the INIT

on Line 2 indicates that a field with path order . orderItems . discountedPrice should be

added to the JSON object. This path is defined using a list, where elements like

orderItems in brackets indicate the JSON field is itself a list, so the update should be

applied to each element of that list on the designated sub-path. The code on Line 3

initializes the new field to 0.7 times the value of the field price , rounded to two

decimal places. This code is simply Python code with some DSL-specific variables

contained in it, in this case $base and $out. The former is used to refer to the parent

field of the one specified in the initialized list; here, therefore $base [‘ price ’ ] refers to
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the price field in the existing object that is a sibling of the newly added field. The

$out special variable refers to the added field; here, we are therefore writing to the

discountedPrice field. Line 5 indicates that field price should be renamed to fullprice .

Again, because orderItems is a list, this rename will be applied to all entries in the

list.

DSL programs are compiled into normal Python code that is then stored with

the update specification in the database, for later use by the Py-KVolve wrappers.

For our example, the generated code is given in Figure 3.9b. This function is called

for each object whose key matches the specification; the updated object is returned

(along with the potentially updated key, though in this case the key is unaffected).

The DSL greatly simplifies the update writing process. The DSL is possible in

Py-KVolve because the implementation language was fixed to Python and leaned

heavily towards the data having JSON values. (A C-based DSL for KVolve is left to

future work described in Section 3.6.2.) The DSL is presented in full in Appendix A.

3.4.2 Implementing lazy updates

This section describes the basic mechanics of Py-KVolve. Unlike KVolve where

all updating is handled within single-threaded Redis, with Py-KVolve there may be

multiple clients attempting to update the data. To enforce correctness, the Py-

KVolve client must issue several Redis commands for each client query, and these

extra commands are a major source of overhead in this implementation. (Addition-

ally, re-writing the key string is the other main source of overhead, also described in
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this section.) We describe the basic wrapper operations for GET and SET operations.

Get operations: As mentioned in the previous section, keys passed to both GET

and SET operations are prepended with version information. In particular, each key

k is rewritten to ver |k where ver is the expected version of data indexed by k. For

example, the key key:123 might be rewritten to v1|key:123 if the current data version

for namespace key is v1. Thus, when data is initially stored in the database using

SET operations (discussed below), the data’s version is indicated by its key.

When the program calls GET k, the wrapper prepends the current version to

k. If this call succeeds it immediately returns the (up-to-date) value. We expect this

to be the common case. If the lookup fails, there are two possible reasons: either

(a) there simply is no data having the given key, at any version; or (b) there exists

an earlier version of the data that must be migrated forward.

To see whether we are in the first case, the wrapper constructs all possible prior

names of the key k; we generate all names because there could be very old data in

the database (though only ever at one version). For now we ignore the fact that

key names may evolve over time (due to for namespace commands), and therefore

assume that older versions of the key simply differ in the prepended version. The

list of names is ordered from newest to oldest, e.g., as [‘ v1|key:123’ , ‘v0|key:123’ ].

The wrapper then does a bulk-lookup of these keys using Redis’ MGET command,

returning a list of corresponding values, with None for each key for which no value

exists. If the list is all Nones then we are in case (a), and the wrapper can return

None. If another client migrated the data in the meantime, the first element in the
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list (for the newest version) will be non-None, and so we can return that. Otherwise,

we will see something like [‘ None’, ‘{... JSON value...} ’ ], meaning there is a key at

an earlier version, but not the current one; i.e., case (b).

To handle case (b), the wrapper begins a kind of lightweight transaction,

called a pipe, and sets a watch on the new-version key. If the key is set or deleted by

another thread during the transaction, it will abort. The wrapper then calls MGET

again for the newest key and the non-None key previously discovered. Assuming that

both are as they were prior to starting the transaction, the wrapper will generate

a new version of the key and/or value using the relevant DSL transformation. (If

the object is multiple versions behind, the transformations are composed oldest to

newest.) Finally, the wrapper will store any new value (perhaps at a new key name),

and delete the old value. Or, if only the key is renamed, it will simply rename the

existing key. Then the transaction terminates. If successful, because the new key

was not modified by another thread during the transaction, the updated value is

returned; otherwise, the wrapper goes to the beginning and tries again, at which

point it will find the key has been deleted or that the new version is available.

Set operations: As with a GET, the wrapper for SET first prepends the version to

the requested key. Then it performs the Redis call GETSET with the versioned-key,

and the value. This call returns any prior version of the value mapped to be this

key. If GETSET returns anything, then we know this data was previously migrated

to the current version, so no additional versions of the data are present. On the

other hand, if it returns nothing, then there are two cases: either (a) there was no
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data previously stored for this key, or (b) there was no data at the current version,

but there could be at an older version. In case (a) we are done; in case (b) we

need to delete the old data. To do this, we generate a list of all possible prior keys

(following the same procedure as in the analogous case for GET) and delete all data

associated with these keys.

3.4.3 Py-KVolve steady state overhead

This section considers the performance impact of Py-KVolve during normal

operation. (Additional results are presented in Section A.3.) We find that Py-

KVolve adds 5–9% overhead during normal operation. This overhead derives largely

from the extra code in the wrapper that is used to lazily migrate data.

Because Redis-bench uses a baked-in client and does not allow us to use our

own Py-KVolve client, we recreated the operations of the benchmark as closely as

possible. The benchmark uses 50 clients performing 20,000 requests each for a range

of operations; for SETs and GETs the operations use a single key with a dummy value

matching the one used by Redis-bench. This experiment is similar to the experiment

performed with KVolve described in Section 3.3.1 with results in Table 3.1.

Table 3.5 shows the steady state overhead for Py-KVolve compared using

unmodified Redis-Py. We show the results for benchmarks involving only GETs

(columns 2 and 3) and only SETs (columns 4 and 5). We consider two cases:

when all accesses are to keys already present in the database (“no miss”, columns

2 and 4), and when some keys are missing (“15% miss”, columns 3 and 5). For
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GET (only) GET (only) SET (only) SET (only)

no miss 15% miss no miss 15% miss

Py-KVolve 52.36s 53.83s 53.14s 54.04s

Redis-Py 49.89s 50.63s 50.03s 49.76s

Overhead % 4.95% 6.33% 6.21% 8.60%

Overhead (s) 2.47s 3.20s 3.11s 4.28s

Table 3.5: Comparing running time of Py-KVolve and Redis (times in seconds)

the “no miss” cases, we start with a pre-populated Redis database with 20,000 keys

( ’key:00000’ − ’key:19999’), with 50 clients (launched as threads) accessing a random

key in the same range, for a total of 20,000 accesses per thread. For the tests with

misses, we started with 17,000 keys, and the clients used the full key range, missing

15% of the keys from the original database. Prior to populating the keys in the

Py-KVolve tests, we also performed a dummy update (basically, incrementing the

version of all of the data, but not changing its format) to force Py-KVolve to check

for non-existing keys at prior versions in the miss cases.

The 4.95% overhead for GET-“no miss” is due entirely to the cost of prepend-

ing the version onto the key. For GETs with misses, Py-KVolve incurs slightly more

overhead (at 6.33%) because it may require additional database accesses to deter-

mine whether the miss is due to a genuinely missing value, or because an old value

needs to be migrated; note that performance would be worse if not for the use of

sentinel values as described in Section A.2.2). For SETs, Py-KVolve incurs a bit
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more overhead because it performs a GETSET and then checks the return value. In

the non-miss case, Py-KVolve returns because it will receive a non-None value, and

has overhead at 6.21%. In the miss case, Py-KVolve incurs additional overhead by

attempting to delete old versions of the key, raising the overhead to 8.6%.

Even the best-case scenario for Py-KVolve (4.95% - 6.21% with no misses) is

much higher than the results for KVolve (-0.77% to 2.49% as shown in Table 3.1),

with for string GETs and SETs. (KVolve is not impacted by a miss or hit, so they

are not measured separately.) Because of this overhead, Py-KVolve should be used

only when the user is not able to modify Redis or strongly prefers the DSL to write

update functions.

3.5 Related Work

We now consider work related to KVolve. In the realm of relational databases,

the evolution of an application’s schema is characterized by the changes to the

CREATE TABLE statements used to instantiate the schema in subsequent versions of

the application. In practice, complex schema changes often require taking the appli-

cation offline or locking the database tables, such as the update to Wikipedia that

held a write lock for 22 hours [120]. Prior research has proposed supporting non-

blocking schema changes by accepting out of date copies of database objects [110] or

by implementing changes on-the-fly using triggers [86] or log redo [63]. Additionally,

several professional tools can perform ALTER TABLE operations in a non-blocking

manner [21, 73, 76, 99, 108]. Because these tools focus only on the database, the
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changes implemented must be backward compatible to avoid breaking the applica-

tion logic. To avoid this limitation, the Imago system [31] proposed installing the

new version in a parallel universe, with dedicated application servers and databases,

which allowed it to perform an end-to-end upgrade atomically. This can be achieved

in practice by deploying parallel AppEngine [38] applications, at multiple versions.

However, this approach duplicates resources and exposes the new version to the live

workload only after the data migration was completed.

In contrast, the F1 database from Google implemented an asynchronous pro-

tocol [79] for adding and removing tables, columns and indexes, which allows the

servers in a distributed database system to access and update all the data during

a schema change and to transition to the new schema at different times. This is

achieved by having stateless database servers with temporal schema leases, by iden-

tifying which schema-change operations may cause inconsistencies, and by breaking

these into a sequence of schema changes that preserve database consistency as long

as servers are no more than one schema version behind. Google’s Spanner dis-

tributed key-value store [26] (which provides F1’s backend) supports changes to the

format of keys and values by registering schema-change transactions at a specific

time in the future and by utilizing globally synchronized clocks to coordinate reads

and writes with these transactions. These systems do not address changes to the

format of Protocol Buffers stored in the F1 columns or Spanner values [87] or incon-

sistencies that may be caused by interactions with (stateful) clients using different

schemas [32].

Schema evolution in NoSQL databases is less well understood, as these databases
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do not provide a data definition language for specifying the schema. There is no

true limit to the format that the data may be stored in. However, many applications

attach meaning to the format of the keys and values stored in the database, and

these formats may evolve over time. For example, the values often correspond to

data structures serialized using JSON [50], or are described with tags in XML [25],

or scientific data formats, or are stored in a binary format like Thrift [12], Proto-

bufs [39], or Avro [10]. The latter formats have schema-aware parsers, which include

some support for schema changes, e.g. by skipping unknown fields or by attempting

to translate data from the writer schema into the reader schema [57]. However,

orchestrating the actual changes to the data and the application logic is entirely up

to the programmer.

One approach to defining schema changes defines a declarative schema evo-

lution language for NoSQL databases [97]. This language allows specifying more

comprehensive schema changes and enables the automatic generation of database

queries for migrating eagerly to the new schema. (While the paper also mentions the

possibility of performing the migration in a lazy manner, which is needed for avoiding

downtime, design and implementation details are not provided.) Another approach

uses a DSL for describing data schema migrations for Haskell datatypes [43]. Many

other approaches [8, 28, 80, 118] have focused on the problem of synthesizing the

transformation code to migrate from one schema version to the next, and the trans-

formation is then typically applied offline, rather than incrementally online. In this

work, we are not focusing on the problem of synthesizing the transformation code

for now, and in any case it is a much simpler affair in the key-value setting. Rather,
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we focus on how to apply a transformation without halting service.

In practice, developers are often advised to handle all the necessary schema

changes in custom code, added to the application logic that may modify the data

in the database [17, 83, 87, 109]. This approach adds burden on the programmers,

results in complex code that mixes application and schema-maintenance logic, does

not provide a mechanism for reasoning about the correctness of schema changes

performed concurrently with the live workload and often leave outdated entries in

the database.

Our work is also related to the body of research on dynamic software updates,

described in Section 1.1.2. However, with the exception of a position paper [30],

these approaches focus on changes to code and data structures loaded in memory,

rather than changes to the formats of persistent data stored in a database.

3.6 Future Work

We plan to release our code and make it freely available. We also have some

additional ideas for follow-on work, described in this section.

3.6.1 Distributed data updates

KVolve demonstrated the ability to dynamically and lazily update the data

stored in a single instance of Redis. However, newer versions of Redis introduced

Redis Cluster (released with version 3.0.0 in April 2015), which is a distributed

implementation of Redis. Unlike Redis’ original strategy of having multiple proxies
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or slaves create redundancy, Redis Cluster is a fully distributed implementation

that can scale to several thousand instances and allows nodes to fail and rejoin the

cluster. This clustering is not specific to Redis and has previously been implemented

in several other large database systems, such as in MongoDB [2]. Additionally, the

common practice of database sharding, where some of the data may be located on

physically separate nodes also adds complication and further distribution throughout

the database system.

This could present a challenge to orchestrating an update across all instances

of Redis (or other similar database system). Currently we use a single instance

of Redis as a central coordinator to store and orchestrate the updates. An inter-

esting research problem would be to investigate how to coordinate and bound the

update notification throughout the cluster without using a central point of update

coordination. We could attempt to expand on existing distributed coordination al-

gorithms and also carefully define the bounds of consistency, making sure that no

safety violations occur, such as accessing a backward-incompatible schema value.

3.6.2 Automatic generation of transformation functions in NoSQL

updates

Our initial implementation of KVolve, described in Section 3.4, included a

DSL facilitating the generation of schema transformation functions for JSON. The

current implementation of KVolve detailed in this chapter provides an extreme over-

head improvement (from 5-8% overhead in our original implementation to virtually
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no overhead), but it has the drawback that the transformation functions must be

written in C. This is because now the transformation functions are called from within

Redis itself, which does not provide any language flexibility.

Ideally, the update-writer would be able to write the transformation function

in a language of his choice, or to write the transformation function in a DSL sim-

ilar to the one presented in Appendix A. Future work in this area would involve

investigating how to best implement this functionality, focusing on providing full

expressiveness in the ability to describe the update, while making the tool easy for

the update-writer to utilize.

3.7 Conclusion

This chapter has presented KVolve, a general approach to evolving a NoSQL

database without downtime. KVolve adapts Redis to migrate data as it is accessed,

reducing downtime that would otherwise result during a data upgrade, and mini-

mizing required changes to applications. We find that KVolve imposes essentially no

overhead when not performing an update, and minimal overhead when performing

an update.

Author Contributions: This work was presented in a paper [94]. I was lead

author on that paper and performed all of the programming, development, and

experiments, and led in the writing and overall design. My collaborators, Michael

Hicks and Tudor Dumitraş, contributed to the writing and to refining the ideas and
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Chapter 4: Morpheus: Safe and Flexible Dynamic Updates for Software-

Defined Networks

Software-defined networking (SDN) controllers are complex software systems

that must simultaneously implement a range of interacting services such as topology

discovery, routing, traffic monitoring, load balancing, authentication, access control,

and many others. Like any non-trivial system, SDN controllers must be periodically

updated to add features, improve performance, and fix bugs. However, in many

networks, downtime is unacceptable, so updates must be deployed dynamically,

while the network is in operation and in such a way as to minimize disruptions.

In general, dynamic updates differ from static ones in that while modifying

the program code they must also be concerned with the current execution state. In

SDN, this state can be divided into the internal state stored on controllers (e.g.,

in memory, file systems, or databases), and the external state stored on switches

(e.g., in forwarding rules). A key challenge is that updated code may make different

assumptions about state—e.g., using different formats to represent internal data

structures or installing different rules on switches. This challenge is exacerbated

in SDN, where state does not reside at a single location but is instead distributed
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across multiple controllers and switches.

Existing approaches: Most SDN controllers today employ one of two strate-

gies for performing dynamic updates, distinguished by how they attempt to ensure

correct, post-update execution state.

• In simple restart, the system halts the old controller and begins executing a fresh

copy of the new controller. In doing so, the internal state of the old controller

is discarded (except for persistent state—e.g., stored in a database), under the

assumption that any necessary state can be reconstructed by the new controller

after the restart. One simple strategy for recovering internal state is to delete

the forwarding rules installed on switches so future network events are sent to the

controller, which can use them to populate its state. This behavior is available by

default in open-source SDN platforms such as POX [4] and Floodlight [1].

• In record and replay, the system maintains a trace of network events received by

the old controller. During an update, the system first replays the logged events to

the new controller to “warm up” its internal state and then swaps in the new con-

troller for the old one. By giving the new controller access to the events that were

used to generate the internal and external state for the old controller, it is possible

to avoid the issues that arise with less direct mechanisms for reconstructing state.

Record and replay has been used effectively in several previous systems including

HotSwap [116], OpenNF [36], and a recent system for managing middleboxes [104].

A related approach is to attempt to reconstruct the state from the existing forward-

ing rules on the switches, rather than from a log. According to private discussions

with SDN operators, this approach is often adapted by proactive controllers that
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do not make frequent changes to network state (e.g., destination-based forwarding

along shortest paths).

Unfortunately, neither approach constitutes a general-purpose solution to the

dynamic update problem: they offer little control over how state is reconstructed

and can impose excessive performance penalties. Simple restarts discard internal

state, which can be expensive or impossible to reproduce. In addition, there is no

guarantee that the reconstructed state will be harmonious with the assumptions

being made by end hosts—i.e, existing flows may be routed along different paths or

even to different destinations, breaking socket connections in applications. Record

and replay can reproduce a harmonious state, but requires a complex logging system

that can be expensive to run, and still provides no guarantees about correctness—

e.g., in cases where the new controllers would have generated a different set of events

than the old controller did. Reconstructing controller state from existing forwarding

rules can be laborious and error prone, and is risky in the face of inevitable switch

failures. We illustrate these issues using examples in Section 4.1.

Our approach: Update by state transfer: The techniques just discussed

indirectly update network state after an update. This chapter proposes a more

general and flexible alternative: to properly support dynamic updates, operators

should be able to directly update the internal state of the controller, as a function

of its current state. We call this idea dynamic update by state transfer.

To support this dynamic update technique, controllers must offer three fea-

tures: (1) they need a way of making their internal state available; (2) they need

a way of initializing a new controller’s state, starting from (a possibly transformed
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version of) the old controller’s state; and (3) they need a way to coordinate behav-

ior across components when updates happen, to make sure that the update process

yields a consistent result. This basic approach has been advocated in prior DSU

work described in previous chapters.

Update by state transfer directly addresses the performance and correctness

problems of prior approaches. There is no need to log events, and there is no need

to process many events at the controller, whether by replaying old events or by

inducing the delivery of new ones by wiping rules. Moreover, the operator has

complete control over the post-update network state, ensuring that it is harmonious

with the network—e.g., preserving existing flows and policies. The main costs are

that the network programmer must write a function (we call it µ) to initialize the

new controller state, given the old controller state, and the controller platform must

provide protocols for coordinating across distributed nodes.

Fortunately, our experience (and that of DSU generally) is that for real-world

updates this function is not difficult to write and can often be partially automated.

The changes to the controller platform needed to support state initialization and

coordination between nodes adds complexity, but they are one-time changes and are

not difficult to implement. Moreover, the cost of coordinating controller nodes is

likely to be reasonable, since the distributed nodes that make up the controller are

likely to be relatively small and either co-located on the same machine or connected

through a fast, mostly reliable network.

Morpheus: A controller with update by state transfer: We have

implemented our approach in Morpheus, a new distributed controller platform based
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on Frenetic [9,34,82], described in Section 4.2. Our design is based on a distributed

architecture similar to the one used in industrial controllers such as Onix [58] and

ONOS [18]. We considered modifying a simpler open-source controller such as POX

or Floodlight [1, 4], but decided to build a new distributed controller to provide

evidence that update by state transfer will work in industrial settings.

Morpheus employs a NIB, basic controller replicas, and standard applications

for computing and installing forwarding paths, each running as separate applica-

tions. Persistent internal state is stored in the NIB, which can be accessed by any

application. When an application starts (or restarts, e.g., after a crash) it connects

to the NIB to access the state it needs, and publishes updates to the state while it

runs. Applications coordinate rule deployments to switches via controller replicas,

which use NetKAT [9] to combine policies into a unified policy, and can use con-

sistent updates [82] to push rules to switches. The NIB utilizes KVolve, presented

previously in Chapter 3, (Specifically, Morpheus uses a variant of KVolve, a Python

client version of KVolve that is described in Section 3.4, along with the pros and

cons of the Python client version.)

Supporting update by state transfer requires only a few additions to Mor-

pheus’s basic design, described in Section 4.3. The relevant state is already available

for modification in the NIB, so we just need a means of modifying that state to work

with the new versions.

We also need to coordinate the update across the affected applications. To

see why this is important, consider a situation in which we have several routing ap-

plication replicas, each responsible for a subset of the overall collection of switches.
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Now suppose we wish to deploy a dynamic update that changes which paths forward

traffic through the network. It is clear we must update all of the replicas in a coor-

dinated manner, or else some of the replicas could implement old paths and others

implement new paths, leading to anomalies including loops, black holes, etc. Mor-

pheus’s simple coordination protocol operates in three steps: (1) quiescence—the

affected applications are signaled and paused before the update begins; (2) installa-

tion—the µ function is registered with the NIB for the purposes of transforming the

state; and (3) restart—the updated applications are restarted, using µ to update

the NIB state (in a coordinated way). After the state is updated, they send updated

policies to the controller replicas which compose them and generate rules to install

on switches.

Using Morpheus we have written several applications, and several versions

of each, including a stateful firewall, topology discovery, routing, and load balanc-

ing. Through a series of experiments, described in Section 4.4, we demonstrate the

advantages of update by state transfer, compared to simple restarts and record-and-

replay. In essence, there is far less disruption, and no incorrect behavior. We also

find that the µ functions are relatively simple, and an investigation of changes to

open-source controllers suggests that µ functions for realistic application evolutions

would be simple as well.

Summary: This chapter’s contributions are as follows:

� We study the problem of performing dynamic updates to SDN controllers and

identify fundamental limitations of current approaches.
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� We propose a new, general-purpose solution to dynamic update problem for

SDNs—dynamic update by state transfer. With this solution, the programmer

explicitly transforms old state to be used with the new controller, and an

accompanying protocol coordinates the update across distributed nodes.

� We describe a prototype implementation of these ideas in the Morpheus sys-

tem.

� We present several applications as case studies as well as experiments showing

that Morpheus implements updates correctly and with far less disruption than

current approaches.

Next, we present the design and implementation of Morpheus (§4.1-4.3), our experi-

mental evaluation (§4.4), and a discussion of related work and conclusion (§4.5-4.7).

4.1 Overview

This section explains why existing approaches for handling dynamic updates

to SDN controllers are inadequate in general, and provides detailed motivation for

our approach based on state transfer.

4.1.1 Simple restart

As an example, suppose the SDN controller implements a stateful firewall, as

depicted in Figure 4.1. The topology consists of a single switch connected to trusted

internal hosts and untrusted external hosts. Initially the switch has no forwarding

rules, so it diverts all packets to the controller. When the controller receives a
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Stateful Firewall

Figure 4.1: Example application: stateful firewall.

packet from a trusted internal host, it records the internal-external host pair in its

(internal) state and punches a hole in the firewall so the hosts can communicate.

Conversely, if the controller receives a packet from an external host first, it logs the

connection attempt and drops the packet.

Now suppose the programmer wishes to update the firewall so that if an ex-

ternal host tries to initiate more than n connections, then it is blacklisted from all

future communications. With simple restart, the old controller would be swapped

out for a new controller that contains no record of connections initiated by internal

and external hosts. In the absence of any other information about the state prior

to the update, the controller would delete the rules installed on the switch to match
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its own internal state, which is empty. This leads to a correctness problem:1 If the

external host of an active connection sends the first few packets after the rules are

wiped, then those packets will be interpreted as unsolicited connection attempts.

The host could easily be blacklisted even though it is merely participating in a

connection initiated previously by an internal host.

This problem stems from the fact that the old controller’s state is discarded by

the simple restart. In this example, it could be avoided by storing key internal state

outside of the controller process’s memory—e.g., in a separate network information

base (NIB), as is done in controllers such as Onix [58]—and indeed, we do exactly

this in our Morpheus controller. However, in general, safe dynamic updates require

more than externalized state, as we discuss in Section 4.1.3—e.g., in the case that

the new version expects the state in a new format and multiple controllers share

this state.

4.1.2 Record and replay

At first glance, record and replay seems like it might offer a fully automatic

solution to dynamic controller updates. The HotSwap (HS) system [116], a note-

worthy example of this approach, records a trace of the events received by the old

controller and replays them to the new controller to “warm up” its internal state

before swapping it in. For the stateful firewall, HS would replay the network events

for each connection initiated by an internal host and so would easily reconstruct the

1It may also be disruptive: if unmatched traffic is sent to the controller, then the new controller

will essentially induce a DDoS attack against itself as a flood of packets stream in.
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Figure 4.2: Example application: load balancer.

set of existing connections, avoiding the problems with the simple restart approach.

Moreover, because record and replay works with events drawn from a standard API

like OpenFlow, it is fully “black box”—the implementation details of the old and

new controllers are immaterial.

Unfortunately, record and replay has several limitations that prevent it from

being a full solution to the dynamic update problem. One obvious issue is overhead:

in general, unless the system has prior knowledge of the new controller’s function-

ality (which it will not, in general), the system will have to record (and replay) all

relevant events that contributed to the network’s current state. Doing this can be

prohibitively expensive in a large, long-running network.

Another issue is that the recorded trace may not make sense for the new
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controller, and therefore replaying it may result in an incorrect state, for the fol-

lowing reasons. The new controller may, in general, behave differently than the old

one—e.g., it may install different forwarding rules on switches. As such, if the new

controller had been used from the start, these rules might have caused a different

set of network events to be generated than those that were actually recorded. Such

events could have been induced directly due to different rules (e.g., because they

handle fewer or more packets compared to the old rules) or they might have been

induced indirectly (e.g., because the new rules elicit different responses from the

hosts that are communicating via the network). Establishing that an update is

correct under these circumstances is extremely difficult in general.

To illustrate, consider the example of a server load balancer, as depicted in

Figure 4.2. The topology consists of a single switch with one port connected to a

network of external hosts and another n ports connected to back-end server replicas.

Initially, the switch has no rules, so all packets are diverted to the controller. Upon

receiving a new connection from an external host, the controller picks a server replica

(e.g., uniformly at random) and installs rules that forward traffic in both directions

between the host and the selected server. The controller also records the selected

server in its internal state (e.g., so it can correctly repopulate the forwarding rules

if the switch drops out and later reconnects).

Now suppose the programmer wishes to dynamically deploy a new version of

the controller where the selection function selects the least loaded server and also

puts a cap c on the number of open connections to any given server, and refuses

connections that would cause a servers to exceed that cap. During replay, the
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new controller would receive a network event for each existing connection request.

However, it would remap those connections to the least loaded server instead of the

server previously selected by the old controller. In general, the discrepancy between

these two load balancing strategies will break connection affinity—a different server

replica may receive the ith packet in a flow and reset the connection.

Attempting to reconstruct the controller state from querying the switch state

could also be problematic. Although the new controller would have the informa-

tion needed to generate forwarding rules that preserve connection affinity, writing

the controller to retrieve this information is potentially laborious, error-prone work

for the programmer. And it may require modifications to the code; e.g., if the

new controller uses statically allocated data structures to keep track of active flows

(something that is possible due to the cap c), it may be incorrect to exceed the cap.

We would prefer a solution that is simpler and more systematic.

4.1.3 Solution: update by state transfer

This chapter proposes a different approach to the SDN dynamic update prob-

lem. Rather than attempting to develop fully automated solutions that handle

certain simple cases but are more awkward or impossible in others, we propose a

general-purpose solution that attacks the fundamental issue: dynamically updating

the state. The above approaches attempt to indirectly reconstruct a reasonable

state, but they lack sufficient precision and performance to fully solve the problem.

Our approach, which we call update by state transfer, solves the dynamic up-
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date problem by giving the programmer direct access to the running controller’s

state, call it σ, along with a way enabling the new controller with an existing state,

call it σ′, such that the new state can be constructed as a function, call it µ, of the

old state so that σ′ = µ(σ). In addition, our approach requires a means to signal

the controller that an update is available so that it can quiesce prior to performing

the update. This mechanism ensures that σ is consistent (e.g., is not in the middle

of being changed) before using µ to compute σ′.

Consider the problematic examples presented thus far. For both the firewall

update and the load balancing update, the state transfer approach is trivial and

effective: setting the µ function to a no-op (i.e., identity function) grandfathers in

existing connections and the new semantics is applied to new connections. Pleas-

antly, for the load-balancing update, any newly added replicas will receive all new

connection requests until the load balances out.

Another feature of update by state transfer is that it permits the developer

to more easily address updates that are backward-incompatible, such as the load

balancer with a cap c discussed above. In these situations, the current network

conditions may not constitute ones that could ever be reached had the new controller

been started from scratch. With state transfer, the operator can either allow this

situation temporarily by preserving the existing state, with the new policy effectively

enforced once the number goes below the cap. Or she can choose to kill some

connections, to immediately respect the cap. The choice is hers. By contrast, prior

approaches will have unpredictable effects: some connections may be reset while

others may be inadvertently grandfathered in, unbeknownst to the controller.
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In addition to its expressiveness benefits, update by state transfer has benefits

to performance: it adds no overhead to normal operation (no logging), and far less

disruption at update-time (only the time to quiesce the controller and update the

state). The main cost is that the network service developer needs to write µ, which

will not always be a no-op. For example, if we updated a routing algorithm from

using link counts to using current bandwidth measurements, the controller state

would have to change to include this additional state. Fortunately, according to our

experience (and that of a substantial body of work in the related area of dynamic

software updating), µ tends to be relatively simple, and its construction can be at

least partially automated.

4.2 Morpheus Controller

To provide a concrete setting for experimenting with dynamic SDN updates,

we have implemented a new distributed controller called Morpheus, implemented

in Python and based on the Frenetic libraries [9, 34, 82]. Our design follows the

basic structure used in a number of industrial controllers including Onix [58] and

ONOS [18], but adds a number of features designed to facilitate staging and deploy-

ment of live updates. This means that it should be easy to adapt update techniques

developed in the context of Morpheus for use in other controllers as well. We should

note that our aim is to support updates to the applications running on the controller,

but not necessarily the controller itself. In the future, we plan to investigate exten-

sions that will also support updates to the controller infrastructure—e.g., migrating
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Figure 4.3: Morpheus architecture.

to a new protocol for communicating with SDN switches.

4.2.1 Architecture

Morpheus’s architecture is shown in Figure 4.3. The controller is structured as

a distributed system in which nodes communicate via well-defined message-passing

interfaces. Morpheus provides four types of nodes:

� platform nodes (platform), which are responsible for managing low-level

interactions with SDN switches and interfacing with applications,

� a network information base (nib), which provides persistent storage for appli-

cation state,

� an update coordinator (updc), which implements distributed protocols for

staging and deploying updates, and
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� application nodes (topology, routing, etc.), which implement specific kinds

of functionality, such as discovering topology or computing shortest paths

through the topology.

Each node executes as a separate OS-level process, supporting concurrent execution

and isolation. Processes also make it easy to use existing OS tools to safely spawn,

execute, replicate, kill, and restart nodes.

4.2.2 Components

We now describe Morpheus’s components in detail.

Platform: The most basic components are platform nodes, which imple-

ment basic controller functionality: accepting connections from switches, negoti-

ating features, responding to keep-alive messages, installing forwarding rules, etc.

The platform nodes implement a simple interface that provides commands for

interacting with switches:

� event() returns the next network event,

� update(pol) sets the network configuration to pol, specified using NetKAT [9],

� pkt_out(sw,pkt,pt) injects packet pkt into the network at sw and pt,

as well as commands for synchronizing with the updc during dynamic updates:

� pause() temporarily stops propagating configurations to the network, and

� resume() resumes propagating configurations.
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When multiple Morpheus applications are operating, the platform nodes make

every network event available to each application by default. If needed, filtering can

be applied to prevent some applications from seeing some network events. Likewise,

the policies provided by each application are combined into a single network-wide

policy using NetKAT’s modular composition operators [9]. For scalability and fault

tolerance, Morpheus would typically use several platform nodes that each manage

a subset of the switches. These nodes would communicate with each other to merge

their separate event streams into a single stream, and similarly for NetKAT policies.

For simplicity, our current implementation uses a single platform node to manage

all of the switches in the network.

Network Information Base: Morpheus applications store persistent state

in the nib. The information in the nib is guaranteed to be preserved across appli-

cation executions, thereby avoiding disruption if individual applications stop and

restart. The nib provides a simple interface to a NoSQL key-value store, which can

be used to store persistent state.2 Morpheus’s store is currently based on Redis [89]

and although it currently uses a single node, Redis supports clustering for better

scalability.

Data stored in the NIB is divided among conceptual namespaces, organized

according to the applications that use it. For example, a firewall application might

store information in the nib in the fw_allowed namespace about which hosts are

currently allowed. An application may access data in multiple namespaces, where it

2Obviously, applications may also maintain their own in-memory state for efficiency reasons,

but this state is lost on restart.
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might be the conceptual data owner for one, but a consumer of another. For example,

our topology application discovers the structure of the network by interacting

with the platform nodes, and stores the topology persistently in the topology

namespace.

Redis does not support namespaces directly (some other NoSQL databases

do) so we encode the namespace as a prefix of the keys under which we store a

application’s data values. Many Morpheus applications also use Redis’ built-in

publish-subscribe mechanism to handle frequently changing data. For example,

topology publishes a notification to a channel any of the keys in the topology

namespace changes, and routing subscribes to this channel and updates its routing

configuration appropriately when it receives a notification that the topology has

changed.

Applications: Applications running on top of Morpheus follow a common

design pattern. Upon startup, they connect with the nib to retrieve any relevant

persistent state. The application then adds to, and retrieves from, the persistent

store any other necessary data depending on its function. For example, topology

discovers and stores hosts, switches, edges, and additional information about the

topology in the nib, and when routing starts up it reads this information and

then adds the least-cost paths to each destination. During normal operation, appli-

cations are reactive: they will process events from the platform and from other

applications (e.g., via the pub-sub mechanism). In response, they will make changes

to the NIB state and push out a new NetKAT program via the update function on

the platform nodes, which will update in the switches.
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Update Coordinator: Because Morpheus has a distributed architecture,

dynamic updates require coordination between nodes. Morpheus uses an update

coordinator (or updc) that manages interactions between nodes during an update.

We discuss these interactions in detail in the next section.

4.3 Dynamic updates with Morpheus

Morpheus’s design supports dynamic updates by allowing important state to

persist in the NIB between versions while providing a way to transform that state

when required by an update. To ensure consistent semantics, Morpheus’s updc

node organizes updates to the affected applications using a simple protocol. This

section describes this protocol, and then describes some example updates that we

have performed.

4.3.1 Update protocol

To deploy an update, the operator provides updc with the following update

specification:

� New versions of the affected applications’ code

� A state transformation function µ that maps the existing persistent state in

affected namespaces into a format suited to the new application versions.

As a convenience, the application programmer can write µ in a DSL (Domain-

Specific Language) we developed for writing transformers over JSON values (inspired

by Kitsune’s xfgen language [46]), illustrated briefly in Sections 4.3.2 and 4.3.3. This
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language’s programs are compiled to Python code that takes an old JSON value

and produces an updated version of it.3 Alternatively, the user can write µ using

standard Python code.

Given the update specification, updc then executes a distributed protocol that

steps through four distinct phases: (i) application quiescence, (ii) code installation

and state transformation, (iii) application restart, and (iv) controller resumption.

1. Quiesce the applications: updc begins by signaling the applications

designated for an update. The applications complete any ongoing work and shut

down, signaling updc they have done so. (A configurable timeout is used to forcibly

shut down applications that do not exit gracefully, but this should be used as a last

resort as this may cause an application to lose some state.) At the same time, updc

sends the list of applications to the platform, which will temporarily suppress any

rules updates made by those applications, which could be stale. Once all applications

have exited, and the platform has indicated it has begun blocking the rules,

Morpheus has reached quiescence.

2. Install the update in the nib: Next, updc installs the administrator-

provided µ functions at the nib. The nib verifies that these functions make sense,

e.g., that if the request is to update for namespace nodes from versions v3->v4, then

the current nib should contain namespace nodes at version v3. All transformations

will be applied lazily (as described in the introduction to Chapter 3), as part of in

step 4.

3While the programmer currently must write µ, automated assistance is also possible [46,78].
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3. Restart the applications: Now updc begins the process of resuming

operation. updc signals the new versions of the affected applications to start up.

These applications connect to the nib, and the nib ensures that the applications’

requested version matches the version just installed in the nib. The applications

then retrieve relevant state stored in the nib, and compute and push the new rules

to the platform. The platform receives and holds the new rulesets. It will push

them once it has received rules (or otherwise been signaled) from all of the updated

applications, to ensure that the rules were generated from consistent software ver-

sions. Once the platform has received rules from all updated applications, it will

remove the old rules previously created by the updated applications and install the

new rules on the switches.

4. Resume operation: At this point, the update is fully loaded and the

applications proceed as normal. As the applications access data in the nib, any

installed µ function is applied lazily. In particular, when an application queries a

particular key, if that key’s value has not yet been transformed, the transformer is

invoked at that time and the data is updated.

The rest of this section describes some example updates we have implemented

in Morpheus for a stateful firewall, and for topology and routing applications.

4.3.2 Update example: Firewall

We developed three different versions of a stateful firewall, and defined updates

between them.
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� firewall↽ permits bidirectional flows between internal and external hosts

as long as the connection is initiated from the inside. When the controller

sees an outbound packet from internal host S to external host H, it installs

forwarding rules permitting communication between the two.

� firewall⇀↽ acts like firewall↽ but only installs the rules permitting bidi-

rectional flows after seeing returning traffic following an internal connection

request. (It might do this to prevent attacks on the forwarding table originat-

ing from a compromised host within the network.)

� firewall⇀↽� adds to firewall⇀↽ the ability to time out connections (and

uninstall their forwarding rules) after some period of inactivity between the

two hosts.

firewall↽ defines a namespace fw_allowed that keeps track of connections

initiated by trusted hosts, represented as JSON values:

{ "trusted_ip": "10.0.0.1",

"trusted_port": 3456,

"untrusted_ip": "10.0.0.2",

"untrusted_port": 80 }

Updating from firewall↽ to firewall⇀↽ requires the addition of a new

namespace, called fw_pending; the keys in this namespace track the internal hosts

that have sent a packet to an external host but have not heard back yet. Once the

return packet is received, the host pair is moved to the fw_allowed namespace. For
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this update, no transformer function is needed: all connections established under the

firewall↽ regime can be allowed to persist, and new connections will go through

the two-step process.4

Updating from firewall⇀↽ to firewall⇀↽� requires updating the data in

the fw_pending and fw_allowed namespaces, by adding two fields to the JSON

values they map to, last_count and time_created, where the former counts the

number of packets exchanged between an internal and external host as of the time

stored in the latter. Every N seconds (for some N , like 3), the firewall application

will query the nib to see if the packet count has changed. If so, it stores the new

count and time. If not, it removes the (actual or pending) route.

In our DSL we can express the transformation from firewall⇀↽ to fire-

wall⇀↽� data for the fw_allowed namespace as follows:

for fw_allowed:* ns_v0->ns_v1 {

INIT ["last_count"] {$out = 0}

INIT ["time_created"] {$out = time.time()}

};

This states that for every key in the namespace, its corresponding JSON value

is updated from version ns_v0 (corresponding to firewall⇀↽) to ns_v1 (corre-

sponding to firewall⇀↽�) by adding two JSON fields. We can safely initialize

the last_count field to 0 because this is a lower bound on the actual exchanged

4We could also imagine moving all currently approved connections to the pending list, but the

resulting removal of forwarding rules would be unnecessarily disruptive.
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packets, and we can initialize time_created to the current time. Both values will

be updated at the next timeout. In general, our DSL can express transformations

that involve adding, renaming, deleting field names, modifying any data stored in

the fields, and also renaming the keys themselves. The DSL is detailed in full in the

previous chapter.

The above code will be compiled to Python code that is stored (as a string) in

Redis and associated with the new version. The existing data will be transformed as

the new version accesses it via the NIB accessor API. When the new version of the

program retrieves connection information from the nib, the transformation would

add the two new fields to the existing JSON value shown earlier in this section:

key : fw_allowed:10.0.0.1_3456_10.0.0.2_80

value: { "trusted_port": 3456,

"untrusted_port": 80,

"trusted_ip": "10.0.0.1",

"untrusted_ip": "10.0.0.2",

"last_count": 0,

"time_created": 1426167581.566535 }

4.3.3 Coordination: Routing and Topology

In the above example, the firewall is storing its own data in the nib with no

intention of sharing it with any other applications. As such, we could have killed

the application, installed the update, and started the new version. However, when
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multiple applications share the same data and its format changes in a backward-in-

compatible manner, then it’s critical that we employ the update protocol described

in Section 4.3.1, which gracefully coordinates the updates to applications with shared

data.

As an example coordinated update, recall from Section 4.2 that our routing

and topology applications share topology information stored in the nib. In its

first version, topology merely stores information about hosts, switches, and the

links that connect them. The routing application computes per-source/destination

routes, assuming nothing about the capacity or usage of links. In the next version,

topology regularly queries the switches for port statistics and stores the moving

average of each link’s bitrate in the nib. This information is then used by routing

when computing paths. The result should be better load balancing when multiple

paths exist, between hosts.

Updating from the first to the second version in Morpheus requires adding a

field to the JSON object for edges, to add the measured bitrate. The transformer

µ simply initializes this field to 1, indicating the default value for traffic on the link

as follows:

for edge:* ns_v0->ns_v1 {

INIT ["weight"] {$out = 1}

};

As such, the initial run of the routing algorithm will reproduce the existing routes

because all initial values will be the same, ensuring stability. Subsequent routing
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computations will account for and store the added usage information and thus better

balance the routes.

4.4 Experiments and Evaluation

In this section, we report the results of experiments where we dynamically

update several canonical SDN applications: a load balancer, a firewall, and a routing

application. We implement three dynamic update mechanisms: state transfer using

Morpheus, simple restart, and record and replay. In all cases, state transfer is

fast and disruption-free, whereas the other techniques cause a variety of problems,

from network churn to dropped connections. We ran all experiments using Mininet

HiFi [44], on an Intel(R) Core(TM) i5-4250U CPU @ 1.30GHz with 8GB RAM. We

report the average of 10 trials.
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Figure 4.4: Firewall update
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4.4.1 Firewall

Figure 4.4 illustrates a dynamic update to the firewall, described in Sec-

tion 4.3.2, from firewall↽ to firewall⇀↽ and then to firewall⇀↽�. The

figure shows the result of simple restart (where all data is stored in memory and

lost on restart) and state transfer (where data is stored in the NIB). We do not

depict record and replay, which happens to perform as well as state transfer for this

example (as per Section 4.1.2).

For the experiment, we used a single switch with two ports (with 1 MBPS

bandwidth) connected to two hosts. One host is designated the client inside the

firewall and the other is the server outside the firewall. Using iperf, we establish

a TCP connection from the client to the server. The figure plots the bandwidth

reported by iperf over time. In both experiments, we update to firewall⇀↽ after

10 seconds and firewall⇀↽� after 20 seconds.

Using simple restart, the figure shows that bandwidth drops significantly dur-

ing updates. This is unsurprising, since a newly started firewall doesn’t remember

existing connections. Therefore, firewall⇀↽ and firewall⇀↽� first block all pack-

ets from the server to the client, until the client sends a packet, which restores firewall

state. In contrast, Morpheus doesn’t drop any packets because state is seamlessly

transformed from one version to the next.
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Figure 4.5: Routing and topology discovery update

4.4.2 Routing and Topology

Figure 4.5 shows the effect of updating routing and topology applications

(described in section 4.3.3), where the initial version uses shortest paths and the

final version takes current usage into account. The experiment uses four switches

connected in a diamond-shaped topology with a client and server on either end.

Therefore, there are two paths of equal length through the network. The client

establishes two iperf TCP connections to the server.

Initially, both connections are routed along the same path because the first

version of topology and routing pick the same shortest path. The links along the

path are 1MBPS, therefore each connection gets 500KBPS by fair-sharing. After 20

seconds elapse, we update both applications: the new version of topology stores

link-utilization information in the NIB and the new version of routing using this

information to balance traffic across links. After the update, each connection should

be mapped to a unique path, thus increasing link utilization and the bandwidth

reported by iperf.
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start

apps restart rout topo platform

exit begins push push resume

0.00s 0.05s 0.11s 1.67s 1.68s 1.70s

Table 4.1: Update quiescence times for Topology and Routing (median of 11 trials)

Using simple restart, both connections are disrupted for 10 seconds, which is

how long topology takes to learn the network topology. Until the topology is

learned, routing can’t route traffic for either connection. Morpheus is much less

disruptive. Since the state transfer function preserves topology information, the

new routing module maps each connection to a unique path. The connection that

is not moved (Host B) suffers no disruption and gracefully jumps to use 1MBPS

bandwidth. The connection that is moved (Host A) is briefly disrupted as several

switch tables are updated. Even this disruption could be avoided using a consistent

update [82].

Table 4.1 breaks down the time to run the update protocol for this update. It

takes .05s for both topology and routing to receive the signal to exit at their

quiescent points and shut down, and for the platform to also receive the signal

and pause. At .11s, both applications restart, begin pulling from the nib, and

begin performing computations. At 1.67s and 1.68s respectively, the routing and

topology applications send their newly computed rules to the platform. The

platform holds on to the rules until it ensures it has received the rules from both

apps, and then platform pushes both sets of rules to the switches and unpauses.
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This entire process takes 1.70s, with most of the time taken by simply restarting

the application (as would be required in the simple case anyway). In general, the

amount of time to update multiple applications safely will vary based on number

of applications, the amount of state to restore, and the type computations to be

performed to generate the rules, but the overhead (compared to a restart) seems

acceptable.

4.4.3 Load Balancer

Figure 4.6 shows the effect of updating a load-balancer that maps incoming

connections to a set of server replicas. For this experiment, in addition to the simple

restart and Morpheus experiments, we also report the behavior of record-and-replay

which consists of recording the packet-in events and replaying them after restart.

After 40 seconds, we bring an additional server online and update the application

to also map connections to this server. To avoid disconnecting clients, existing

connections should not be moved after the update.

As shown in the figure, both simple restart and record-and-replay cause discon-

nections, whereas state transfer causes no disruptions, since the state is preserved.

As discussed in Section 4.1.2, replaying the recorded packet-ins will cause the three

connections to be evenly distributed across the three servers. Similarly, for the

simple restart, the connections will be evenly distributed when the clients attempt

to reconnect. Therefore, one connection is erroneously mapped to the new server

mid-stream, which terminates the connection.
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Figure 4.6: Load balancer results
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4.4.4 Programmer effort

Starting from a Morpheus application/service, there are two main additional

tasks required to enable dynamic update: writing code to quiesce an application

prior to an update, and writing a µ transformer function to change the state. In

this subsection we discuss both tasks, showing that both are straightforward.

Quiescence: The application developer must write code to check for notifica-

tions from the nib that an update is available, and if so to complete any outstanding

tasks and gracefully exit. These tasks would include storing any additional state in

the nib and/or notifying external parties. For all of our examples, this work was

quite simple, amounting to 8 lines of code.

Transforming the state: Writing the function µ to transform the state was

also straightforward. For firewall, as described in Section 4.3.2, we wrote 4 lines

of DSL code to initialize new fields to desired values so that the fields could be read

with the correct data. Similarly for our applications topology and routing, as

described in Section 4.3.3, we wrote 3 lines of DSL code to initialize the weight field

to a default value. For the load balancer, no µ function was necessary, as no

state was transformed, only directly transferred to the new version of the program.

We also looked at the application histories of other controllers to get a sense of

how involved writing a µ function might be for updates that occur “in the wild.” In

particular, we looked at GitHub commits from 2012–2014 for OpenDaylight [3] and

POX [4] applications. We examined applications such as a host tracker, a topology

manager, a Dijkstra router, an L2 learning switch, a NAT, and a MAC blocker.
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Several of the application changes consisted only of updates to the application logic,

such as multiple changes to POX’s IP load balancer in 2013. For them, no µ would

be necessary. We also found that many of the application changes involved adding

state, or making small changes to existing state. For example, an update to Open-

Daylight’s host tracker on November 18, 2013 converted the representation of an

InetAddress to a IHostId to allow for more flexibility and to store some additional

state such as the data layer address. To create this update, the administrator would

write µ to initialize the data layer address for all stored hosts, if known, or add some

dummy value to indicate that the data layer address was not known. An update to

POX’s host tracker on June 2, 2013 added two booleans to the state to indicate if

the host tracker should install flows or should suppress ARP replies. To create this

update, the administrator would write µ to initialize these to True in the nib. To

sum up, while the size of µ scales with the size of the change in state being made,

in practice, we found that the effort to write µ is minimal.

4.5 Related Work

Morpheus represents the first general-purpose solution to the problem of dy-

namically updating SDN controllers (and by extension, updating the networks they

manage). We argued this point extensively in Section 4.1, specifically comparing to

alternative techniques involving controller restarts and record and replay (exempli-

fied by the HotSwap system [116]). In this section we provide comparison to other

work that provides some solution to the dynamic update problem.
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Graceful control-plane updates: Several previous works have looked at

the problem of updating control-plane software. In-Service Software Upgrades (ISSU) [23,

53] minimize control-plane downtime in high-end routers upon an OS upgrade by

installing the new control software in parallel with the old one, on different blade

and synchronizing the state automatically. Other research proposals go even fur-

ther and allow other routers to respond correctly to topology changes that affect

packet forwarding, while waiting for a peer to restart its control plane [102, 103].

In general, most routing protocols have mechanisms to rebuild their state when the

control software (re)starts (cf. [70, 91]), e.g., by querying the state of neighboring

routers.

The key difference between these works and Morpheus is that Morpheus aims

to support unanticipated, semantic changes to control-plane software, possibly ne-

cessitating a change in state representation, whereas ISSU and normal routing pro-

tocols cannot.5 In addition, Morpheus is general-purpose (due to its focus on SDN),

and not tied to a specific protocol design (e.g., a routing protocol).

Distributed Controllers: Distributed SDN controller architectures such as

Onix [58], Hyperflow [114], ONOS [18] or Ravana [55] can create new controller

instances and synchronize state among them using a consistent store. Morpheus’s

distributed design is inspired by the design of these controllers, which aim to provide

scalability, fault-tolerance and reliability, and can support simple updates in which

the shared state is unchanged between versions (and/or is backward compatible).

5Cisco only supports ISSU between releases within a rolling 18-month window [23]. Outside of

this window, a hard-reset of the control-plane has to be done.
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However, to the best of our knowledge these systems have not looked closely at

the controller upgrade problem when (parts of) the control program itself must be

upgraded in a semantics-changing manner, especially when the new controller may

use different data structures and algorithms than the old one. Morpheus handles

this situation using the update protocol defined in Section 4.3, which quiesces the

controller instances, initiates a transformation of the shared store’s data according

to the programmer’s specification (if needed), and then starts the new controller

versions. We believe this same approach could be applied to these distributed con-

trollers as well.

Dynamic Software Upgrades: The approach we take in Morpheus is in-

spired by DSU discussed in the previous chapters. Most prior DSU work has focused

on updating a running process (“bringing the new code to the old (but transformed)

data”) whereas for Morpheus the same effect is achieved by starting a new pro-

cess with the relevant state (“bringing the old (but transformed) data to the new

code”). While prior DSU work has considered the problem updating network soft-

ware generally [98] (including for “active” networks [47]), ours is the first to apply

a general-purpose solution to (distributed) software-defined network controllers in

particular.

4.6 Future Work

Discussing and implementing Morpheus generated several avenues of addi-

tional ideas for follow-on work. This section presents some of those ideas.
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4.6.1 Rollback in SDN controller updates

One common question that we receive when discussing this research is about

the possibility of “rolling back” an update if the network starts behaving incorrectly

after an update has taken place. Even though an update may be tested with test data

by staging a dry run of the update on a set of test controllers, in practice, updates

may result in unexpected or incorrect behavior. Having the ability to rollback a

dynamic update in the case of problems would give network administrators more

confidence in choosing to use dynamic updates, and also add more confidence in

general about the entire update process.

One way to view rollback is as a reverse upgrade, essentially “upgrading”

backwards to the previous version. This operation would involve transforming the

state backward, reversing whatever transformation function was applied. In the

case of rolling back mid-update, we would need to track which components had

been upgraded and which components had not yet been modified, to avoid unneces-

sarily applying the reverse transformation. We would also need to research how to

best ensure correctness in the rollback, and to clearly define correctness guarantees,

similar to the correctness discussed in the next section.

4.6.2 Correctness in SDN controller updates

Another research challenge we could address is how to best determine whether

or not our update is correct in our SDN controller. We must first define what “cor-

rect” means in our updates. During an update, our goal is to minimize disruption to
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the network. Some behavior is obviously wrong and a violation of correctness, such

as dropping packets or introducing routing loops. But some updates may be more

specific, such as the case when an application is implementing load balancing and

an update switches the configuration from two servers to three. If the new program

version should be balancing traffic between three servers but still is only using two

servers after update, then this behavior violates correctness although traffic may

not be noticeably disrupted.

Future work in this area would involve investigating the best method for speci-

fying what a program is supposed to do to define correctness. When a new controller

version implements the same semantics as the old version (but perhaps just orga-

nizes its internal state differently), then the semantics of the update are clear. But

in practice, controller upgrades are going to change the semantics in some way. Thus

an important question is how these changes should affect new and existing flows.

One potential approach is to take inspiration from previous work on specifying

and verifying properties of general-purpose dynamic updates [45]. We could poten-

tially define correctness with respect to a set of NetKAT properties [9], which define

what the network does by relating ingress and egress flows or individual events. In

future work, we could explore other sorts of correctness notions, based on proper-

ties for which the behavior of the old and new versions is not identical but can be

related, and based on properties of new features that should only apply to flows or

events after the update.
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4.7 Conclusion

This chapter has proposed dynamic update by state transfer as a general-

purpose approach to dynamically update software-defined network controllers. The

approach works by providing direct access to the relevant state in the running con-

troller, and initializing the new controller’s state as function of the existing state.

This approach is in contrast to alternatives that attempt to automatically reproduce

the relevant state, but may not always succeed. We implemented the approach as

part of Morpheus, a new SDN controller whose design is inspired by industrial-style

controllers. Morpheus provides means to specify transformations in a persistent

store, and employs an update coordination protocol to safely deploy the transfor-

mation. Experiments with Morpheus show that dynamic update by state transfer is

both natural and effective: it supports seamless updates to live networks at low over-

head and little programmer effort, while prior approaches would result in disruption,

incorrect behavior, or both.

Author Contributions: This work is the result of a collaboration between many

individuals, resulting in a paper [93] which appears in this chapter. All authors

contributed to the overall design and ideas behind this work. Arjun Guha and

Joseph Collard wrote all of the test applications (Firewall, Routing and Topology,

and the Load Balancer) and helped perform the experiments. Nate Foster, Michael

Hicks, and Laurent Vanbever contributed greatly to the writing. I designed the NIB

(Network Information Base) and integrated the applications to work with it, wrote
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the update DSL and all other aspects related to updating the applications, designed

and implemented the update coordinator, contributed to the writing, and helped

with the experiments.
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Chapter 5: Conclusion

In this dissertation, I have argued that it is possible to build general-purpose

frameworks for efficient, on-line data transformation in support of flexible system

services, especially dynamic upgrades. I showed that abstracting some of the ideas

from DSU work enables the principles to be applicable to a wider variety of systems

due to several generalizations. I generalized DSU’s notion of in-memory state trans-

formation, allowing broader methods of data transformation and broader types of

data that may be transformed. I also built on the concept of state transformation

in a process’ memory to include transformation of data not necessarily stored in

memory, and for services other than DSU.

I presented frameworks that are flexible across a variety of programs and ar-

gued that these frameworks can be used transform data in an efficient way that

maximizes program availability. Specifically, I first presented C-strider, a generic

framework that allows users to customize a heap traversal to perform a specific and

reusable service, with both parallel and single-threaded traversals. Next, I presented

KVolve, a system that lazily applies on-line data transformations to data stored in

Redis, a NoSQL database, allowing us to perform these transformations without

impacting Redis’ availability. Finally, I presented Morpheus, an approach to dy-
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namically update SDN controllers. Morpheus demonstrates the ability to update

multiple controller applications without loss of availability and presents a framework

for updating the state shared across the applications.
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Appendix A: Py-KVolve Details

This appendix presents the details of Py-KVolve, described in Section 3.4.

It presents additional details of the overall design of Py-KVolve as it differs from

KVolve, provides the DSL (Domain-Specific Language) details (which we used in

Morpheus), and provides some additional experimental results.

A.1 Specifying Updates

This section explains how programmers can express database updates using

Py-KVolve’s DSL, first introduced in Section 3.4.1. We begin by defining the lan-

guage’s syntax and semantics, and then present a series of examples. We also sketch

how we compile DSL programs into Python code, using during lazy data migrations.

A.1.1 DSL syntax and semantics

An update specification consists of a sequence of DSL commands, which are

processed in order. There are two basic kinds of commands. The first specifies

changes to JSON values, and the second generalizes the first, also allowing changes

to namespaces.

153



D
ir

e
ct

iv
e

P
a
th

A
ct

io
n

co
d
e

M
u
st

R
e
tu

rn

IN
IT

[j
so

n
p
at

h
,

or
em

p
ty

fo
r

en
ti

re
va

lu
e]

Y
es

.
(A

ss
ig

n
va

lu
e

to
$

ou
t.

)
N

on
e

U
P

D
[j

so
n

p
at

h
,

or
em

p
ty

fo
r

en
ti

re
va

lu
e]

Y
es

.
(A

ss
ig

n
va

lu
e

to
$

ou
t.

)
N

on
e

D
E

L
[j

so
n

p
at

h
,

or
em

p
ty

fo
r

en
ti

re
va

lu
e]

Y
es

.
(C

o
d
e

to
d
et

er
m

in
e

w
h
at

to
d
el

et
e.

)
B

o
ol

R
E

N
[j

so
n

p
at

h
]
→

[j
so

n
p
at

h
]

N
o

N
on

e

T
ab

le
A

.1
:

T
h

e
D

S
L

d
ir

ec
ti

ve
s

154



for keyglob versold → versnew {

DIRECTIVE path action-code

...

}

(a) Command to update JSON values

for namespace nsold → nsnew versold → versnew {

optional-DIRECTIVES

};

(b) Command to update namespaces

Figure A.1: DSL commands

Updating values: The format of commands for updating values is given in Fig-

ure A.1a. The keyglob is a simplified regular expression (allowing only ‘* ’ , ‘? ’ and

‘[ range] ’) which identifies the keys of affected values. For example, the keyglob

order :may20* might indicate only a range of purchase order invoice numbers are

affected. The versold and versnew strings identify the affected versions of the data.

The body of the for contains one or more commands, each beginning with a

directive, which is the action to be performed. There are four possibilities, shown

in Table A.1: initializing a new field, deleting a field, updating the value contained

in a field, or renaming the field. The path is an index into the JSON object, such

as [‘ order ’ , [‘ orderItems ’ ], ‘ discountedPrice ’ ] as shown on line 2 of Figure 3.9a. In
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Token Meaning

$out the value of the path inside the [] in the Directive

(this is the value to be updated, initialized, deleted, etc)

$in the original value stored in the key

(same as $out, but not written to)

$root the root of the JSON structure.

$base the same JSON structure, used to address siblings

$dbkey the database key name currently being processed

Table A.2: The DSL convenience tokens

the REN case the path part contains both a source and destination path.

The action-code of the command differs per directive, as shown in the third

column of Table A.1. This code consists of a mix of special DSL tokens and Python

code. The INIT and UPD directives are similar in that they both must specify the

value that should be initialized or renamed. The DEL requires the code to return true

or false, indicating whether a given path should, indeed, be deleted. Table A.2 shows

the DSL tokens that may appear in action code, which are interpreted specially by

our DSL compiler. All of the directives’ action code may use any of the tokens,

except INIT which may not use $in because an existing value does not exist for an

initialized value.

Updating namespaces: As mentioned in Section 3.1.4, another type of update

involves changing namespaces. The second DSL command type generalizes the first,
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defining a change to the key namespace in addition to any changes to the values of

the affected keys. This directive is particularly useful when the DSL writer wishes

to change the prefix at the beginning of all of some set of keys. For example, a DSL

writer may wish to rename namespace order : to be order :2015: for easier tracking.

Any directives in the body of the for will apply to the values of any matched keys.

A.1.2 Example updates

Here we present two example updates: one to update JSON fields, the other

to update namespaces.

A.1.2.1 Manipulating JSON fields

The purchase order example in Section 3.1.2 showed how to add and rename

JSON fields. Building on that example, suppose the next version (v2) expects the

contents of field id to be a decimal, rather than hexadecimal. On line 4 of Fig-

ure A.2a, the DSL writer uses $in to access the field’s current value, and the action

code converts it from hexadecimal, assigning the result to $out. Also suppose the

next version avoids using the field since when it is later than orderdate. On line 7 of

Figure A.2a, the DSL writer uses the $base variable to access fields higher up in the

JSON nesting structure than the field ‘ since ’, determining whether the field should

be deleted.
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1 for key:* v1→ v2 {
2 UPD [” id”] {
3 if any(c. isalpha () for c in $in ):
4 $out=int($in, 16) }
5 DEL [”since”] {
6 if (datetime. strptime($out, ”%d/%m/%Y”) >
7 datetime. strptime($base[”order” ][ ”orderdate” ], ”%d/%m/%Y”)):
8 return True
9 else :

10 return False }
11 };

(a) Additional purchase order update (extending Fig. 3.9a).

1 for namespace
2 amico: following→ amico:following:default v1.2→ v2.0;
3 for namespace
4 amico: reciprocated→ amico:reciprocated:default v1.2→ v2.0;

(b) Amico namespace change.

Figure A.2: Example updates

A.1.2.2 Renaming the database keys

As mentioned in Section 3.3.3, Amico [7], a Redis-backed social network, added

a scope suffix to certain namespaces between version 1.2 and 2.0. In version 1.2,

namespaces were of the format amico: following and amico: reciprocated , whereas in

version 2.0, they would have forms like amico: reciprocated :scope. For backward com-

patibility, they defined a default scope, default . As such, we can use our DSL to

upgrade existing data to use this default scope, as shown in Figure A.2b.
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A.1.3 Implementing data transformations

The DSL code is translated into Python functions. In some cases multiple

directives are combined into a single function, and in other cases there is one function

per directive. These functions have the form shown in Figure 3.9b: they take the

current key and value and return a potentially updated key and value. The body of

each function is essentially the action code provided in the DSL specification with

special variables (like $out) replaced by the appropriate accessors. For example, in

Figure 3.9b the $base variable is replaced with Python variable e, and it is then used

in the accessor for $out, which is the Python code f [‘ discountedPrice ’ ]. Multiple

directives in the same for block will apply to the same values, so sometimes we

find it efficacious to generate a single function for multiple directives, e.g., when

the paths are similar (as is the case in Figure 3.9b). Otherwise we will produce

multiple functions but sequence their execution in the GET wrapper (Section 3.4.2)

in the order in the given file. Our implementation borrows some code from JSON-

delta [84].

The for namespace transformations potentially modify the Redis keys as well.

This is largely straightforward, and we leave out further details for lack of space.

A.2 Details of Implementing Lazy Updates in Py-KVolve

This section describes our Py-KVolve implementation in detail. We start by

explaining how we install a dynamic update. Then we describe additional informa-

tion about Py-KVolve’s implementation of the GET and SET operations (that were
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first presented in Section 3.4.2). Finally we discuss other commands.

A.2.1 Installing an update

Py-KVolve provides a special “update client” application for initiating an up-

date. The developer invokes it by pointing it at the running Redis and passing the

DSL file. Redis stores the current logical version of the data for each namespace

ns under the special key VERSION ns. It also stores the compiled DSL (a Python

module) and metadata for prior transformations, for each namespace. When the

update client connects, it confirms that it is consistent with the existing versions,

i.e., it is upgrading from the current logical version to the new one, for the affected

namespaces. The update client uses a lightweight transaction to atomically update

the logical versions of the namespaces, add the new DSL and metadata, and set a

flag UPDATE IN PROGRESS to true.

Next, it kills any clients that are now out of date with any logical namespace

version. To do this, it uses the Redis command CLIENT LIST, which provides a

list of all connected clients, then it uses the command CLIENT KILL to direct Redis

to kill those clients that are potentially using out-of-date data. It identifies such

clients by looking at the names of the clients in the list, which are set to include

this version information when the clients connect. Once all clients have been killed,

the UPDATE IN PROGRESS flag is set to false.

At this point, it is safe for clients to connect. When they do, they will first

check that they match the versions of data they are interested in, and then wait for
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the UPDATE IN PROGRESS flag to be unset, if it is set. Clients that attempt to

connect but are outdated will be refused, receiving a DeprecationWarning.

A.2.2 Additional information about GET operations

Making misses more efficient: The GET algorithm described in Section 3.4.2

works best when queries succeed; determining that a key is definitively not in the

database requires two lookups: the one at the newest version (which fails), and then

the MGET at all versions. We could forego the first lookup in favor of always doing

the second, but we find the second call is much more expensive, especially when

there is a large number of possible previous versions.

As an optimization, when the wrapper discovers it is in case (a), it sets the

queried key (at the current version) to have a sentinel value that indicates the key

is morally absent. Then, the wrapper will identify this sentinel on subsequent GETs

and return None. This approach trades space for time: storing the extra mapping

ensures we have to perform only one lookup for each GET call, rather than two.

Informal experiments found that this optimization could cut overhead by a third for

workloads in which misses were more common.

Handling namespace changes: We simplified our description above by assum-

ing that all versions of a key k are the same, aside from the prepended version

identifier. But a key’s namespace can evolve according for namespace DSL com-

mands (see Figure A.1b). As such, the generated list of possible keys for the first

MGET might need to be something like [‘ v2|newns:123’, ‘v1|ns:123’ , ‘v0|ns:123’ ]. To
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generate a list like this, we essentially run namespace transformations backwards.

In particular, to transform the namespace from v1 to v2 in the above list, we would

have had to have had a command:

for namespace ns → newns v1 → v2;

The call GET newns:123 from the application would cause the wrapper to query

the key v2|newns:123. When this fails, we run the above transformation backwards,

to produce key v1|ns:123. The last key in the above list, v0|ns:123, would arise

assuming that no namespace was transformed between versions v0 and v1.

A.2.3 Additional information about SET operations

The SET operation, first described in Section 3.4.2, can also be passed flags

that modify its behavior. Flag NX instructs SET to only set k to v if k is not already

in the database. Our wrapper must therefore check all versions are absent before

performing this command. Flag XX only performs the set when k is already present;

it is handled similarly. Finally, flags EX and PX set an expiration timer for a key-

value pair. Supporting this flag follows the basic logic for SET, but requires carrying

forward the timeout during migration. The GET wrapper does this by querying the

current time-to-live and setting it on the new value when it is migrated.

A.2.4 Other commands

Redis supports many more commands, but our Py-KVolve implementation

focused on GETs and SETs, as they are the core feature of applications that use Redis,
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in our experience.1 Supporting most other commands would be straightforward. For

example EXIST checks the presence of a key—our wrapper would treat this similarly

to GET. Or, APPEND appends to an existing mapped-to value; this would be handled

similarly to SET XX. However, we chose to leave full implementation to the standard

(non-client) version of KVolve.

A.3 Py-KVolve Update Overhead

This section considers the performance impact of Py-KVolve during an update.

(Additional experimental results were presented in Section 3.4.3.) We find that

Py-KVolve significantly reduces the pause perceived by clients during an update,

compared to a stop-the-world data migration. All experiments were performed on a

computer with 24 processors (Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz) and 32

GB RAM, and run with PyPy 2.0.2 with GCC 4.4.7 on Red Hat 4.4.7-3. All tests

report the median of 11 trials.

A.3.1 Update pause time using Py-KVolve

To demonstrate update pause time, we performed updates for JSON entries

similar the example from Section 3.1.2 using the DSL shown in Figure 3.9a. At start-

up, 50 clients connect and begin sending commands to Redis as fast as possible. The

commands consist of 50% gets and 50% sets chosen at random. For this experiment,

we start with a pre-populated database of 200,000 keys. After 20 seconds, a separate

1We also support DEL, which deletes keys (we try to delete the current version, and if no key

exists, delete all versions, for good measure).
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Figure A.3: Lazy vs. eager updates for gets and sets over the full range of 200,000 keys

thread requests an update, and all 50 clients are subsequently disconnected by Redis.

Then they all reconnect, specifying the new data version, and proceed with further

queries, which will update the data lazily. We compare this against an “Eager”

case that simulates stop-the-world updates: rather than reconnect immediately,

the clients wait for another thread to signal them after completely migrating the

database; only then do they reconnect.

Figure A.3 shows the queries per second (QPS) across a timeline for the ex-

periment, where the clients access all 200,000 keys uniformly at random. At 20

seconds, the QPS for the Py-KVolve case (dashed line) dips briefly when an update

thread requests an update, and all 50 clients disconnect and reconnect at the new

version. Then the clients begin lazily updating the keys at a degraded rate as the

keys are brought up to the current version. The old-version keys are shown in the

finely-dashed line, and this number decreases at a constant rate as the keys are

uniformly accessed lazily.

The Eager experiment (solid line) shows that all clients are stopped at 20
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Figure A.4: Lazy vs. eager updates for gets and sets over a 20,000 key subset in a 200,000

key database

seconds at the beginning of the update. After about 40 seconds, the transformation

is complete and the clients reconnect when they are signaled by the transformation

thread at around 60 seconds on the timeline. Note that this pause time varies widely

across runs. The pause time of 40 seconds shown in Figure A.3 was the median of

11 trials, with a SIQR of 18.75 seconds. We think this variation in transforming the

Redis database may be due to Python or PyPy, but we are still investigating the

exact cause of variation of pause time.

Note that in this experiment, all clients access all keys in the entire database

in a uniform pattern. This is the worst-case scenario for lazy updating, as opposed

to the scenario where a smaller set of keys is constantly accessed and the rest of the

database is rarely accessed. Lazy updates benefit the most from the later situation,

whereas the Eager case suffers the most from that situation, having to transform

old data that is rarely (or never) accessed.

Figure A.4 shows the same experiment as above, except this time, the clients

query only subset of 20,000 keys, representing a “hot” set of keys that get queried
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repeatedly. This setup allows Py-KVolve to fully capitalize on lazy updates. Now,

the Py-KVolve case (dashed line) is able to very quickly return to full speed of

execution and the clients experience minimal degradation, whereas the Eager case

must still migrate the entire database, as less-frequently used keys might still need

to be accessed.

These experiments show that data access patterns and number of database

keys can alter the performance of Py-KVolve and lazy updates. In general, we

demonstrated that in some cases Py-KVolve can greatly reduce pause time during

updates with minimal performance penalty.
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