
A Qualitative Study of REST API Design and
Specification Practices

Michael Coblenz∗, Wentao Guo†, Kamatchi Voozhian‡, Jeffrey S. Foster§
∗Computer Science & Engineering Department, University of California, San Diego, La Jolla, California, USA

†Department of Computer Science, University of Maryland, College Park, Maryland, USA
‡Nokia, Inc., Sunnyvale, California, USA (work conducted at the University of Maryland)

§Department of Computer Science, Tufts University, Medford, MA USA
mcoblenz@ucsd.edu, wguo5@umd.edu, kirthigavoozhian@gmail.com, jeffrey.foster@tufts.edu

Abstract—REST APIs expose web services to clients. Although
experts have recommended guidelines for REST API design,
there is little empirical evidence regarding the relationship
between adherence to guidelines and benefits to API consumers.
We interviewed ten REST API designers to understand what
practices REST API designers follow, what opinions they have of
existing guidelines, and what challenges they face when designing
and using APIs. Some guidelines were widely followed, and
some were rejected as being inconsistent with good practice.
The participants reported additional challenges: authentication
and authorization are too hard to implement; specifications and
documentation are frequently missing, vague, or outdated; and
standard error reporting methods are insufficient for end users
and for debugging purposes. Overall, our observations present
opportunities for tool developers to significantly improve the situ-
ation by assessing and assuring conformance with guidelines; by
aligning documentation with specifications and implementations;
and by standardizing guidelines for API design.

Index Terms—REST APIs, Web APIs, API design, empirical
studies of programmers

I. INTRODUCTION

Representational State Transfer (REST) is a widely used
architectural style for web APIs. First proposed by Fielding
more than twenty years ago [1], REST has grown and evolved
significantly, and many authors have provided recommenda-
tions on designing and building usable REST APIs [2], [3], [4],
[5], [6]. The design of REST aims in part to enable separate
evolution and maintenance of client and server components,
improving reliability of services relative to approaches that
might require co-evolution of the two sides of the interface.

Unfortunately, poor API design can lead to security prob-
lems [7] and can cause delays and result in poor user satis-
faction [8]. As shown by the proliferation of services to help
monitor API errors [9], [10], real-world API failures are a
significant concern in industry. However, despite a plethora
of design recommendations, there is relatively little empirical
evidence regarding which recommendations benefit REST API
users, and few tools to help ensure developers follow those
recommendations. We believe a key reason is that, while there
is broad knowledge of good API design in general [11], [12],
[13], [14], [15], there are few studies of good REST API
design [16], [17]. Results from general API design studies
may not provide sufficient guidance for REST API design,
since REST APIs inherit structural requirements from the

HTTP standard [18]. Moreover, REST APIs are language-
independent, with both clients and servers written in multiple
languages such as JavaScript, TypeScript, Python, Ruby, and
Go. Finally, the client/server distinction has significant impli-
cations for modifiability, evolvability, and performance, since
the organization running the server must pay for hosting costs.
As a result, it is difficult to predict what kinds of tools would
be most useful for REST API developers, and it is difficult for
designers of REST APIs to choose practices that result in the
most effective APIs to enable programmers to build reliable
client applications.

In this paper, we address this gap by conducting an interview
study that answers two research questions:

RQ1: What opinions and practices do REST API designers
and implementors have regarding existing REST API
design guidelines?

RQ2: What challenges do REST API designers face when
trying to create reliable REST APIs?

Answering these two questions enables us to identify oppor-
tunities to build tools that help designers create better APIs.
It is also progress toward an empirical basis for REST API
design decisions. In the future, developers may be able to
choose practices that have been found empirically to be helpful
rather than using opinion-based advice.

We interviewed ten experienced REST API designers, im-
plementors, and users. We asked about their experience and
challenges with following REST API design recommenda-
tions, implementing and using secure APIs, testing and de-
bugging APIs, specifying APIs, and using tools for imple-
menting APIs. We used open coding to categorize participants’
statements, and then we formed a set of themes by grouping
related codes. Our goal was not to recommend participants’
opinions for use but rather to leverage their opinions to identify
opportunities for empirical evaluation and tool development.
(Section II describes our methodology.)

Some guidelines, such as making APIs stateless and using
JSON to return responses, were widely endorsed. Others, such
as using hypertext as the engine of application state (HA-
TEOAS [1]), were rejected as not being worthwhile or being
inconsistent with good practice. Still others, like following
HTTP verb conventions and making interfaces uniform, were

recognized as useful ideas that were difficult to follow in
practice. (Section III-B discusses RQ1.)

Additionally, participants identified a number of other chal-
lenges in designing and using REST APIs: Even though a
variety of libraries and external services provide these features,
authentication and authorization are still difficult to implement.
Missing, vague, and outdated API documentation is a critical
challenge in using REST APIs. HTTP error codes are insuf-
ficient for conveying information about errors to clients and
end users. And forward and backward compatibility of REST
APIs are essential for API evolution but are difficult to get
right. (Sections III-C through III-H discuss RQ2.)

Our findings suggest an opportunity to develop tools to
make REST APIs easier to develop and use. Participants
would benefit from tools that check REST API specifications,
which formally declare properties of API inputs and outputs,
against client and server code. The community could develop
a standard approach for relaying more detailed error messages.
And, given machine-checkable REST API specifications, tools
may be able to identify potentially incompatible changes as
APIs evolve as well as automatically generate examples as
documentation. (Section IV describes proposed tools.)

In summary, this paper’s main contributions are
1) An analysis of REST API guidelines and practices, as

currently followed by designers and implementors, and
2) Proposals about how languages and tools could make

application and REST API development easier and safer.
Our work is the first of which we are aware to compare and

contrast REST API design practice with REST API design
guidelines. Although our focus is on REST, REST APIs
share similarities with non-REST APIs, especially those in
distributed systems, so addressing challenges with REST APIs
may also benefit other kinds of APIs.

II. METHOD

Because of the difficulty of recruiting experts, we recruited a
convenience sample of ten programmers who each had at least
a year of experience developing REST APIs. When recruiting
our participants, we first asked them to complete introductory
surveys. We obtained informed consent and conducted semi-
structured interviews via Zoom that lasted up to 90 minutes.
Our study was approved in advance by our IRBs. Our partic-
ipants were willing to participate as volunteers.

We first asked general questions such as “What were the
most challenging parts in learning how to develop an API?”
Then, we asked them to focus on a particular REST API they
had worked on recently. We asked about several REST API
guidelines (RQ1; Section III-B). We used prior work [19],
[2], [3], [4] to construct a list of guidelines to ask about.
We focused on those (Table II) we thought had significant
implications for API design practice or offered opportunities
for tool development. In the interview, we summarized each
guideline and asked for opinions. We also asked participants
how they would improve the guidelines.

Afterward, we asked about various aspects of API design
that we hypothesized, based on the literature, might be par-

ticularly challenging or benefit from additional tool support
(results in Section III):

a) Security: We asked what security problems partici-
pants had seen in their and others’ APIs as well as what
techniques participants use to ensure their designs are secure.
We also asked about the security benefits of frameworks and
languages, such as Python.

b) Bugs: We asked if there were design choices that were
more likely to lead to bugs or vulnerabilities in client code.

c) Testing and Debugging: We asked about techniques
to make APIs more debuggable and about techniques used for
testing. We also discussed the requirements that participants
focused on in testing, such as performance and scalability.

d) Specifications: We discussed specification approaches
that participants use, such as OpenAPI; the alignment between
specification techniques and participants’ needs; and which
aspects participants did not document but wished they had.

e) Tools: We asked for opinions about the frameworks,
languages, and other tools participants use when implementing
APIs and how those tools influenced their designs.

f) Errors: We asked how API implementations report
errors and how applications handle errors.

g) Data interchange: We asked what data formats par-
ticipants’ APIs transmit and why.

After each interview, the first and third authors discussed
and summarized the findings. We conducted interviews until
the newest interviews revealed only minimal additional in-
formation. The third author, who had extensive experience
implementing REST APIs, transcribed the recordings and
conducted an initial open coding on the transcripts. Then,
the authors worked together to review and revise the codes
and then identify themes among the codes. Our focus is on
identifying hypotheses, not on making statistical claims, so we
did not compute inter-rater reliability [20].

Limitations: Because of the multitude of recommenda-
tions for REST APIs, we focused on guidelines and challenges
we felt could inform practice and the development of tools.

There is a risk of bias due to participant selection. Al-
though the practical difficulties of recruiting experienced API
designers limited our recruitment to a convenience sample, we
recruited broadly from people in multiple organizations, and
who worked on differently-sized projects, although medium-
size organizations may be under-represented in our participant
pool. There is also a risk of misinterpretation when analyzing
interview data. To mitigate this risk, multiple authors with
different perspectives read and discussed the data, coding
scheme, and resulting themes.

Due to an error, P6’s recording is missing. We instead
analyzed notes taken during the interview.

III. RESULTS

After describing the participants (Section III-A), we present
the results of our analyses of the interview data. Section III-B
compares and contrasts existing REST API design guidelines
with the participants’ practices.

TABLE I
DEMOGRAPHICS OF INTERVIEW PARTICIPANTS. ”LARGE” MEANS AT LEAST 1000 EMPLOYEES.

ID Education Org type Roles Design exp. Spec. tools Impl. APIs in Invoked APIs in

P1 BS (unspecified
field)

Large
consultancy

Software eng. ≥ 3 years OpenAPI,
RAML

Java Java

P2 MS communi-
cation eng.

Large
consultancy

IT solution analyst ≥ 3 years OpenAPI,
RAML

Java Java

P3 MS (not CS) Govt. consulting Personal projects, Software eng. ≥ 3 years None PHP, Python, Go PHP, Python, Go
P4 MS CS Govt. consulting Design, impl., docs. integration ≥ 3 years OpenAPI,

Stoplight.io
Ruby, Python,
Go, JS

Ruby, Python,
Go

P5 CS PhD student University Researcher ≥ 3 years OpenAPI JS JS
P6 BS CS Large company Software eng. ≥ 3 years None Java, JS Java, JS
P7 Sc.B. CS University Organization service projects ≥ 3 years None Python, JS Python, Go
P8 BS CS Large company Developer, project manager 1–3 years OpenAPI Python Python, Java, C#
P9 CS PhD Startup Software eng. 1–3 years OpenAPI Go Go, Python, Bash
P10 BS Info & De-

cision Sci.
Large company Senior software eng. 1–3 years OpenAPI Python Python, C++,

Objective-C

Sections III-C through III-H discuss the challenges partic-
ipants identified and participants’ recommendations for ad-
dressing those challenges. Some of those challenges lead
directly to bugs, and others divert developer attention and add
unnecessary complexity. Participants described the difficulty of
using third-party authentication and authorization frameworks
and security testing. They also cited insufficient documentation
of input requirements as a key source of bugs. In spite of
research proposing automated testing methods, participants
reported using manual testing methods—finding automated
approaches, such as property-based testing—too complex.
Missing, vague, or outdated documentation and specifications
are key challenges. Participants also told us that generating
and reporting errors is difficult, inconsistent, and bug-prone,
and that forward and backward compatibility remains a key
challenge despite using versioning techniques.

The paper supplement includes a list of all the codes we
used and the number of occurrences of each.

A. Participants

We recruited ten participants (N = 10). Table I shows key
characteristics of the participants. Four identified as women
and six as men. Participants were located primarily in the US,
though one was in the UK and one was in India. All partici-
pants had bachelor’s degrees, eight of which were in computer
science or related disciplines. Three participants had master’s
degrees, and one had a Ph.D. Two were Ph.D. students with
significant experience with REST API development, and eight
were employed in the software industry. Participants worked
in contexts ranging from individual projects (P3, P5) to large
corporations with many stakeholders (P1, P2).

All participants had some API design or implementation
experience. Six reported three or more years of experience,
three reported between one and three years, and one did not
respond on the survey but confirmed experience verbally. The
participants reported experience implementing REST APIs in
Python (5), Go (3), JavaScript (3), Java (2), and PHP (1).
They had specified their APIs with tools including OpenAPI
(7), RAML (2), and Stoplight.io (1).

We also asked participants about their experience using
REST APIs. Six reported three of more years of experience,
three reported one to three years, and one did not respond.
They reported experience using REST APIs in Python (6),
Go (4), Java (3), Bash (1), C# (1), C++ (1), JavaScript (1),
Objective-C (1), and PHP (1).

B. API Guidelines

RQ1 asks: what opinions and practices do REST API
designers and implementors have regarding existing REST API
design guidelines? We addressed this question by aggregat-
ing guidelines from several sources [1], [5], [6], prioritizing
guidelines that seemed to represent opportunities for tool
development or which we believed had significant impact on
API quality.

Table II lists guidelines we discussed and summarizes our
findings about each one. Key findings include the inability of
developers to assess uniformity; the universality of stateless
design; and the ambiguity of HTTP verb semantics. Next, we
describe our findings regarding the guidelines.

1) Use a Uniform Interface: Uniformity, i.e., consistency,
is commonly recommended for REST API design, and can
enable users to predict how an unfamiliar part of an inter-
face will behave based on experience with other parts [21].
However, the open-ended, vague nature of the guideline leaves
our participants confused about what they could do to obtain
or check uniformity. When asked how to ensure uniformity,
P3 said there was a “part of me that is never satisfied with
anything I do” regarding naming and other patterns. P3 later
said the hardest part of designing a REST API is structuring
and naming the interface. P7 wanted a tool to test and
quantify uniformity. P8 mentioned that organizing resources
to be future-proof is challenging: “I feel like you always
end up eventually wanting to. . . merge something or change
something.”

Uniformity pertains within an API, but uniformity can
apply across APIs as well. However, this uniformity can
trade off with other design decisions. P5 and P3 favored
uniformity across APIs over simplicity. “Dailymotion and

TABLE II
SUMMARY OF REST API GUIDELINES AND CORRESPONDING FINDINGS

Guideline Source Summary of Findings

(a) (b) (c)

Use a uniform in-
terface

• • Designers cannot assess unifor-
mity or choose the most appro-
priate uniform approach

Use
HATEOAS [19]

• • Well-defined formats (e.g.
JSON) must be extended with
application-specific semantics;
standard formats, such as HTML,
do not suffice.

Statelessness • • • Good for scalability; can be
tricky in complex applications

Provide code on
demand to clients

• Avoid due to security risks

Use HTTP meth-
ods and follow
verb conventions

• • Verb conventions are followed
inconsistently; need community
standards and checking tools

Filter, sort, and
paginate to limit
response size

• • A standard is needed for pagi-
nation parameter naming and se-
mantics.

Use JSON to
transfer data

• JSON is conveniently human-
readable, but code receiving
JSON inputs must be flexible

(a) Fielding [1] (b) Microsoft [5] (c) Stack Overflow [6]

YouTube. . . have pretty much the same data, but they’re com-
pletely different. I’d have to learn them from scratch—they use
different type of authentication, different endpoints. . . but if
[there’s a choice between] the simple and having standardized
API, I would go with the standardized one” (P5). P3 phrased
the issue in terms of opinions about design: “I think if you
provide appropriate tooling that enforces those opinions—
whatever you decide they are—it is possible to make dramatic
improvements. . . because it’s ultimately different assumptions
that lead to a lot of problems.”

2) Use Hypertext as the Engine of Application State (HA-
TEOAS): According to Fielding, “A REST API should be
entered with no prior knowledge [of the data format and
API semantics] beyond the initial URI (bookmark) and set of
standardized media types. . . ” [19]. In contrast, our participants
universally described REST APIs as having documentation
and specifications that describe data formats and API seman-
tics. Perhaps the large range of possible data types and seman-
tics have precluded standardization, though JSON is widely
adopted. This represents a compromise, since standardized
tools can parse JSON, even if the semantics are API-specific.

3) APIs Should Be Stateless: P3, P4, P7, and P8 try to
maximize statelessness. P3 said, “State in general is a pain
in the [rear].” P7 described learning from Uber [22], which
transitioned a monolithic codebase to microservices, which
often offer (stateless) REST APIs. P4 said that stateless APIs
were less likely to break if a client accidentally made the same

request multiple times. P8 said statelessness was required,
as their hosting method involved Dockerizing and deploying
multiple instances of an API.

However, P4 said while they “generally do want things to
be stateless where possible,” there are cases where state is
useful: If there is “an accumulation of a complex state” as
the user is “interactively working through something, building
something”—e.g., a shopping cart for a web store—then some
state might be stored on both the client and the server. Another
exception is when the server must be authoritative, e.g., a
server should not simply trust a client’s authentication cookie.

4) APIs Can Provide Code on Demand to Clients: Field-
ing [1] proposed that APIs can send code to clients, but this
practice was derided by P3, P7, and P10. As P10 put it, “That’s
just a huge security hole waiting to happen.”

5) Use HTTP Methods and Follow Verb Conventions:
HTTP requests are tagged with a verb, such as PUT or POST,
which indicates some high-level semantics of the request.
However, participants reported that verb conventions are only
followed inconsistently, despite their potential benefits.

P9 expressed support for verb conventions because they
reduce developer confusion. P1 said that not following verb
conventions is bad design and is hard to fix later because it
requires rewriting the API. As an example, P1 described an
API for fetching data that used a PUT method with a user ID
in the request body. This was less convenient than using GET
because the request body had to be handled with every call.

In contrast, P2, P7, and P8 gave reasons for breaking
verb conventions. P8 reported rarely using PUT and PATCH
because “myself and everyone I work with are just so used to
using GET and POST that. . . that’s on your fingertips.” P2 uses
POST to fetch data if the number of required query parameters
exceeds the limit for GET. P7 uses POST for all actions
that push things, including deletions, because of a particular
implementation choice they made. However, P7 also said that
if they had to redesign their API, they would probably use
conventional HTTP verbs.

P3 observed widespread deviance from HTTP verb conven-
tions, which they attributed to a lack of enforcement. P3 said,
as there are no consequences for breaking conventions, “it just
feels too loose to be a standard, because it’ll just accept any
kind of behavior that you program it to accept.” P3 blamed
this on the disorganization of the REST community, saying,
“it’s kind of ownerless.”

P5 argued that REST APIs would be easier to use if they
were more object-oriented: a client could complete some
action with one call instead of stringing together multiple
HTTP requests. P5 acknowledged that this might not be as
efficient and proposed an intermediate API to address the
performance concern.

6) Filter, Sort, and Paginate Data to Limit Response Size:
REST APIs must limit response sizes to maintain good perfor-
mance. Participants reported that pagination, in which multiple

API calls are used to return different pages of a lengthy
result, is one area that might benefit from standardization. P5
said that, frustratingly, different APIs deal with pagination in
different ways. P8 indicated that the names used in pagination
often differ across APIs: “Some APIs use skip and take
parameters, specifying where in the results to start and how
many to give.. . . I have seen some applications that just use a
token, like a next page token or last page token.”

7) Use JSON to Transfer Data: As discussed earlier, JSON
is a widely recommended data transfer language, and our
participants indicated it is widely adopted. Several participants
had strong feelings about JSON compared to other alternatives.
P3 said they “hate” being required to use XML, and P8 said
XML is “a pain to work with.” P4 prefers JSON to XML
because it is more compatible with their code. P3 also prefers
JSON to CSV, which they find harder to lint and more likely
to yield results that cannot be reliably parsed or interpreted.
The human-readable nature of JSON makes it easier to debug.

Participants also reported problems with JSON. First, client
applications typically expect a consistent set of fields to be
populated, which leads to bugs if the server omits fields (P5).
Code that accepts JSON must be written in a flexible way,
lest it break when the server sends an unexpected response.
P10 said, “you kind of have to be willing to accept a missing
value or something.” Second, this approach requires carefully
encoding data, typically as text. This can be particularly
inconvenient when both ends of the API expect Java objects
(P2). Third, checking conformance to the specification requires
additional tools, such as Swagger.

Some participants use a specification approach such as
Protocol Buffers [23]. Like Swagger tools, this ensures the data
conforms to a specification, but Protocol Buffers represents the
data more compactly (in binary rather than JSON). However,
protobuf data is inconvenient to debug, since it is not human-
readable. This approach is also inconsistent with Fielding’s
architectural goal of decoupling clients and servers. In some
cases, a protobuf layer was wrapped in a JSON layer to provide
convenient interfaces for both internal and external clients.

C. Documentation and specification

Five participants volunteered on the survey that missing,
vague, or outdated documentation is a key challenge when us-
ing REST APIs, and we received 14 comments about outdated
documentation in the interviews. P4 and P10 said that keeping
documentation up to date is a key challenge when maintaining
REST APIs. P3, P5 P7, and P9 recommended including
examples as a particularly effective form of documentation.

We found support for documenting all aspects of an API
design: the request parameters, the response body, possible
error messages, and the meaning of each HTTP verb for each
endpoint. Participants also suggested documenting which APIs
can return large volumes of data. P8 mentioned that docu-
mentation often neglects some important constraints, such as
disallowed parameter values or invocation ordering constraints.
P8 explained how these omissions arise: “either because I just

forgot to document it or it wasn’t [an] expected constraint, [I]
sort of figured [it] out after the fact.”

Six comments extolled the benefits of examples. Four
emphasized the benefits of executable examples in particular.
“Facebook [has] an example ready to go, and you just type
in your API key. . . and you can just run that against your
own account. . . so you don’t have to try to look up examples
on Stack Overflow. . . ” (P7). Examples and learning-by-doing
have also been found to be effective in other domains, such
as mathematics [24], and there is a substantial body of work
showing that examples can lead to superior skill acquisition
compared to studying only abstract knowledge [25].

P2 explained the challenge of documenting fields appropri-
ately for multiple client perspectives. “I created the API, which
was more looking into one particular line of business. . . but
then when I moved into the corporate world, their description
was completely different.”

Fourteen comments reported that documentation is difficult
to keep up to date. A common theme was that the only way
to ensure documentation is up to date is to automatically
generate it from the source code. “There are people who are
like ‘code should be simple and self documenting,’ and I’m
like, ‘no, it should generate documentation’” (P10). P8 and
P10 use tools that extract comments from source code to
generate documentation, but comments can be outdated. P10’s
group uses a tool to generate reminders every six months for
engineers to check documentation. P10 also remarked: “I will
certainly start from the documentation. But the minute my
observed behavior deviates, I’m calling the [author].”

Since incorrect or outdated documentation is a key chal-
lenge, tools that automatically generate documentation from
implementations can be valuable. As P2 remarked, “the Swag-
ger documentation is the truth.” Seven participants reported
using specification tools for REST APIs: OpenAPI, Swagger,
or RAML. Five had experience with Protocol Buffers [23],
which are used to describe binary interfaces in general. These
specification tools can have both significant costs and benefits.
As P10 explained: “We said, ‘Hey, we’re going to use Swagger
to make this API easier to consume.’ And then my employees
came back to me and said, ‘Man, Swagger is a pain in the
[rear].’ And I said, ‘is [it worth the hassle]? If we don’t use
Swagger, and I send every person that has a question about
this API to your desk, how are you going to feel?’ And they
said, ‘well, okay, I’m gonna get Swagger working.’”

Design processes varied. P7, P8, and P10 added endpoints
one at a time as needed. P1 favored writing a specification
ahead of time: “We should always go to our specification first,
because that’s the entry point of our API development.”

D. Errors

Participants indicated that it can be unclear which error
codes to use; that writing and reporting human-readable error
messages is too hard; and that it can be difficult to write correct
error-handling code in API implementations.

The HTTP standard [18] specifies a collection of status
codes, which the server sends in responses. For example, code

500 indicates internal server error. Unfortunately, status codes
do not provide enough information for the client. As a result,
APIs typically send a natural-language error messages in an
ad hoc format. Several participants (P3, P8, P9) proposed a
standard JSON field for a human-readable error message. P2,
P4, and P9 use standard structures for all error messages. P9,
for example, returns a JSON object with three fields: the HTTP
error code, an API-specific error code (whose meaning is
explained in API documentation), and a textual error message.

It is not obvious what information to include in error
messages. To aid developers of client applications, messages
should be precise and contain detailed information in terms
of API abstractions. However, if the client application simply
displays such messages to the end user, then a detailed error
message may be confusing rather than helpful. Since error
messages are not typically localized, they may not even be
readable by the end user. P3 observed that too-detailed error
messages can leak sensitive information about a server.

Another challenge with textual error messages occurs in
APIs that are implemented in terms of other APIs. If API A
receives an error message from API B, it is not clear how to
use any textual component of the error message to generate
an appropriate error message for A’s clients.

When generating HTTP status codes, it can be unclear
whether to return 200 (“OK”) or 500 (“internal server error”).
P6 said that if 200 is returned when even a minor error
happens, the user can get the wrong impression as to the
outcome. In addition, returning 200 for minor errors can cause
tools that track API success rates to fail to raise necessary
alarms. On the other hand, for debugging purposes P3 found it
more convenient to send 200 with an error message in cases of
invalid input. We did not find other participants who seemed
to agree, although P7 writes client code that interprets both
200 with an error message and 500 as errors.

Implementing error handling can be challenging: when
failures occur, the implementation may need to revert state
back to before the failure. P7 recommended: “Only ever
commit state at one point in your program, or do it in a way
that rollback is cheap.”

E. Forward and backward compatibility
In the pre-interview survey, four participants reported back-

ward compatibility as a primary concern. Typically, main-
tainers either do not control all API clients or, even if they
do, cannot kill and restart all clients at once. If the client
is a web app, users may use an old version of a web app
for a long time if they do not refresh their browser window
(P6). Thus, backward-incompatible changes, such as renam-
ing fields, are problematic. Introducing incompatible changes
requires recognizing the incompatibility and introducing a
versioning scheme, but this recognition can be error-prone.
P6 recommended anticipating future needs and building in
opportunities for extensions (forward compatibility).

F. Security
We asked participants what security problems they had

observed and what they do to make sure their APIs are secure.

Themes included the challenges of handling authentication and
authorization and unclear best practices for testing.

Although authors have discussed the challenges of handling
authentication and authorization since at least 2016 [26],
the situation has not been resolved. Authentication typically
requires using complex external services, such as OAuth [27].
According to P7, one tricky aspect is managing state and data
across the different services that implement authentication.

To avoid having to store password information, P8 uses
Amazon Cognito [28]. P10 also tried to use Cognito, but
failed: “As somebody developing services. . . I never want to
store PII on my system. I want somebody else to store it and
give me some surrogate ID that I can use to track the user
within my application.” But: “After a week I just gave up.
. . . There’s all these keys and certificates. . . ” P10 proposed that
someone should create a solution analogous to Let’s Encrypt:
“Somebody needs to do that for app-level authentication and
authorization, because it’s never not been a nightmare.”

For authorization, P9 uses Open Policy Agent [29] for
defining access control policies. OPA provides a language,
REGO, to express access control policies. P9 tries to align
the resource paths with the authorization requirements so the
system can easily reject inappropriate requests. That is, the
software engineering considerations for implementing autho-
rization impact the API design itself.

For testing security, participants used fuzzing (P3, P6);
testing by security experts (P3); review by a security team
(P2); and public bug bounties (P3).

G. Causes of bugs

We asked participants whether there are particular API de-
sign or implementation choices that lead to bugs. Participants
reported that insufficient documentation of input requirements
leads to bugs. “[The] author thought their API was well-
defined, but you try to use it, and . . . this is an ID. What is it an
ID of?” (P6). A particularly insidious cause of bugs is when
misformatted input is not detected, e.g., when an incorrectly
formatted date is sent (P6). Likewise, API implementations
frequently fail to validate their input sufficiently, causing
unsafe or incorrect behavior on user inputs (P1, P6).

Implementation languages and frameworks also introduce
their own bug patterns. Dynamically typed languages, such
as Python, can result in incorrect behavior. For example, if a
user passes a string instead of a collection, iteration is over
the characters in the string rather than the single string in
the input (P3). As another example, in Go, if an invocation’s
request context is omitted in a database call, that call cannot
be cancelled, which can lead to leaked threads (P9).

H. Testing Methodology

Despite existing research on automated test generation,
participants (P1, P3, P4, P8) reported primarily using manually
written tests. Although some said testing performance is
important, none of the participants reported writing dedicated
performance tests; instead, they use tools or re-purpose unit

tests for this purpose. P8 monitors response times once fea-
tures are deployed and redesigns if they are slow enough to
impact user experience.

P9 uses PyTest, while P3 writes Bash scripts that use tools
such as curl. Tests both check correctness and help establish
rate limits. Participants also use unit testing and fuzzing to
identify edge cases that cause bugs. P3 observed that testing
is inevitable because it is challenging to consider all possible
edge cases when writing a specification. P9 indicated that
integration tests are critical to check the whole workflow. P8
uses low-cost tests in continuous integration but uses Docker
for more thorough integration tests before deployment.

Participants felt that the benefit of property-based test-
ing [30] was not worth the cost. P3 said, “I feel like software
engineers tend to be curious and attracted to property testing,
and then they kind of look at it and go, I could spend X
amount of time trying to figure out how to do this, or I could
just point a fuzzer at this, and I would get good enough of a
result with less time. . . .”

IV. DISCUSSION

Based on the challenges reported by participants, we be-
lieve there are several opportunities to improve REST API
development and use. New language-based tools may be able
to infer specifications from implementations, keep documen-
tation consistent with implementations, and aid in automatic
generation of test cases. Authentication and authorization
frameworks are still too hard to use and represent a research or
design opportunity. Tools could leverage specifications to help
developers identify some cases in which version numbers need
to change. Finally, although enforcing guidelines currently
relies on human analysis, new tools may be able to analyze
adherence to guidelines automatically.

A. API Documentation and Specification

We found that documentation is a key challenge with
using REST APIs (Section III-C), including ensuring that
documentation stays up to date. There are existing approaches
to specifying APIs [31] and performing some limited checking
of APIs using specifications [32], [33], [34], but we believe
there are several unmet needs.

First, new tools that use type checking could ensure clients
and servers conform to API specifications. As with compiler
designs, rather than building one tool per combination of client
and server languages, we propose building one tool for each
client language and one for each server language. Although
many clients are written in dynamic languages, recent years
have seen widespread introduction of static typing capabilities
for such languages, including TypeScript for JavaScript [35],
PyType [36], and Sorbet for Ruby [37]. Thus, we believe the
time is right for building static analysis tools for enforcing
API specifications, leveraging these type systems.

Second, to help make documentation easier to create, new
tools should automatically generate specifications from imple-
mentations. We believe this can be done using type inference
with an expressive type system to discover the types of input

parameters and of API results on server-side code. Such an
analysis will need to be path-sensitive [38] to separate the
different request–response combinations.

Third, given how helpful our participants found examples,
we propose tools to automatically generate examples from
specifications. Such a tool would likely need to be dynamic
since the examples would be concrete, and static analysis is
less good at tracking concrete values. Interactive authoring via
tools such as CodeScoop [39] might also be possible.

Automated testing tools could leverage stronger specifica-
tions. Schemathesis [32] enables property-based testing for
APIs that are specified with OpenAPI, but OpenAPI specifi-
cations do specify relationships between inputs and outputs.
RESTler [33] is a stateful REST API fuzzer, but it cannot
distinguish between correct and incorrect responses that do
not return error codes. We found a need for an approach
that is simpler for users than property-based testing and more
thorough than RESTler.

B. Error Handling
The loose coupling between REST API servers and clients

makes propagating errors difficult, as described in Sec-
tion III-D. HTTP includes standard error codes, but as there
are relatively few codes, they are generally not very specific.
This can make it difficult for a client or an end user to handle
the error. We believe that a new approach is needed.

We propose that the community develop a standard ap-
proach for relaying detailed error information. This could take
the form of a specific JSON response field with an error code
whose meaning is documented in the API specification. Since
the documentation is separate, it could be localized to allow
speakers of a variety of languages to understand the meanings
of errors. The field could also include an optional structured
component to carry error-related values, as is common in many
languages with exceptions. For example, if a request includes
several fields of data, one of which is invalid, the error could
describe which field is invalid. Tools for checking and inferring
documentation (Section IV-A) could be extended to document
under what conditions errors are emitted.

C. Security
Participants indicated that handling authentication and

authorization in REST APIs is an important challenge
(Section III-F). P10’s proposal to make an authentica-
tion/authorization framework akin to Let’s Encrypt, which
would make appropriate recommendations for each developer,
is a compelling opportunity. Let’s Authenticate [40] may meet
some of the needs but we are not aware of a usability
evaluation of that system. Information flow-based approaches
could help developers identify when sensitive information
could leak from an API [41]. Best practices for security testing
should be better defined, particularly for developers who lack
access to security experts.

D. Versioning and Forward and Backward Compatibility
Participants reported that versioning is important for API

evolution, as is ensuring forward and backward compatibility

(Section III-E). However, participants did not report using
any tools (such as exist for Protocol Buffers) to help. We
envision that if an API had a machine-checkable specification
(Section IV-A), a tool could identify potentially incompatible
changes, such as changing API parameters, return values,
or method names. It could then prompt for version number
and documentation changes. While this approach would not
identify all incompatibilities, it could help API designers
consider the implications of their changes on existing clients.

E. Checking Other Guidelines

Machine learning and natural language processing tech-
niques may be able to evaluate interface uniformity (Sec-
tion III-B1). Program analysis techniques may be able to warn
developers about API methods that are not stateless (Sec-
tion III-B3) and ensure that stateful endpoints are associated
with reasonable HTTP verbs.

V. RELATED WORK

In 2000, Fielding proposed Representational State Transfer
(REST) [1] as a set of architectural constraints for web-based
APIs. These included guidelines such as statelessness (state
relevant to a request should be sent with the request, not
stored on a server) and uniformity. Since 2000, developers
have adapted Fielding’s original REST guidelines for their
own use. The result is a loose set of guidelines and practices
that differ significantly from Fielding’s vision. Our focus is on
identifying current practice and the challenges therein.

Murphy et al. [42] studied public REST API design
guidelines, constructing a list of topics authors can consider
but finding inconsistent specific guidance. Later, Murphy et
al. [17] interviewed 28 professionals regarding their training
and design processes for APIs. While the interviews were not
focused on REST API design, sixteen interviewees worked
on REST APIs, and hence the study did include some results
related to our paper. They also found that it can be unclear
which fields to return for a given request, since one API may
serve many different clients, and that excess data increases
costs. Designers found it particularly challenging to discern
which use cases were most important. Consistent with our
findings, Murphy et al. found that many organizations develop
their own API guidelines, but that, because these guidelines are
not well enforced, it is challenging to apply them consistently.

Kotstein and Bogner [43] asked experts to rate the impor-
tance of 82 REST API design rules, finding that the experts
gave high importance to 28 of the rules. We focus on guide-
lines that offered opportunities for tool development, since
tools could make creating usable APIs easier. Our approach
was also broader, focusing not only on given guidelines but
also on practices that the experts used.

Wang et al. [44] studied relationships between REST API
changes across versions and frequency of related questions on
StackOverflow, finding that adding methods was associated
with more questions than other kinds of changes. Our study
focuses on guidelines and practices, not on evolution. Macvean
et al. [16] studied how an API review process at Google

improved APIs and the efficacy of API designers. Our work
focuses on design decisions, not on processes.

Liu et al. [11] studied six months of high-severity bugs in
Microsoft’s Azure cloud computing environment. The most
common causes of bugs were incorrect or missing fault de-
tection and handling; data races; and inconsistent assumptions
about data formats. 60% of the data-format incidents were due
to interface problems, typically because of software updates
that changed interfaces without considering existing clients.

OpenAPI [31] is the most prevalent approach for specify-
ing REST API interfaces. Swagger [45] provides tools for
creating, updating, and sharing OpenAPI definitions. JSON
Schema [46] allows annotating and validating JSON doc-
uments against a schema. Sohan et al. [47] found in an
experiment that usage examples improve users’ success rates
in using APIs relative to only providing specifications.

McLellan et al. [12] showed how API usability studies
revealed shortcomings in one API’s design and documentation
and demonstrated that some API users find examples partic-
ularly helpful. Robillard [13] found learnability benefits of
examples. Myers and Stylos [14] observed that usability prob-
lems have resulted in bugs and security problems, proposing
user-centered design and evaluation methods to help designers
make APIs more usable. Oliveira et al. [15] showed how latent
security implications of API designs correlate negatively with
developers’ ability to identify security concerns in code.

Koci et al. [48] used log information to infer usability
challenges in APIs; we elicited advice from experts directly.

VI. CONCLUSION AND FUTURE WORK

We interviewed ten experienced REST API designers and
implementors to understand opinions and practices about
REST API design guidelines (RQ1) and to identify challenges
in developing high-quality REST APIs (RQ2). We identified
opportunities to improve the way REST APIs are designed and
implemented. New tools could provide client developers with
reliable documentation by making it easy for API designers
to create specifications for their APIs that are consistent with
the API implementations. The tools may be able to automat-
ically generate appropriate examples and test cases from the
specifications, reducing the documentation and testing burden
on developers. Clients could rely on the accuracy of the
specifications and examples, making development easier.

Existing REST API design guidelines are helpful but do
not provide enough guidance regarding how to make APIs
as usable as possible. Specific opportunities for community
consensus include error handling, reporting, and propagation;
pagination and identification of APIs that can return very large
results; and clarity regarding HTTP verb usage.

These findings represent an opportunity for future research.
Following guidelines has a cost, both in developer time and in
effects on the API. We hope that future research will evaluate
guidelines in a quantitative way to assess both cost and ben-
efit. Establishing clearer API design guidelines may improve
usability, allowing developers of client applications to learn
new APIs more effectively and use them more successfully.

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” PhD, University of California,
Irvine, 2000. [Online]. Available: https://www.proquest.com/docview/
304591392/abstract/CF90BE4588104415PQ/1

[2] M. Massé, REST API Design Rulebook. O’Reilly, 2011.
[3] H. Subramanian and P. Raj, Hands-On RESTful API Design Patterns and

Best Practices: Design, develop, and deploy highly adaptable, scalable,
and secure RESTful web APIs. Packt Publishing Ltd, 2019.

[4] M. Biehl, “RESTful API design: Best practices in api design with rest,”
2016.

[5] Microsoft. (2022) RESTful web API design. [Online]. Available: https:
//docs.microsoft.com/en-us/azure/architecture/best-practices/api-design

[6] J. Au-Yeung and R. Donovan. (2020) Best practices for rest
api design. [Online]. Available: https://stackoverflow.blog/2020/03/02/
best-practices-for-rest-api-design/

[7] I. OWASP Foundation. (2023) Owasp api security project. [Online].
Available: https://owasp.org/www-project-api-security/

[8] Miley. (2020) 6 api design flaws you should abso-
lutely avoid. [Online]. Available: https://www.dailycupoftech.com/
6-api-design-flaws-you-should-absolutely-avoid/

[9] AkitaSoftware.com. (2023) Akita software. [Online]. Available: https:
//www.akitasoftware.com

[10] Google. (2023) Build RESTful APIs. [Online]. Available: https:
//docs.apigee.com

[11] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What bugs cause
production cloud incidents?” in Proceedings of the Workshop on Hot
Topics in Operating Systems, ser. HotOS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 155–162. [Online].
Available: https://doi.org/10.1145/3317550.3321438

[12] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi, “Building more
usable APIs,” IEEE Software, vol. 15, no. 3, pp. 78–86, 1998.

[13] M. P. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009.

[14] B. A. Myers and J. Stylos, “Improving API usability,” Commun.
ACM, vol. 59, no. 6, p. 62–69, may 2016. [Online]. Available:
https://doi.org/10.1145/2896587

[15] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, Y. Brun, and N. C. Ebner,
“API blindspots: Why experienced developers write vulnerable code,” in
Proceedings of the Fourteenth USENIX Conference on Usable Privacy
and Security, ser. SOUPS ’18. USA: USENIX Association, 2018, p.
315–328.

[16] A. Macvean, M. Maly, and J. Daughtry, “API design reviews at scale,”
in Proceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 849–858.
[Online]. Available: https://doi.org/10.1145/2851581.2851602

[17] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers, “API
designers in the field: Design practices and challenges for creating usable
APIs,” in 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2018, pp. 249–258.

[18] R. Fielding, M. Nottingham, and J. Reschke. (2022) Rfc 9110, http
semantics. [Online]. Available: https://www.rfc-editor.org/rfc/rfc9110.
html

[19] R. Fielding. (2008) REST APIs must be hypertext-
driven. [Online]. Available: https://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven

[20] N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and inter-rater
reliability in qualitative research: Norms and guidelines for cscw and
hci practice,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW,
nov 2019. [Online]. Available: https://doi.org/10.1145/3359174

[21] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
SIGCHI conference on Human Factors in Computing Systems, ser. CHI
1990, 1990.

[22] Uber. (2020) Introducing domain-oriented microservice
architecture. [Online]. Available: https://www.uber.com/blog/
microservice-architecture/

[23] Google. (2022) Protocol buffers. [Online]. Available: https://developers.
google.com/protocol-buffers

[24] X. Zhu and H. A. Simon, “Learning mathematics from examples and
by doing,” Cognition and instruction, vol. 4, no. 3, pp. 137–166, 1987.

[25] A. Renkl, “Instruction based on examples,” in Handbook of research on
learning and instruction. Routledge, 2011, pp. 286–309.

[26] M. Green and M. Smith, “Developers are not the enemy!: The need
for usable security apis,” IEEE Security & Privacy, vol. 14, no. 5, pp.
40–46, 2016.

[27] A. Parecki. (2022) Oauth 2.0. [Online]. Available: https://oauth.net
[28] Amazon. (2022) Amazon cognito. [Online]. Available: https://aws.

amazon.com/cognito/
[29] O. P. A. contributors. (2022) Open policy agent. [Online]. Available:

https://www.openpolicyagent.org
[30] G. Fink and M. Bishop, “Property-based testing: a new approach to

testing for assurance,” ACM SIGSOFT Software Engineering Notes,
vol. 22, no. 4, pp. 74–80, 1997.

[31] T. O. Initiative. (2022) The openapi initiative. [Online]. Available:
https://www.openapis.org

[32] D. Dygalo. (2021) Schemathesis: property-based testing
for API schemas. [Online]. Available: https://dygalo.dev/blog/
schemathesis-property-based-testing-for-api-schemas/

[33] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security prop-
erties of cloud service REST APIs,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
2020, pp. 387–397.

[34] R. Waller. (2022) Openapi validator. [Online]. Available: https:
//github.com/openapi-library/OpenAPIValidators/

[35] M. Corporation. (2022) Typescript. [Online]. Available: https://www.
typescriptlang.org

[36] G. Corporation. (2022) PyType. [Online]. Available: https://github.com/
google/pytype

[37] S. Corporation. (2022) Sorbet. [Online]. Available: https://sorbet.org
[38] M. Das, S. Lerner, and M. Seigle, “Esp: Path-sensitive program

verification in polynomial time,” SIGPLAN Not., vol. 37, no. 5, p. 57–68,
may 2002. [Online]. Available: https://doi.org/10.1145/543552.512538

[39] A. Head, E. L. Glassman, B. Hartmann, and M. A. Hearst, Interactive
Extraction of Examples from Existing Code. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1–12. [Online].
Available: https://doi.org/10.1145/3173574.3173659

[40] J. Conners, S. Derbidge, C. Devenport, N. Farnsworth, K. Gates,
S. Lambert, C. McClain, P. Nichols, and D. Zappala, “Let’s authen-
ticate: Automated certificates for user authentication,” in Network and
Distributed Systems Security (NDSS) Symposium, 2022.

[41] J. Parker, N. Vazou, and M. Hicks, “Lweb: Information flow security
for multi-tier web applications,” Proc. ACM Program. Lang., vol. 3, no.
POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290388

[42] L. Murphy, T. Alliyu, M. B. Kery, A. Macvean, and B. A. Myers,
“Preliminary analysis of REST API style guidelines,” in PLATEAU 2017,
2017.

[43] S. Kotstein and J. Bogner, “Which restful api design rules are important
and how do they improve software quality? a delphi study with industry
experts,” in Service-Oriented Computing, J. Barzen, Ed. Cham: Springer
International Publishing, 2021, pp. 154–173.

[44] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to RESTful
api evolution?” in International Conference on Service-Oriented Com-
puting. Springer, 2014, pp. 245–259.

[45] S. Software. (2022) Swagger. [Online]. Available: https://swagger.io
[46] J. Schema. (2022) Json schema. [Online]. Available: https://json-schema.

org
[47] S. M. Sohan, F. Maurer, C. Anslow, and M. P. Robillard, “A study of

the effectiveness of usage examples in rest api documentation,” in 2017
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2017, pp. 53–61.

[48] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló, “A data-driven approach
to measure the usability of web apis,” in 2020 46th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), Aug.
2020, pp. 64–71.

https://www.proquest.com/docview/304591392/abstract/CF90BE4588104415PQ/1
https://www.proquest.com/docview/304591392/abstract/CF90BE4588104415PQ/1
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://owasp.org/www-project-api-security/
https://www.dailycupoftech.com/6-api-design-flaws-you-should-absolutely-avoid/
https://www.dailycupoftech.com/6-api-design-flaws-you-should-absolutely-avoid/
https://www.akitasoftware.com
https://www.akitasoftware.com
https://docs.apigee.com
https://docs.apigee.com
https://doi.org/10.1145/3317550.3321438
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2851581.2851602
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://doi.org/10.1145/3359174
https://www.uber.com/blog/microservice-architecture/
https://www.uber.com/blog/microservice-architecture/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://oauth.net
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://www.openpolicyagent.org
https://www.openapis.org
https://dygalo.dev/blog/schemathesis-property-based-testing-for-api-schemas/
https://dygalo.dev/blog/schemathesis-property-based-testing-for-api-schemas/
https://github.com/openapi-library/OpenAPIValidators/
https://github.com/openapi-library/OpenAPIValidators/
https://www.typescriptlang.org
https://www.typescriptlang.org
https://github.com/google/pytype
https://github.com/google/pytype
https://sorbet.org
https://doi.org/10.1145/543552.512538
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3290388
https://swagger.io
https://json-schema.org
https://json-schema.org

	Introduction
	Method
	Results
	Participants
	API Guidelines
	Use a Uniform Interface
	Use Hypertext as the Engine of Application State (HATEOAS)
	APIs Should Be Stateless
	APIs Can Provide Code on Demand to Clients
	Use HTTP Methods and Follow Verb Conventions
	Filter, Sort, and Paginate Data to Limit Response Size
	Use JSON to Transfer Data

	Documentation and specification
	Errors
	Forward and backward compatibility
	Security
	Causes of bugs
	Testing Methodology

	Discussion
	API Documentation and Specification
	Error Handling
	Security
	Versioning and Forward and Backward Compatibility
	Checking Other Guidelines

	Related Work
	Conclusion and Future Work
	References

