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Many researchers have explored type inference for dynamic languages. However, traditional type inference

computes most general types which, for complex type systemsÐwhich are often needed to type dynamic

languagesÐcan be verbose, complex, and difficult to understand. In this paper, we introduce SimTyper, a Ruby

type inference system that aims to infer usable typesÐspecifically, nominal and generic typesÐthat match the

types programmers write. SimTyper builds on InferDL, a recent Ruby type inference system that soundly

combines standard type inference with heuristics. The key novelty of SimTyper is type equality prediction, a

new, machine learning-based technique that predicts when method arguments or returns are likely to have the

same type. SimTyper finds pairs of positions that are predicted to have the same type yet one has a verbose,

overly general solution and the other has a usable solution. It then guesses the two types are equal, keeping

the guess if it is consistent with the rest of the program, and discarding it if not. In this way, types inferred by

SimTyper are guaranteed to be sound. To perform type equality prediction, we introduce the deep similarity

(DeepSim) neural network. DeepSim is a novel machine learning classifier that follows the Siamese network

architecture and uses CodeBERT, a pre-trained model, to embed source tokens into vectors that capture tokens

and their contexts. DeepSim is trained on 100,000 pairs labeled with type similarity information extracted

from 371 Ruby programs with manually documented, but not checked, types. We evaluated SimTyper on eight

Ruby programs and found that, compared to standard type inference, SimTyper finds 69% more types that

match programmer-written type information. Moreover, DeepSim can predict rare types that appear neither

in the Ruby standard library nor in the training data. Our results show that type equality prediction can help

type inference systems effectively produce more usable types.
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1 INTRODUCTION

Many researchers have explored ways to add static types to dynamic languages, aiming to provide
the benefits of static typing while preserving the flexibility of the language [Aiken et al. 1994;
Cartwright and Fagan 1991; Flanagan and Felleisen 1997; Kazerounian et al. 2019; Lerner et al. 2013;
Ren and Foster 2016; Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2008; Vitousek et al. 2014].
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In this setting, type inference [Aiken and Murphy 1991; Anderson et al. 2005; Aycock 2000; Furr
et al. 2009; Hackett and Guo 2012] is potentially very attractive, as it can catch type errors without
requiring users of these retrofitted type systems to provide many new type annotations. Typically,
traditional static type inference (see ğ 6 for a discussion of machine learning-based type inference
systems) aims to infer most general types, so as not to reject any program that would be statically
typable. Unfortunately, in the presence of complex type features such as subtyping, structural types,
and union typesÐwhich are often needed to type existing dynamic language codeÐmost general
types can be verbose, confusing, and difficult to understand. For example, when typing a Ruby
method that performs arithmetic computations on an argument x, the most general type of x might
be a structural type like any object with +, -, *, and /methods. In contrast, a programmer would much
more likely write the shorter, simpler, and more understandable nominal type Numeric, giving up
some generality for the sake of usability.

In this paper, we introduce SimTyper, a type inference system that aims to infer usable types for
Ruby. SimTyper is built on top of InferDL, a recent Ruby type inference system that combines
constraint solving with manually written heuristics whose guesses are checked against the con-
straints, to ensure soundness [Kazerounian et al. 2020]. SimTyper uses the same basic infrastructure,
but adds a novel deep similarity (DeepSim) network that performs type equality prediction. More
precisely, DeepSim predicts type similarity scores among method arguments. If, after standard type
inference, an argument has an overly general type (e.g., a structural type) and DeepSim predicts
that argument is similar to another argument with a usable type (e.g., a nominal type), SimTyper
guesses the overly general type can be replaced by the usable type. If that guess is consistent with
the rest of the constraints, it is kept. Otherwise it is discarded, and further guesses are made up
to some bound. Thus, even though it is probabilistic, SimTyper is still guaranteed to be sound.
SimTyper applies the same idea to method returns and to instance, class, and global variables. (ğ 2
shows how SimTyper integrates standard type inference, heuristics, and type equality prediction.)
We describe SimTyper’s algorithm on a core language of types and constraints. SimTyper

begins by running the standard, constraint-based type inference algorithm, which, at a high level,
generates constraints among types; applies constraint resolution to check that the constraints are
consistent; and then extracts solutions for the type variables. Next, for each type variable α with
an overly general solution, SimTyper finds the type variable β that is most similar to α and has
a usable type solution. SimTyper then adds a constraint α = τ , where τ is β ’s solution, and runs
constraint resolution again. If the constraints are still consistent, α ’s solution is set to τ . If not,
SimTyper retracts the α = τ constraint and tries the next most similar usable type, and so on. This
guessing-and-backtracking approach was first proposed for InferDL, and SimTyper uses the same
machinery, enabling SimTyper to infer types with both DeepSim-based predictions and guesses
based on InferDL heuristics. (ğ 3 describes SimTyper’s inference algorithm.)
The DeepSim network itself takes as input the tokenized source code of two methods and

the positions within that code of the arguments or method return sites of interest. The network
then uses CodeBERT, a transformer-based pre-trained code embedding model [Feng et al. 2020], to
transform each token at the given positions into a fixed-dimensional vector that captures both the
token and its surrounding context. DeepSim then averages those vectors to produce one vector for
each input. These vectors are then passed through a trained similarity function to predict whether
they are similar or dissimilar. The network itself is trained on 371 Ruby programs that include
YARD [Segal 2020] documentation. We extract type information from YARD (which is not checked
against code and hence might be noisy) to create a training data set with 100,000 pairs labeled as
either similar (for two positions with the same YARD types) or dissimilar. (ğ 4 describes the DeepSim
network in detail.)
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We evaluated SimTyper by applying it to eight Ruby programs with type information: four
web apps written in Ruby on Rails (a popular web development framework) that InferDL was
previously evaluated on, and four popular Ruby libraries with YARD documentation. We then
compared the types inferred by SimTyper to existing, programmer-written annotations. Following
prior work [Allamanis et al. 2020], we count the number of cases where the the inferred type
matches the existing type, as well as the number of matches up to parameterÐgeneric types where
the base matches but the parameter is different (e.g., inferring Array<Integer> when the original
was Array<String> would fall in this category). We found that, by combining constraint solving,
InferDL heuristics, and type equality prediction from DeepSim, SimTyper generated 66% more type
annotations that matched programmer-written types compared to using constraint solving alone.
If we include matches up to parameter, this number improves to 69%. Moreover, SimTyper inferred
16% more matching type annotations when using DeepSim alone than when using heuristics alone.
Including matches up to parameter improves this to 19%. DeepSim was also able to correctly predict
rare types, including 16 types that did not appear in either the standard Ruby library or the training
data. This number is the same whether or not we consider matches up to parameter. (ğ 5 describes
these results and several other experiments in more detail.)

In summary, we believe that by incorporating type equality prediction with DeepSim, SimTyper
takes an important step forward towards type inference systems that produce more usable types.

2 OVERVIEW

We begin by illustrating how SimTyper is used to infer a type annotation for the method shown in
Figure 1a, which is extracted and simplified from TZInfo, one of the benchmarks in our experiments
(ğ 5). The method, Timestamp.create, takes three integers representing a year, month, and day
corresponding to a date, and returns a new Timestamp encoding that date as the number of seconds
since the start of the Unix Epoch (midnight on 01/01/1970).
The first three lines of the method check that all parameters are integers.1 The subsequent

lines (line 8ś13) perform the computation. The details of the computation [Hinnant 2013] are not
important, but notice the parameters appear in various places in somewhat complex arithmetic
expressions. The method returns the value of the expression on the last line, which constructs a
new Timestamp (code omitted here) with the computed number of seconds.

2.1 Standard Type Inference

The first step of SimTyper, inherited from InferDL, is to perform standard, constraint-based type
inference [Furr et al. 2009], which begins by assigning a type variable to each unknown. Here, as
shown on line 2, we assign α , β , and γ to the parameters (in that order) and δ to the return type.
SimTyper then analyzes the method body, generating constraints of the form a ≤ b, meaning that a
is a subtype of b. We also say a is a lower bound on b and b is an upper bound on a.

Figure 1b shows several of the constraints generated for this example. Constraint (1), from line 4,
states that α , the type of year, must define a method kind_of? that takes a Class and returns a fresh
unknown type ϵ . Or, more formally, α is a subtype of the structural type [kind_of? : Class→ ϵ].
Constraints (2) and (3) are similar.
Constraint (4), from line 8, states that month must define a > method that takes a Number (for

simplicity, all Ruby numeric objects are typed as Number in SimTyper) and returns an unknown
type. Note that in Ruby, binary arithmetic operations are actually method calls on the left-hand

1Amusingly, we could in theory create a heuristic (ğ 2.2) that uses this coding pattern to guess the argument types. That

heuristic, however, would have to be hand-written and would be specific to this pattern. One strength of SimTyper is that it

can discover useful types even without manually creating heuristics.
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1 class Timestamp

2 # Assigned method type: (α , β ,γ ) → δ

3 def self.create ( year, month, day)

4 raise ArgumentError, ' year must be an Integer ' unless year.kind_of? ( Integer )

5 raise ArgumentError, 'month must be an Integer ' unless month.kind_of?(Integer )

6 raise ArgumentError, ' day must be an Integer ' unless day.kind_of? ( Integer )

7

8 after_february = month > 2

9 year = year − 1 unless after_february

10 era = year / 400 # eras are 400 year periods

11 day_of_year = day + (153 ∗ (month + ...

12 ... # additional computation

13 value = ... ∗ 24 ∗ 60 ∗ 60 # seconds since unix time

14

15 new(value)

16 end

17 end

(a) A method from the TZInfo library.

(1) α ≤ [kind_of? : Class→ ϵ]

(2) β ≤ [kind_of? : Class→ ζ ]

(3) γ ≤ [kind_of? : Class→ η]

(4) β ≤ [> : Number→ θ ]

(5) α ≤ [- : Number→ ι]

(6) α ≤ [/ : Number→ κ]

(7) γ ≤ [+ : Number→ λ]

(8) β ≤ [+ : Number→ µ]

(9) Timestamp ≤ δ

(b) Constraints generated on type variables.

Fig. 1. Generating type constraints in TZInfo.

argument, e.g.,month > 2 is syntactic sugar formonth.>(2). Constraints (5)ś(8) are similar, with the
first two arising from lines 9 and 10, respectively, and the last two from line 11. Finally, constraint (9)
arises from returning the newly created Timestamp on line 15.

Next, SimTyper performs constraint resolution, which applies a set of constraint rewriting rules
until reaching saturation. For example, if a ≤ b and b ≤ c , then SimTyper applies transitive closure
to generate a constraint a ≤ c . In this particular case, because Timestamp.create is relatively simple
and is considered in isolation, resolution does not change the set of constraints. See ğ 2.3 for more
details of constraint resolution.

After constraint resolution, the constraints are in solved form [Pottier 1998], meaning SimTyper

can read off a type variable’smost general solutionÐany other solution would be more restrictiveÐby
looking at its immediate bounds. For (contravariant) method arguments, we compute the greatest
solution by intersecting all of the argument type’s upper bounds, excluding type variables. For
(covariant) method returns, we compute the least solution by unioning its non-variable lower bounds.
We leave type variables out of solutions because their bounds will have already been transitively
propagated during resolution. Full details of this solution extraction process can be found in prior
work [Kazerounian et al. 2020].
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For the constraints in Figure 1b, SimTyper finds the following solutions:

α = [kind_of? : Class→ ϵ, - : Number→ ι, / : Number→ κ]

β = [kind_of? : Class→ ζ , > : Number→ θ , + : Number → µ]

γ = [kind_of? : Class→ η, + : Number→ λ]

δ = Timestamp

Out of these four solutions, the only one that matches developer-provided documentation (not
shown) is δ , which has a simple, easy-to-understand nominal type. In contrast, the solutions for
α , β , and γ , while very precise, are also complex, verbose, and hard to read. Moreover, they are
not even fully expanded, since they contain type variablesÐand adding solutions for the nested
variables would only make the types more complex. In our experience, standard type inference
with subtyping and structural types often produces such difficult-to-use types.

2.2 Heuristic Type Inference

To address this problem, SimTyper builds on an approach pioneered by InferDL, recent work that
adds heuristic rules on top of standard type inference. The heuristics aim to guess more useful
types, typically nominal or generic types, for positions for which standard type inference produces
overly general types, like those for α , β , and γ above. More precisely, any type that is not one of the
following is considered overly general: nominal types, generic types, finite hash and tuple types2,
singleton types (which represent just a single value), and the boolean type.

Critically, when a heuristic rule guesses a solution, that guess is added as an additional constraint
to the type inference problem. Guesses that are consistent with the other constraints are kept;
guesses that are inconsistent are retracted and alternate heuristics, if any remain, are applied. Thus,
even though InferDL is heuristic, it is guaranteed to produce sound types.
For example, InferDL includes a rule struct-to-nominal, which is defined as follows:

łWhen an argument type variable’s upper bounds include structural types, search
all classes to see which have the methods in those types. If there are ten or fewer
such classes, guess the union of these classes as the type variable’s solution.ž ğ 2.2,
[Kazerounian et al. 2020]

When SimTyper and InferDL apply struct-to-nominal to our running example, the heuristic
guesses that the solution for α (corresponding to the parameter year) is Number, because the only
existing classes that define methods kind_of?, -, and / are Ruby’s numeric classes. This guess is
consistent with the other constraints, so SimTyper and InferDL would both set α = Number as
the solution.

However, struct-to-nominal fails to infer a new solution for β , because more than ten classes
define the set of methods {kind_of?, >, +}Ðe.g., possible classes include String, Set, Time, and
othersÐand similarly for γ . Thus, while heuristics are effective, there is still room for improvement.
Moreover, while InferDL allows users to write new heuristics that apply specifically to their
programs, doing so requires a lot of care and insight, and heuristics may not be portable across
programs. For example, InferDL also includes a heuristic int_names that, among others, guesses
that an argument named id has type Number. However, while this is an excellent guess for Rails
code, in other codebases, e.g., in the the Stripe codebase, ids are generally Strings [Petrashko 2020].

2
InferDL’s more precise types for hashes and arrays. Finite hash types give the exact type of each key and value in a hash,

and tuple types give the type and position of each element in an array.
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Fig. 2. An illustration of how DeepSim calculates the pairwise similarity scores for the set of input parameters

{year, month, day} for the method from Figure 1a.

2.3 Predicting Type Equalities

To address the limitations of heuristics, SimTyper builds on InferDL’s approach by additionally
using a machine learning-based approach to guess types. These guesses can either be used in place
of or in addition to guesses from hand-written heuristics. Like InferDL, these guesses are checked
for consistency with the underlying constraints to ensure soundness, and any inconsistent guesses
are discarded.
More specifically, SimTyper uses a novel network based on the Siamese network architec-

ture [Koch et al. 2015], which we call a deep similarity (DeepSim) network. DeepSim is a deep
neural networkmodel that we use to guess when two positions have equal types. For example, notice
that year,month, and day are closely related words in English. Moreover, in Timestamp.create, they
are used in similar contexts: First they appear in nearly-identical dynamic type checks (lines 4ś6)
and then in arithmetic expressions (lines 8ś13). Thus, the DeepSim network guesses that all three
variables have equal typesÐand since SimTyper previously determined that year has type Number,
using DeepSim it will guess the same type for the other two arguments.

Guessing Types with the DeepSim Neural Network. DeepSim is based on the Siamese network
architecture [Koch et al. 2015]. The network takes two inputs, which are the source code for two
methods with position markers indicating mentions of the relevant parameter/return that is being
compared. The inputs are first run through identical encoders. The encoder uses a state-of-the-art
language model trained on programming and natural languages [Feng et al. 2020] to produce a
fixed-dimension contextualized vector representation for the input. This is a numeric vector that
encodes not only the an identifier (e.g., the name of an argument), but also the code context in
which it occurs. The encoded vectors are such that parameters with similar names (e.g., łdayž and
łmonthž) and contexts (e.g., basic arithmetic expressions) will be encoded as vectors that are close
together. Contextualized embedding models have recently been shown to achieve state-of-the-art
performance on a range of natural language processing [Brown et al. 2020] and programming
language [Feng et al. 2020; Kanade et al. 2020] tasks.

The encoded inputs are then run through a trained similarity function, which produces a similarity

score between 0 and 1, indicating the network’s belief that two inputs have the same (1) or different
(0) types. For example, Figure 2 illustrates how DeepSim calculates the pairwise similarity scores
for the set of input parameters {year, month, day} for the method from Figure 1a. More details on
the encoder and the similarity function are in Section 4.
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1 class UserHelpers

2 def self.initial (name) # (α) → β

3 return name.strip[0].upcase

4 end end

(1) α ≤ [strip : () → γ ]

(2) γ ≤ [[] : (Number) → δ ]

(3) δ ≤ [upcase : () → ϵ]

(4) ϵ ≤ β

Fig. 3. A method defined in the code.org app and the resulting constraints.

SimTyper applies the DeepSim network after standard inference and hand-written heuristics
have been run. SimTyper considers all remaining overly general type positions and uses DeepSim to
compare them to all positions for which a łusablež (i.e., not overly general) solution was found. After
eliminating positions with scores below 0.5Ðwhich indicates the network believes those positions
have different typesÐSimTyper guesses type equivalence with the highest scoring position. If
that guess is consistent with the constraints, it is accepted. If that guess is inconsistent, SimTyper
continues guessing equivalence with the next highest scoring position, and so on for the top N

scores (ğ 5 evaluates choices for N ).
For example, picking up from the heuristic guesses in ğ 2.2, SimTyper asks DeepSim for the

expected type similarity among year, which has a usable solution at this point, and month and day,
which have overly general solutions. As shown in Figure 2, the network has a very high degree of
confidence that year and month have the same type, so SimTyper guesses that β = α = Number.
This guess is consistent, and so it is accepted. Next, day is predicted to be most likely similar to
month, so SimTyper guesses γ = β = Number, which is also accepted.
Thus, after applying standard type inference, hand-written heuristics, and the DeepSim net-

work, SimTyper has successfully inferred the type (Number,Number,Number) → Timestamp for
Timestamp.create, which matches the hand-written documentation.

Cascading Type Predictions. In some cases, guesses made via DeepSim can cascade through the
constraints, leading to further usable solutions. For example, consider the code snippet in Figure 3
extracted and simplified from code.org, one of our benchmarks (ğ 5). This code defines a class
method initial that, given a String called name, returns the first non-whitespace character in name

as an upper-case letter.
SimTyper assigns initial the type (α) → β and generates the constraints shown in the right of

Figure 3. Constraints (1), (2), and (3) result from the calls to strip, [], and upcase, respectively, and
constraint (4) results from the return. Using standard type inference, SimTyper would generate the
type ([strip : () → γ ]) → ϵ for this method.

However, DeepSim predicts that name has a similarity score of approximately 0.996 with another
parameter, also called name, from a different method (code omitted for brevity). Because the other
parameter’s type is determined to be String, SimTyper guesses String as a solution for the name

parameter of self.initial, which is accepted as consistent.
But something interesting happens when String is added as the solution for name. The type

String propagates further through the constraints:

(1) String = α is added as the solution. Propagating this yields...
(2) String ≤ [strip : () → γ ]. Looking up the type of String#strip (SimTyper includes types for

Ruby’s core and standard libraries) yields...
(3) String ≤ γ . In other words, strip returns a String. Propagating further yields...
(4) (in several steps) String ≤ δ , i.e., [0] also returns a String. Propagating further yields...
(5) (in several steps) String ≤ ϵ , i.e., upcase returns a String. Propagating to ϵ ’s upper bound...
(6) String ≤ β .
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Types τ ::= α | A | [m : τ → τ ] | τ ∪ τ | τ ∩ τ | ⊥ | ⊤

Constraints C ::= τ ≤ τ | C ∪ C

Solutions S ::= {α1 7→ τ1, ...,αn 7→ τn}

α ∈ type vars A ∈ class names m ∈ meth names

generate : P → C × Vars resolve : C → C ∪ {error} solve : C × Vars→ S

P ∈ programs Vars ∈ list of type vars

Fig. 4. Types, constraints, solutions, and type inference functions.

Then, using the usual rules for computing the solution at a return position, we can set β = String also.
Thus, we have found that the method has type (String) → String, which matches its documentation.
This exemplifies another benefit of SimTyper: by integrating DeepSim within the constraint solver,
the former can lead the latter to better type solutions, and vice versa.
As an aside, we note that the same cascading effect can happen with heuristicsÐand in fact, in

this case that would occur, as InferDL includes a rule that guesses that arguments called name

have type String. While there are many cases from our benchmarks where DeepSim alone leads to
a cascading solution, we present the example of Figure 3 due to its relative brevity and simplicity.

Discussion. An alternative approach would be to use machine learning to directly predict types.
However, prior work [Allamanis et al. 2020; Hellendoorn et al. 2018; Malik et al. 2019], as well
as our own dataset (ğ 4), has found that the distribution of types in programs is Zipfian: a small
number of types occur very frequently, while most types occur rarely. Moreover, some types are
program-specific and thus will not occur in a training dataset at all. This makes it challenging to
train a direct prediction model for the many infrequent types. Moreover, DeepSim can perform
one-shot type prediction, in which it predicts the correct type of an argument/return by knowing
the type of just one other instance. Finally, DeepSim is tightly integrated with type inference,
allowing it to propagate any usable types that standard inference infers.

3 TYPE INFERENCE ALGORITHM

In this section, we discuss SimTyper’s type inference algorithm more formally, and in the following
section we discuss the implementation of SimTyper in detail.

3.1 Standard Type Inference

We begin by establishing some basic definitions and describing the standard type inference proce-
dures that SimTyper inherits. The top part of Figure 4 defines a core language of types, constraints,
and solutions. Types τ can either be a type variableα , a nominal typeA, a structural type [m : τ → τ ]

(for simplicity we assume methods only take one argument), union types τ ∪ τ , intersection types
τ ∩ τ , the bottom type ⊥, or the top type ⊤. Constraints C take the form τ1 ≤ τ2, meaning τ1 is a
subtype of τ2. We use union to construct sets of constraints. Finally, a solution S is a mapping from
variables to their types.

The bottom part of the figure gives the types for three functions that together implement standard
type inference. We assume that these functions exist but do not discuss their implementation. We
direct the reader to Kazerounian et al. [2020] for a more detailed treatment of the standard inference
algorithm with integrated heuristics.

The generate function takes a program as input and produces a set of constraints generated from
the program (e.g., the constraints in Figure 1b) and a list of type variables forwhichwewant solutions
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procedure standard_inference(P)

C,Vars← generate(P)

Cnew ← resolve(C)

if Cnew = error then

fail

return solve(Cnew,Vars), Cnew

(a) Standard type inference.

procedure type_eq_inference(P)

S, C ← standard_inference(P)

S, C ← heuristic_inference(S,C)

repeat

for α ∈ dom(oд_sols(S)) do

C ← deepsim_sol(α , S,C)

S ← solve(C,Vars)

until C is unchanged

(c) Type equality-based inference.

procedure deepsim_sol(α , S , C)
potential_sols ← {(τi , s) | αi 7→ τi ∈ useable_sols(S), s = simscore(α ,αi ), and s ≥ 0.5}

k ← 1

while k ≤ size(potential_sols) ∧ k ≤ N do

pick kth highest scoring solution τk in potential_sols
Cnew ← resolve(C ∪ τk ≤ α ∪ α ≤ τk )

if Cnew , error then

return Cnew

k ← k + 1

return C

(b) Finding a DeepSim solution.

Fig. 5. The procedures of SimTyper.

(i.e., types for method arguments and returns). The resolve function performs constraint resolution
on its input set of constraints, applying rules like transitive closure (a ≤ b ∧ b ≤ c ⇒ a ≤ c). It
produces either the solved form of those constraints or error if the constraints are inconsistent. For
example, in Ruby, the constraint String ≤ Integer would result in an error.

Finally, the solve function is given a set of constraints and a list of type variables, and it produces
a solution for those type variables. This function follows the process described in ğ 2.1, taking
the intersection of upper bounds for argument type variables, and the union of lower bounds for
returns. An empty union produces ⊥, and an empty intersection produces ⊤.
With these functions, we can define the standard_inference procedure shown in Figure 5a.

Given a program P, standard inference generates constraints over the program, resolves those
constraints, and then produces a solution over the relevant type variables. We also return the
generated set of constraints from the program for use in the type equality prediction algorithm.
Note that, if the constraints are inconsistent, standard inference will fail to produce a solution as
the program is ill-typed. This could result from a true type error or due to a false positive. In the
latter case, the programmer must provide a type cast to suppress the error; as discussed in ğ 5, we
needed to do this in some cases in our experiments.

3.2 Type Equality Prediction Algorithm

Following Kazerounian et al. [2020], we say that a solution from standard type inference is overly
general, denoted og(τ ), if τ is one of α , τ1 ∪ τ2, τ1 ∩ τ2, ⊥, or ⊤. That is, og (τ ) holds whenever τ is
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not a nominal type. Note that this definition is heuristic and thus may not be airtight in all cases,
e.g., a programmer may want to use a union type in an annotation. We choose this definition of
overly general since, in our experience, programmers typically write nominal types, but we are
interested in exploring alternative definitions in the future.
With these definitions, we can partition a solution S into the usable solutions useable_sols and

the overly general solutions oд_sols:

useable_sols(S) = {α 7→ τ ∈ S | ¬og(τ )} oд_sols(S) = {α 7→ τ ∈ S | og(τ )}

Next we introduce the function simscore to represent the DeepSim neural network. Given two
type variables α1 and α2, simscore(α1,α2) ∈ [0, 1] is a similarity score between α1 and α2, where
scores closer to 1 indicate greater similarity and a score below 0.5 indicates dissimilarity. We also
assume there is an N specifying the maximum number of similar variables to try.

Nowwe can introduce deepsim_sol, the procedure for finding a single DeepSim network solution,
which we define in Figure 5b. Given a type variable α , a solution S , and a constraint set C , the
function deepsim_sol returns an updated constraint setCnew , which either includes a new solution
for α if one was found, or is the same as C if no solution was found.
The first line of deepsim_sol defines potential_sols to be the set of pairs of potential type

solutions and their corresponding similarity scores. The set is constructed by comparing α with
every αi ∈ dom(useable_sols(S)), and keeping the corresponding type solution τi when its similarity
score is above 0.5. Then the function loops, picking the highest scoring solution τk in potential_sols .
The function then łtestsž the solution by equating it to α and running constraint resolution. If this
succeeds, we have found a consistent guess, so the function returns the new set of constraints.
Otherwise, the loop continues with the next highest score, etc. If we exceed N iterations or explore
all the potential matching solutions, then the function returns the original constraint set, since no
consistent guess was found.

Finally, we can present SimTyper’s overall algorithm, the type_eq_inference procedure defined
in Figure 5c. type_eq_inference begins by executing standard inference. It then continues with
heuristic inference (see Kazerounian et al. [2020] for details; for convenience, here we assume a
procedure with slightly different inputs and outputs than in that presentation). Then, for all type
variables α with overly general solutions, it invokes deepsim_sol to guess a usable solution, if
possible. Since this additional solution could cascade (ğ 2.3), the constraints are solved again after
finding a usable solution. Notice this might remove an overly general solution from oд_sols(S)
(which strictly shrinks as only usable solutions are added by the algorithm). The overall process
repeats until no new solutions are added.
Note that this algorithm is greedy, so the order order in which DeepSim network solutions

are generated may matter. In particular, if the network generates incompatible solutions for two
different type variables (i.e., the resulting constraints are inconsistent), then the solution that was
generated earlier may effectively block the later solution. In our implementation, the order used is
effectively arbitrary. Determining a way to pick among incompatible solutions is an interesting
avenue for future work.

4 IMPLEMENTING THE DEEPSIM NETWORK

The DeepSim network is implemented, trained, and run in Python using the TensorFlow library.
Because InferDL is implemented in Ruby, SimTyper uses a local web server to interface between
InferDL and the DeepSim network.
Figure 6a shows DeepSim’s network architecture. DeepSim encodes a pair of inputs into a pair

of fixed-dimensional embedding vectors (of the same dimensionality) via a weight-sharing encoder,
and then runs them through a similarity function to predict the likelihood both inputs have the
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(a) Diagram of the DeepSim network.

(b) Two types of pooling in DeepSim, demonstrated on the method from Figure 1a. After converting each

position into contextualized vectors via CodeBERT, the blue dashed lines show the average pooling for the

method return, and the red solid lines show the average pooling for the argument day.

Fig. 6. SimTyper’s Deep Similarity (DeepSim) Neural Network.

same type. Following the Siamese Network structure [Koch et al. 2015], the encoder used for both
inputs is the same. Next, we discuss the network in more detail.

Network Input. For each argument, the network takes as input the tokenized source code for the
method containing the argument plus the positions at which the argument appears. More formally,
suppose arg1 and arg2 are the method arguments to be compared, and that Xi is the tokenized
source code of the method in which argi appears. Then the input to DeepSim is the two token

sequences X1 = . . . ,x
i1
1 , . . . ,x

i2
1 , . . . ,x

im
1 , . . . and X2 = . . . ,x

j1
2 , . . . ,x

j2
2 , . . . ,x

jn
2 , . . ., where each

x
ik
1 represents the mention of arg1 at position ik in the first sequence, and each x

jk
2 represents

the mention of arg2 at position jk in the second sequence. The input also includes the sequences
i1, i2, . . . , im and j1, j2, . . . jn , i.e., the indices of the parameters within the source code tokens.

DeepSim uses an analogous approach when comparing method returns: The input is the method’s
tokenized source code plus the positions of the method name itself and all the returns within its
body. We use the method’s name because it is often used to describe the return value; ğ 5 includes
an evaluation of different approaches to representing returns.

Contextualized Vector Representations. Next, DeepSim encodes each input token sequence into a
sequence of contextualized vector representations (one vector per token) using CodeBERT [Feng et al.
2020], a transformer-based [Vaswani et al. 2017] pre-trained code embedding model.3 Contextu-
alized vector representations can capture both the English-language meaning of tokens and the
surrounding code context. The goal is for tokens with similar meanings (e.g., year and month) and
usage (e.g., used inside basic arithmetic expressions) to map to nearby vectors in the vector space.
Continuing the formal notation just above, the output of this layer is the sequences of vectors

CV 1
1, . . . ,CV

m
1 and CV 1

2, . . . ,CV
n
2 , where CV

k
1 is the contextualized vector representation of token

3
CodeBERT was trained on over 8.5 million methods and functions from programs written in Ruby, Java, JavaScript, Go,

PHP, and Python.
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1 # Multiplies the monetary value with the given number and returns a new

2 # +Money+ object with this monetary value and the same currency.

3 # @param [Numeric] value Number to multiply by.

4 # @return [Money] The resulting money.

5 def ∗( value) ... end

Fig. 7. A method * from the Money library which has YARD documentation.

x
ik
1

for arg1, and CV
k
2 is the representation of token x

jk
2

for arg2. These vectors are of dimension
d = 768, the size of vectors produced by CodeBERT. Note that we keep only the contextualized
vectors for the tokens of the relevant argument/return.

Pooling. Next, the encoder uses a pooling layer to combine the contextualized vector representa-
tions into a single, fixed-dimension vector. We use mean pooling, which is shown to be effective in
Siamese Network models for text similarity tasks [Reimers and Gurevych 2019]. For example, as
illustrated in Figure 6b for our running example, for the argument day, the pooling layer averages
the vectors corresponding to its mentions in the method header and method body. For the return
of self.create, the pooling layer averages the vectors for the method name in the method header
and for the last line of the method, whose value is returned. Interestingly, our experiments suggest
mean pooling is important for arguments but not for returns (ğ 5.5).

Formally, the output of this layer is two fixed-dimensional vectorsV1 = MeanPool(CV 1
1, . . . ,CV

m
1 )

and V2 = MeanPool(CV 1
2, . . . ,CV

n
2 ), whereMeanPool averages its vector arguments.

Similarity Function. The subsequent stage, the similarity function, produces a similarity score for
the encoded inputs (now a pair of fixed-dimension vectors). First, the pair of vectors are joined
to form a relational vector representing the pair as well as their interactive features. Then this
relational vector is run through a sigmoid function to produce a similarity score in the range (0,
1), where a score closer to 1 indicates the inputs likely have the same type, and a score closer to 0
indicates the inputs likely have different types.
Formally, the similarity function begins by concatenating V1 and V2 with the element-wise

difference |V1 −V2 | to generate the pair representationV = (V1,V2, |V1 −V2 |). This approach follows
Reimers and Gurevych [2019], who show it to be effective in capturing both input features and the
interactive features between the pair. We then apply a fully-connected layer with trainable weight
matrixW ∈ R3d (recall d = 768 is the dimensionality of the CodeBERT contextualized vectors) and
bias term b ∈ R, and then pass the result through the sigmoid function σ , which squashes values
into the valid probability range [0,1] to generate the probability of X1 and X2 being similar (y = 1):

P(y = 1|X1,X2) = σ (W ·V + b) =
1

1 + e−(W ·V+b)

Taking N training pairs with labels 1 or 0 (yi = 1 or 0 for the ith pair), DeepSim is trained with
the Adam optimizer [Kingma and Ba 2015] by minimizing the binary cross-entropy loss, which is a
common choice for binary classification tasks:

J = −
∑N

i=1(yi · loд(p(yi )) + (1 − yi ) · loд(1 − p(yi ))

4.1 Training the DeepSim Network

SimTyper trains two different networks: one for comparing arguments, and one for comparing
returns. To train the networks, we need type information for Ruby programs. However, Ruby is
dynamically typed and does not include type annotations. Recently, several Ruby type systems
have emerged, including RDL [Foster et al. 2018], which InferDL is built on, Sorbet [Stripe 2020],
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and the new types available with Ruby 3.0. However, to the best of our knowledge, the number of
publicly available programs with type annotations is still very small and therefore is insufficient
for training. One idea for generating training data would be run Ruby programs and document the
observed runtime method types. Though Strickland et al. [2014] found that such types are often
specific to a single run of a program and thus may miss possible types, it is possible this approach
would be sufficient for a training dataset and it is worth exploring in the future.

Instead, we collect type information from programs that use YARD, a popular Ruby documentation
tool. Figure 7 shows an example of YARD documentation for method * of the Money library, one of
our benchmarks. The first two comment lines provide a general description, and the last two lines
give structured information including types of the parameter (of type Numeric) and the return (of
typeMoney). Note that this documentation is noisy because it may not be accurateÐthere is no
system that automatically checks YARD documentation against code to enforce its correctnessÐand
the standard notation for types in YARD is not enforced. Nevertheless, for purposes of training
DeepSim, it is still very effective, especially since DeepSim can tolerate some noise.
To build our training dataset, we looked at the top 1000 starred Ruby repositories on Github,

and the top 1000 gems on rubygems.org, Ruby’s central package hosting service. After eliminating
overlapping programs and removing programs without YARD type data, we were left with 371 Ruby
programs, comprising over 285,000 methods with documented types, and over 417,000 individual
data points, where each parameter and return type is counted as a separate data point.

However, for training, DeepSim expects pairs of inputs labeled with 1 for pairs with the same type
and 0 otherwise. The set of all possible pairs from our dataset of over 417,000 would be prohibitively
large, so we restrict ourselves to a set of 100,000 randomly chosen pairs; the number of pairs was
chosen through a tuning process discussed below. Moreover, we restrict training pairs to come
from the same program, with the idea that the naming choices and coding patterns ued within a
program are more likely to be cohesive than the choices between different programs.

Hyperparameters. We tuned three hyperparameters for the DeepSim network: the number of
data points, the number of training epochs, and the learning rate. We considered all data sizes from
25,000 to 200,000 in increments of 25,000, all numbers of epochs from 25 to 200 in increments of 25,
and all learning rates in the set {0.001, 0.0005, 0.0001, 0.0005}. We used grid search, training networks
using all possible combinations of values for the hyperparameters, then selecting the models that
scored the highest accuracy on a validation dataset that was independent from the training data and
test benchmarks used in our experiments (ğ 5). Ultimately, we trained the argument model using
150 epochs and the return model using 100 epochs, and both models were trained with 100,000
data points and a learning rate of 0.001.

Types for Instance, Class, and Global Variables. In addition to predicting type similarity for
arguments and returns, SimTyper also uses DeepSim to do the same for instance, class, and global
variables. However, there are a few changes required. First, because variables can be both read
and written, it is not the case that a greatest or least solution will always be most general. Instead,
SimTyper follows the approach of Kazerounian et al. [2020], which they showed to work well in
practice: when the variable’s type has upper bounds, SimTyper uses the intersection of the type’s
upper bounds, and otherwise SimTyper uses the union of its lower bounds.
Second, for a given variable, pooling averages the vectors corresponding to all uses of that

variable. However, unlike arguments and returns, instance, class, and global variables can be
accessed in multiple methods. Hence, the encoding step must vectorize all the methods that refer to
the variable. Note that although class, global, and (some) instance variables can be accessed outside
of methods, SimTyper currently does not include such occurrences in its analysis.
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Finally, YARD does not currently support documentation for instance, class, and global variables.
Thus we could not collect training data for them. Instead, we use the network we trained for
arguments to answer questions about variables, since we expect arguments may be named similarly
to and used in similar contexts to non-local variables. In the future, we are also interested in
exploring whether we could use just a single network for returns, arguments, and variables.

5 EVALUATION

We evaluated SimTyper on a range of Ruby benchmarks with existing type information, which we
treated as gold standard types we aim to infer. Our benchmarks came from two sources. First, we
used the same four Rails web apps that InferDL was evaluated on [Kazerounian et al. 2020]. We
refer to these as the InferDL Benchmarks:

• code.org [Code.org 2021] ś the code.org website app
• Discourse [Inc. 2021] ś online discussion platform
• Journey [Budin 2021] ś site for creating surveys and collecting responses
• Talks [Foster 2021] ś site for sharing talk announcements

For these apps, we use SimTyper to infer types for all methods and instance, class, and global
variables for which manually written type annotations already existed in the InferDL study.

Second, we applied SimTyper to four popular, well-maintained libraries that have extensive YARD
documentation that provides types for a majority of their methods. We refer to these as the YARD
Benchmarks:

• TZInfo [Ross 2021] ś library for manipulating timezone data
• MiniMagick [MiniMagick 2021] ś wrapper for the ImageMagick image manipulation platform
• Ronin [Postmodern 2021] ś platform for vulnerability research and exploit development
• Money [Emmons and Dmitriyev 2021] ś library for currency arithmetic and conversion

Table 1. Benchmark statistics.

Program # Meths LoC # Vars # Casts

code.org 74 689 11 4

Discourse 43 331 0 0

Journey 23 375 26 1

Talks 110 878 47 8

MiniMagick 40 216 0 2

Money 87 444 0 12

Ronin 226 1628 0 23

TZInfo 241 1292 0 5

Total 844 5853 84 55

We were particularly interested in libraries be-
cause, in our experience, they are more likely to
have well-documented APIs compared to com-
plete programs like web apps. For these libraries,
we use SimTyper to generate types for all meth-
ods with YARD type documentation except those
that use features that are not supported by
InferDL. The most common feature that blocked
standard type inference was the presence of
mixins, which are only partially supported by
InferDL. Note that we excluded any measure-
ments about instance, class, and global variables
for these benchmarks because YARD does not in-
clude documentation about variable types. Fi-
nally, we withheld all the type data for these pro-
grams from the datasets we used for training and validation (ğ 4.1).

Table 1 summarizes the benchmarks’ statistics. For each benchmark, the table lists the number of
methods for which SimTyper generates a type annotation that we compare against a gold standard,
followed by the number of lines of code comprised by those methods. Additionally, the subsequent
column lists the number of non-local (instance, class, and global) variable annotations generated
by SimTyper that we compare against gold standards. In total, we ran SimTyper on 844 methods
comprising 5,853 lines of code, and generated types for 84 non-local variables. Note that the number
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of types for variables for the YARD Benchmarks was 0, since YARD does not include documentation
for these variables that we can compare against.
The table also shows the number of type casts required to run standard type inference on the

benchmark’s methods. The first four benchmarks already came with type casts from InferDL;
we wrote type casts for the last four benchmarks. In our experience, the most common reasons
for needing type casts were to handle path-sensitive typing and to cast a value extracted from
heterogeneous data structures like arrays and hashes.
Additionally, we note that there were some method and variable types that SimTyper inferred

which we did not have a gold standard to compare against. More precisely, all of the YARD
Benchmarks included some method types inferred by SimTyper without corresponding gold
standards, and seven out of eight of all of the benchmarks included at least one instance, class,
or global variable type inferred by SimTyper without a corresponding gold standard. While we
could not compare these inferred types against gold standards, we found that of 418 non-compared
argument, return, and variable types, 277 were usable types, 81 were overly-general, and SimTyper

failed to infer types for 60 of these positions. The full results are shown in Table 6 in the Appendix.

Evaluation Methodology. We ran SimTyper on the above benchmarks under four separate con-
figurations: using constraint solving alone (C), constraint solving and InferDL’s built-in set of
heuristics (CH), constraint solving and the DeepSim network (CD), and all three approaches to-
gether (CHD). We compare the results to the original type annotations (InferDL Benchmarks) or
YARD documentation (YARD Benchmarks). To provide finer-grained analysis, we make comparisons
on a per-argument, per-return, and (for InferDL Benchmarks) per-variable basis, rather than, e.g.,
comparing whole method signatures at once. Inspired by prior work [Allamanis et al. 2020], we
place each comparison in one of three categories:

• Match. SimTyper inferred a type that exactly matches the gold standard or is a subtype of
the gold standard. We also consider a match exact if both the generated and gold standard
types are from the set {String, Symbol, String ∪ Symbol }. In Ruby, Symbol is a special kind
of interned String, and the two types are often used interchangeably. Lastly, we also treat
the types Array and ActiveRecord_Relation (Rails’ special array implementation, used for
database queries) as interchangeable.
• Match up to Parameter. The gold standard type is a generic type, and SimTyper inferred
the base of the generic type but not the parameter. For example, if the gold standard was
Array<String>, then SimTyper generating either Array or Array<Integer> would fall in this
category. This category provides a notion of partial matches.
• Different Type. SimTyper inferred a type that was consistent with the constraintsÐhence it
is soundÐbut differs from the gold standard type in a way that does not fall into the above
categories. For example, inferred structural types fall into this category because they very
rarely occur in the gold standard types (out of 1,496 gold standard annotations, just 8 use
structural types). Note that it is possible for programmer-provided and SimTyper-inferred
types to be incomparable, e.g., below we mention a case when one is Integer and the other is
String, and both are sound because they share a common structural supertype.

All results can be reproduced using the publicly available artifact [Kazerounian et al. 2021].

5.1 SimTyper Results

Figure 8 shows the types inferred by SimTyper under the C, CH, CD, and CHD configurations,
categorized as just described. We split the last category, Different Type, into structural and non-
structural types, to aid the discussion below. These results were collected using the top-3 solutions
suggested by DeepSim with a similarity score cutoff of 0.5 (see ğ 3). Below, unless we say otherwise,
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Fig. 8. Assessing the types inferred by SimTyper. We collected results under four configurations: constraint

solving (C), constraint solving plus heuristics (CH), constraint solver plus the DeepSim network (CD), and all

three (CHD). Results presented here use top-3 thresholding. Note the y-axis is scaled for each benchmark.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 106. Publication date: October 2021.



SimTyper: Sound Type Inference for Ruby using Type Equality Prediction 106:17

comparisons of matching sum both Match and Match up to Parameter. Table 7 in the Appendix
presents the same data as the figure.
Looking at the totals (lower right corner of the figure), we see that the CHD configuration

outperformed all others in the number of matches to the gold standard. In total, SimTyper inferred
1,033 total matching annotations under CHD, compared to 610 under C alone, a 69% increase. This
is still a 66% increase if we exclude matches up to parameter. CHD inferred the most matching types
not only in total, but also for each individual benchmark, with the exception of Money, for which
CD performed only slightly better. This suggests that combining constraint solving, heuristics, and
the DeepSim network is an effective approach to inferring type annotations that match what a
programmer would write.

Comparing CD to CH, we see that in total, CD inferred 19% more matching types than CH (or 16%
excluding matches up to parameter), indicating that DeepSim can outperform hand-written heuris-
tics. Interestingly, while this was true overall, there is a contrast between the YARD Benchmarks and
the InferDL Benchmarks. For the YARD Benchmarks, CD infers 44% more matches than CH, but for
the InferDL Benchmarks, CD generates 7% fewer matches than CH. The biggest single contributor
to the difference is code.org, where CD generates 20% fewer matches than CH. We believe the reason
for this overall difference is that the heuristic rules of InferDL were developed while applying
type inference to the InferDL Benchmarks [Kazerounian 2021]. For example, InferDL includes a
heuristic int_names that guesses that arguments ending in _id have type Number and arguments
ending in _ids have type Array<Number>. Without this heuristic, most such positions are inferred
by standard type inference to be Number ∪ Array<Number>. DeepSim can at best propagate this
union typeÐit has no particular mechanism to refine itÐand so it cannot improve on standard type
inference in these cases. Moreover, the int_names heuristic was applied more than 30 times for
code.org, compared to just 5 times for all other benchmarks combined. Thus, we see the tradeoff
between DeepSim and hand-written heuristics: the heuristics perform well on their initial target
but do not necessarily generalize to other programs, while DeepSim generalizes well but does not
fully cover all uses of heuristics. Thus, we think SimTyper’s architecture, which incorporates both
approaches, is the right design choice.

Finally, we examined the Different Types category in more detail. We note that in the C configu-
ration, structural types constitute the majority of different types inferred. The one exception is
code.org, where C infers union types in many positions as discussed just above. As we introduce
heuristics and DeepSim, we see a clear trend where the number of structural different types de-
creases as they are replaced by nominal and generic types (indeed, by design, InferDL heuristics
and DeepSim do not infer any new structural types), some of which become matches and some of
which remain different types. The other category that decreases, not shown explicitly in the figure
but included in the table in Appendix A, is positions where C could only infer a variable type, but
heuristics or DeepSim could infer a nominal or generic type.
To get more insight into the non-structural different types, we manually examined their occur-

rence in Money under CHD. We found these types fall into roughly two categories. First, in some
cases the gold standard type is a union and DeepSim’s inferred type was one arm of the union. For
example, for one parameter new_currency, the gold standard type isMoney::Currency ∪ String ∪

Symbol and the DeepSim inferred type isMoney::Currency. Second, sometimes DeepSim infers
a type that was unrelated to the gold standard but happened to be consistent with the program.
For example, for one parameter named amount, the gold standard type is Number but DeepSim
inferred the type String. The latter type is consistent because the only use of amount is to call to_d
on it (to convert it to a BigDecimal), and that method is also defined on String. It is interesting
future work to try to address both of these cases.
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Failed Inference. There are also some arguments, returns, and variables for which SimTyper fails
to infer any type. Table 7 in the Appendix presents the specific number of positions for which
this was the case under each configuration. Under CHD, across all benchmarks, SimTyper fails
to infer a type for 6.8% of arguments, returns, and variables. These are cases where there are not
enough constraints for standard inference to produce a solution: there are no non-type variable
upper bounds (for arguments and variables) or lower bounds (for returns and variables). In other
words, for arguments, no method is called on it (otherwise it would at least have a structural type
upper bound); and for returns, typically the returned value comes from a method SimTyper does
not analyze (e.g., a third-party library), and hence its signature has type variables that are not
constrained by its method body.

Additionally, it must be that both heuristics and DeepSim either fail to guess a type, or they guess
a type that is inconsistent with existing constraints. Of the 6.8% of positions (arguments/returns/-
variables) for which SimTyper failed to infer a type under CHD, the DeepSim network guessed
a type for about 46% of these positions, but the guess was rejected due to inconsistency with
constraints; none of the heuristics guessed a type for any of these positions. Interestingly, in 5 of
these positions, the type guessed by the DeepSim network was actually a correct array or hash
type, but the guess was rejected because the type checker conservatively uses invariant subtyping
for arrays and hashes.

Precision and Recall. Another way of measuring SimTyper’s results is in terms of precision and
recall. Following Pradel et al. [2019], we compute precision as nmatch/ntype , where nmatch is the
number of type matches (including up to parameter) and ntype is the total number of positions
(arguments, returns, and variables) for which SimTyper inferred any type. We compute recall as
nmatch/nall , where nall is the total number of positions for which SimTyper attempted to infer a
type (whether it did so or not).

Table 2. Precision and recall of SimTyper.

Config Precision Recall

C 59.6% 40.8%
CH 73.4% 54.3%
CD 69.6% 64.9%
CHD 74.1% 69.1%

From the table, we see that, consistent with the ear-
lier interpretation of the data, CHD achieved the highest
precision and recall. Additionally, CH outperformed CD
on precision by 3.8%, while CD outperformed CH on re-
call by 10.6%. This means that heuristics alone are less
likely to predict a matching type than DeepSim alone,
but when they do predict a type, the type is slightly more
likely to be a matching one. C was the worst performing
configuration in both precision and recall.
We note that our notion of precision and recall is

slightly different from Allamanis et al. [2020]. They compute precision as nneutral/ntype , where
nneutral is the number of łneutralž types: predicted types that pass a type checker. By this mea-
surement, under all four configurations, SimTyper’s precision would be 100%, since all of its
predicted types are consistent with the program’s constraints. Moreover, the paper computes
recall as ntype/nall , that is, the proportion of the dataset for which any type was inferred. By this
metric, the recall for CHD would be 93.2%. Instead, we focus on the number of matches inferred by
SimTyper, since this measures types that reflect programmer intent.

Arguments vs. Returns vs. Variables. Recall that SimTyper uses separate networks for arguments
and returns, and uses the argument network for instance, class, and global variables with some
small adaptations (ğ 4.1). Figure 9 measures SimTyper’s performance separately for these three
groups. The data for these plots are included in Appendix A.
The figure shows that DeepSim improved performance the most on arguments. Under CD and

CHD, SimTyper infers approximately 308% and 57% more matching (including up to parameter)
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Fig. 9. Measuring SimTyper’s performance for arguments, returns, and instance, class, and global variables

across all benchmarks. The plots use the same legend as Figure 8. Measurements were taken using top-3

thresholding.

types relative to the C and CH configurations, respectively. This is at least in part because arguments
had the most room for improvement. For example, under C, SimTyper inferred matches for just
12% of all argument types, while for return and variable types, it inferred 60% and 73% matches,
respectively.
However, it is also plausible that DeepSim is best tuned for arguments. First, recall that we

could not train a network specifically on variables since we did not have this data (ğ 4). Second,
we found that incorporating return sites into return embeddings does not significantly improve
performance (ğ 5.5). We leave exploring other ways to incorporate method code into DeepSim’s
predictions to future work.

5.2 Performance

Table 3. Running time of SimTyper over nine runs.

Program Median Time (s) ± SIQR

C CH CD CHD

code.org 4.0 ± 0.03 124 ± 0.36 72 ± 1.52 189 ± 0.27

Discourse 1.0 ± 0.10 32 ± 0.09 33 ± 0.33 62 ± 0.23

Journey 0.7 ± 0.06 3 ± 0.11 42 ± 0.31 41 ± 0.40

MiniMagick 0.5 ± 0.02 2 ± 0.02 39 ± 0.66 37 ± 0.37

Money 1.0 ± 0.03 5 ± 0.12 72 ± 1.91 71 ± 1.07

Ronin 2.0 ± 0.04 12 ± 0.21 172 ± 2.23 177 ± 2.22

Talks 2.0 ± 0.10 6 ± 0.21 68 ± 0.80 70 ± 1.35

TZInfo 2.0 ± 0.04 8 ± 0.21 156 ± 0.99 161 ± 0.75

Total 13.2 ± 0.42 192 ± 1.33 654 ± 8.75 808 ± 6.66

Table 3 measures the performance
of SimTyper in performing type
inference. We report the median
time and semi-interquartile range
(SIQR) over nine runs under each
configuration. Times were mea-
sured on a 2014 MacBook Pro
with a 3GHz i7 processor and
16GB RAM. We can see clearly
that DeepSim introduces over-
head. CHD and CD are approxi-
mately 4.2× and 50× slower than
CH and C, respectively. Upon
closer inspection, we found the
biggest bottleneck was running
CodeBERT; in the future, we plan
to explore methods for speeding
up this performance, such as alternative methods for batching inputs to CodeBERT.

Interestingly, there was just one benchmark, code.org, that took longer under CH than under CD.
For Discourse, CH and CD performance was nearly equal, and for all other benchmarks, CD took
notably longer than CH. The slowdown for code.org and Discourse occurred primarily due to the
struct-to-nominal heuristic, which involves searching all methods defined for all classes in the
program, which is a particularly large search space for these benchmarks.
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5.3 Comparing DeepSim and Heuristics

Table 4 reports how often DeepSim predicted a matching (including up to parameter) type that
a heuristic rule also guessed. For each heuristic rule (descriptions of the rules are in Appendix A
and Kazerounian et al. [2020]), the table lists how many types the heuristic matched in CH followed
by how many of those matches DeepSim also predicted in CD.

Table 4. DeepSim’s ability to predict types also guessed

by heuristics. HMatches is the number of matching (in-

cluding up to parameter) types inferred by the heuristic

in CH, andDSMatches counts the subset of those types

also inferred by DeepSim in CD. Measurements with

DeepSim were taken using the top-3 threshold.

Heuristic Rule H Matches DS Matches

struct-to-nominal 61 17 (28%)

is_model 21 18 (86%)

is_pluralized_model 6 2 (33%)

int_names 32 5 (16%)

int_array_name 3 0 (0%)

predicate_method 32 21 (66%)

string_name 18 16 (89%)

hash_access 9 0 (0%)

Total 182 79 (43%)

From the table, we see that DeepSim per-
formed best on types guessed by is_model

and string_name, two name-based heuris-
tics, predicting 87% of those types. DeepSim
also inferred a majority of types for predi-

cate_method, another name-based heuristic.
This makes sense as DeepSim’s embeddings
reflect argument and method names. How-
ever, as discussed earlier, DeepSim did poorly
on int_names and int_array_name, even
though they are also name-based. This was pri-
marily due to the aforementioned pattern in
code.org that DeepSim failed to capture.

Overall, DeepSim predicted 43% of the types
guessed by heuristics. We also examined the
dual (not shown in the table): of the 267
matching types inferred by DeepSim under CD,
heuristics guessed 80 (about 30%) of them un-
der CH. Because these two sets are largely non-
overlapping, these results reinforce that using

DeepSim alongside hand-written heuristics is an effective combination.

5.4 Predicting Rare Types

Table 5. Numbers of Library, Training, and Program types

guessed by DeepSim across all benchmarks, under CD with

top-3 cutoff.

Library Training Program

Match

incl. param.
All

Match

incl. param.
All

Match

incl. param.
All

240 356 12 13 16 38

One potential benefit of SimTyper is that
it can infer rare types, i.e., those that are
relatively less common across programs.
Such types could be inferred through stan-
dard constraint solving, e.g., in Figure 1b,
standard type inference found Timestamp

as a solution; through applying heuristics,
e.g., the struct-to-nominal heuristic can
guess a user-defined type that matches
a structural type; and through DeepSim,
which could predict a rare type by guess-
ing two positions have the same type. In this section, we measure how often DeepSim can predict
rare types, since rare types have historically posed a challenge for machine learning-based type
inference (ğ 6).
Table 5 measures three different categories of types inferred specifically by DeepSim. First,

the Library types are the 78 types in Ruby’s standard and core library as well as the core Rails
classes. These types are łcommonž because we expect them to appear frequently in Ruby programs.
DeepSim predicted 356 types in this category, of which 240 were matches (67% precision).
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Fig. 10. Evaluating design choices in SimTyper. Both plots use the same legend as in Figure 8 and show data

from CD across all benchmarks. Note y-axis starts at 700. Data for all plots appears in Appendix A.

The Training types are łrarež types that occur in the training dataset but not in the Library types.
In theory we could train a machine learning-based classifier to predict them directly. However, the
training data has 9,149 distinct types, and 71% of all argument and return types in the data are
Library types. Hence in practice a classifier would not be very likely to predict non-Library types.
In total, DeepSim predicted 13 Training types, of which 12 were matches (92% precision).
Finally, Program types only occur in the benchmarks and not in the standard libraries or in the

training data. Thus, a machine learning-based direct classifier would have no ability to predict these
types. In contrast, DeepSim predicted 38 such types, of which 16 were matches (42% precision).
Thus, overall, we can see that while DeepSim often predicts common types (which is expected,

since they are common), it can also effectively predict rare types.

5.5 SimTyper Design Choices

Finally, we evaluate two design choices in SimTyper. First, Figure 10a compares top-1, top-3, top-5,
and top-7 thresholds for solutions predicted by DeepSim running under CD, across all benchmarks.
(We omit heuristics because we are specifically interested in DeepSim here.) The data for these plots
is in Appendix A. From the figure, we can see an increase in matches (including up to parameter)
from top-1 (927 matches) to top-3 (971 matches). However, the results for top-3, top-5, and top-7
are nearly identical: for each category (match, match up to parameter, etc), the numbers are within
two of each other. Thus, we settled on top-3 for our experiments.
Next, we evaluate the use of mean pooling. Figure 10b compares pooling the vectors for all

uses of an argument (AllA), as in ğ 4, with using just the argument in the method header (HeadA).
Figure 10c similarly compares pooling method names and return sites (AllR), also as in ğ 4, to using
just method names (NameR). We see that under AllA, SimTyper infers 72 more matches than under
HeadA, while AllR yields just two more matches than HeadR. This suggests that for arguments,
the context from the uses in the method body is important, while for returns the method name
alone is likely sufficient.

6 RELATED WORK

There are several threads of related work.

Standard Type Inference. Type inference has a long history [Curry and Feys 1958], including the
well-known Hindley-Milner-Damas type inference algorithm [Damas and Milner 1982; Hindley
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1969; Milner 1978]. In our experience, because the algorithm is based on unification, the most
general types it infers can usually be presented to programmers without too much difficulty (though
the addition of more complex features like module systems can hinder usability). Researchers have
extended type inference to subtyping systems [Aiken et al. 1994; Cartwright and Fagan 1991; Pottier
1998; Wright and Cartwright 1997] as well, and this has enabled the development of practical type
inference systems for dynamic languages such as Python [Aycock 2000], JavaScript [Anderson
et al. 2005; Hackett and Guo 2012], and Ruby [Furr et al. 2009]. As discussed earlier, these systems
are often aimed at catching type errors rather than displaying the results of type inference to the
user, and in our experience, the types inferred by such systems can be quite hard to understand. In
contrast, SimTyper aims to infer usable types.

Probabilistic Type Inference. In recent years, researchers have proposed a number of probabilistic
type inference systems that aim to address the shortcomings of standard type inference. To the
best of our knowledge, SimTyper is the first system to apply this style of type inference to Ruby.
JSNice [Raychev et al. 2015] was one of the earliest probabilistic inference systems. JSNice

represents JavaScript source as a dependency graph and uses conditional random fields to predict
program properties, including type annotations. JSNice is limited to predicting a small set of types
seen in training data. DeepTyper [Hellendoorn et al. 2018] trains a bidirectional recurrent neural
network (RNN) on JavaScript source code to predict type annotations from over 11,000 types seen
in its training data. NL2Type [Malik et al. 2019] similarly trains an RNN, but exclusively on natural
language information (i.e., identifier names and comments) from JavaScript programs. NL2Type
predicts type annotations from a set of 1,000 types. Unlike SimTyper, none of the above approaches
are able to predict types outside their training dataset, nor are they sound.

TypeWriter [Pradel et al. 2019] trains a neural model to predict types based on identifier names,
comments, and source code from Python programs. After ranking the model’s predictions, Type-
Writer uses a gradual type checker to rule out any inconsistent predictions, similarly to SimTyper’s
use of constraints to rule out inconsistent predictions from DeepSim. However, unlike SimTyper, all
of TypeWriter’s types come from the neural model, whereas SimTyper uses standard type inference
to produce an initial set of solutions, and to propagate DeepSim’s solutions. Moreover, TypeWriter
is restricted to predicting types from its training dataset, while SimTyper is not (ğ 5.4).
Typilus [Allamanis et al. 2020] uses a graph neural network model to map program values to

an embedding in a type space. Types are then predicted based on the similarities of embeddings.
Typilus also checks predicted types against an optional type checker to rule out invalid types.
Because new types can be added to the type space, Typilus, like SimTyper, is able to predict rare
types. However, such types must be manually added to the type space. In contrast, in SimTyper, rare
or user-defined types can be inferred by standard type inference or heuristics and then propagated
through use of DeepSim. And, like TypeWriter, all types in Typilus come from the neural network
model, whereas SimTyper starts with standard type inference.

Types for Ruby. Furr et al. [2009] introduced DRuby, an early static type inference system for Ruby.
DRuby is focused exclusively on catching type errors in Ruby programs, rather than generating type
annotations. Much of their expressive type system, which includes union, intersection, optional,
and structural types, has been incorporated in to InferDL, on which SimTyper is built. Ren and
Foster [2016] introduce Hummingbird, a Ruby type checking system that checks programs at
runtime in order to support metaprogramming. This is a core idea behind RDL [Foster et al. 2018],
a Ruby type checker on which InferDL and SimTyper are built. Finally, Kazerounian et al. [2019]
introduced the idea of type-level computations, which are also incorporated into SimTyper and
greatly reduce the need for type casts in the presence of arrays, hashes, and Rails database queries.
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7 CONCLUSION

We presented SimTyper, a system that combines standard type inference via constraint solving,
manually written heuristics, and type equality prediction via the DeepSim network, in order
to generate usable types. SimTyper iterates through the overly general type variable solutions
remaining after constraint solving and heuristics. For each such type variable α , it finds the usable
type τ from the position most likely similar to α , and then guesses α = τ . Guesses that are consistent
with the other constraints are kept, and inconsistent guesses are discarded. In this way, even though
DeepSim is probabilistic, SimTyper itself always makes sound inferences.

The DeepSim network operates by using CodeBERT to encode source tokens into a vector space
and then pooling vectors that represent occurrences of the same argument or, for returns, the
return positions in the code. A pair of encoded inputs is then run through a trained similarity
function, which predicts whether those arguments or returns are likely to have the same type. The
network is trained on a set of Ruby programs that include manual type documentation.

We evaluated SimTyper on eight Ruby benchmarks and found that combining constraint solving,
heuristics, and type equality prediction results in inferring significantly more types that match
hand-written types, compared to constraint solving alone. Moreover, we found that the DeepSim
network can help to infer rare and program-specific types. Our results show that type equality
prediction can help type inference systems effectively produce more usable types.
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A APPENDIX

Table 6. Data on the types that SimTyper inferred, but we did not have gold standards to compare against. For

each program, we list the number of method types SimTyper inferred for which there was no gold standard,

the lines of code those methods comprised, the number of argument types those methods include, and the

number of instance, class, and global variables SimTyper inferred a type for. Note that we did not include a

column for the number of return types in the methods, since this is equivalent to the number of methods.

Then, of the total argument, return, and variable types SimTyper inferred, we list the number of these that

were usable, overly general, and the number for which SimTyper failed to infer any type.

Program # Meths LoC # Args # Vars # Usable
# Overly

General

# No

Type

code.org 0 0 0 1 0 1 0

Discourse 0 0 0 8 8 0 0

Journey 0 0 0 0 0 0 0

Talks 0 0 0 2 1 1 0

MiniMagick 39 271 28 13 45 10 25

Money 54 350 36 38 83 29 16

Ronin 41 367 8 69 92 17 9

TZInfo 10 60 14 57 48 23 10

Total 144 1048 86 188 277 81 60

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 106. Publication date: October 2021.



106:24 Milod Kazerounian, Jeffrey S. Foster, and Bonan Min

Table 7. SimTyper evaluation results corresponding to the plots in Figure 8. For each benchmark, we list the

number of matching, match up to parameter, and different inferred typesmeasured under all for configurations

(C/CH/CD/CHD). Unlike the plots in Figure 8, we also list the number of cases for which SimTyper didn’t

infer any type. For the different category, in parentheses we show the number of those different types that

were structural types. The No Type category indicates the algorithm could not find a more usable solution

than giving a type variable for that position.

Program Match
Match

up to Param.
Different (Structural) No Type

C /CH/CD/CHD C/CH/CD/CHD C / CH / CD / CHD C /CH/CD/CHD

code.org 59 /106/ 87 / 119 14/ 19 / 14 / 19 67(28) / 25(13) / 56(12) / 20(5) 23 / 13 / 6 / 5

Discourse 45 / 55 / 54 / 57 2 / 3 / 2 / 3 17(14) / 11(7) / 14(10) / 11(6) 13 / 8 / 7 / 6

Journey 39 / 47 / 45 / 48 1 / 2 / 3 / 3 7(7) / 2(2) / 6(3) / 4(0) 10 / 6 / 3 / 2

MiniMagick 25 / 29 / 31 / 35 1 / 1 / 2 / 2 8(5) / 8(5) / 12(2) / 10(2) 23 / 19 / 12 / 10

Money 58 / 67 / 82 / 81 6 / 6 / 13 / 11 47(41) / 41(26) / 47(25) / 47(12) 41 / 38 / 10 / 13

Ronin 102/134/161/ 167 16/ 15 / 43 / 42 81(53) / 68(29) / 123(23) /119(14) 144/126/ 16 / 15

Talks 105/136/138/ 140 13/ 20 / 16 / 22 38(26) / 21(7) / 37(13) / 29(7) 40 / 19 / 5 / 5

TZInfo 117/166/261/ 266 7 / 7 / 19 / 18 149(127)/ 119(78) / 129(59) /122(26) 178/159/ 42 / 45

Total 550/740/859/ 913 60/ 73 /112/ 120 414(301)/295(167)/424(147)/362(72) 472/388/101/ 101

Table 8. This table corresponds to the graphs in Figure 9. Measuring SimTyper’s performance for arguments,

variables, and returns. For each category, we list the number of match, match up to parameter, and differ-

ent inferred types measured under all for configurations (C/CH/CD/CHD). For the different category, in

parentheses we show the number of those different types that were structural types.

Category Match
Match

up to Param.
Different (Structural)

C /CH/CD/CHD C/CH/CD/CHD C / CH / CD / CHD

Args 69 /208/279/ 322 5 / 17 / 23 / 32 339(296)/222(166)/268(146)/219(71)

Vars 52 / 57 / 61 / 61 9 / 11 / 13 / 14 6(4) / 4(2) / 9(1) / 8(1)

Rets 429/475/519/ 530 46/ 45 / 76 / 74 69(0) / 69(0) / 147(0) / 135(0)

For easy reference, here are descriptions of the heuristics in InferDL [Kazerounian et al. 2020]. RDL
[Foster et al. 2018], mentioned below, is the Ruby type checker InferDL (and hence SimTyper also)
is built on.

• is_model: When an argument has the same name as a Rails model class, the variable is given
the the nominal type of that class. A model is a special Rails class that maps to a table in the
backend database. For example, if a model called User exists, an argument called user would
be assigned the nominal type User.
• is_pluralized_model: Similar to the above rule, when an argument is the pluralized version
of amodel class u, the argument is given the union typeArray<u>∪ActiveRecord_Relation<u>,
where ActiveRecord_Relation is a special type of array provided by Rails.
• int_names: If a variable (for arguments and non-local variables) or method (for returns)
name ends with id, num, or count, guess the type Integer.
• int_array_name: If a variable or method name ends with ids, nums, or counts, guess
Array<Integer>.
• predicate_method: If a method name ends with a ?, guess %bool (RDL’s boolean type) for
the return type.
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• string_name: If a variable or method name ends with name, guess String.
• hash_access: A rule for generating finite hash types, RDL’s precise version of a hash type.
If all of a variable type’s upper bounds are structural types for the methods [] and []=, use
inputs/outputs for these structural types to guess a corresponding finite hash type.

Table 9. This table corresponds to the graphs in Figure 10b. Measuring SimTyper’s performance under for two

different methods of generating embeddings for arguments: Averaging vectors for all uses of an argument

(All) or using just the vector for the argument in the method header (Head). Measurements were taken under

the CD configuration. For the different category, in parentheses we show the number of those different types

that were structural types.

Embedding Method Match
Match

up to Param.
Different (Structural)

All 859 112 424(147)

Head 792 107 463(176)

Table 10. This table corresponds to the graphs in Figure 10c. Measuring SimTyper’s performance under for

two different methods of generating embeddings for returns: averaging method names and return sites (N+S),

or using just method names (N). Measurements were taken under the CD configuration. For the different

category, in parentheses we show the number of those different types that were structural types.

Embedding Method Match
Match

up to Param.
Different (Structural)

N+S 859 112 424(147)

N 866 103 432(147)

Table 11. This table corresponds to the graphs in Figure 10a. Measuring SimTyper’s performance under top-1,

-3, -5, and -7 configurations. Measurements were taken under the CD configuration. For the different category,

in parentheses we show the number of those different types that were structural types.

Configuration Match
Match

up to Param.
Different (Structural)

top-1 819 108 449(172)

top-3 859 112 424(147)

top-5 860 112 423(144)

top-7 860 113 422(143)
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