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Abstract. Refinement types are a popular way to specify and reason
about key program properties. In this paper, we introduce RTR, a new
system that adds refinement types to Ruby. RTR is built on top of
RDL, a Ruby type checker that provides basic type information for
the verification process. RTR works by encoding its verification prob-
lems into Rosette, a solver-aided host language. RTR handles mixins
through assume-guarantee reasoning and uses just-in-time verification
for metaprogramming. We formalize RTR by showing a translation from
a core, Ruby-like language with refinement types into Rosette. We apply
RTR to check a range of functional correctness properties on six Ruby
programs. We find that RTR can successfully verify key methods in these
programs, taking only a few minutes to perform verification.
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1 Introduction

Refinement types combine types with logical predicates to encode program in-
variants [32, 43]. For example, the following refinement type specification:

type : incr sec , ‘( Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
describes a method incr sec that increments a second. With this specification,
incr sec can only be called with integers that are valid seconds (between 0 and
59) and the method will always return valid seconds.

Refinement types were introduced to reason about simple invariants, like
safe array indexing [43], but since then they have been successfully used to verify
sophisticated properties including termination [39], program equivalence [9], and
correctness of cryptographic protocols [28], in various languages (e.g., ML [18],
Racket [21], and TypeScript [40]).

In this paper, we explore refinement types for Ruby, a popular, object-
oriented, dynamic scripting language. Our starting place is RDL [17, 30], a Ruby
type system recently developed by one of the authors and his collaborators. We
introduce RTR, a tool that adds refinement types to RDL and verifies them via
a translation into Rosette [38], a solver-aided host language. Since Rosette is not
object-oriented, RTR encodes Ruby objects as Rosette structs that store object



fields and an integer identifying the object’s class. At method calls, RTR uses
RDL’s type information to statically overestimate the possible callees. When
methods with refinement types are called, RTR can either translate the callee
directly or treat it modularly by asserting the method preconditions and assum-
ing the postcondition, using purity annotations to determine which fields (if any)
the method may mutate. (§ 2)

In addition to standard object-oriented features, Ruby includes dynamic lan-
guage features that increase flexibility and expressiveness. In practice, this intro-
duces two key challenges in refinement type verification: mixins, which are Ruby
code modules that extend other classes without direct inheritance, and metapro-
gramming, in which code is generated on-the-fly during runtime and used later
during execution. The latter feature is particularly common in Ruby on Rails, a
popular Ruby web development framework.

To meet these challenges, RTR uses two key ideas. First, RTR incorporates
assume-guarantee checking [20] to reason about mixins. RTR verifies definitions
of methods in mixins by assuming refinement type specifications for all unde-
fined, external methods. Then, by dynamically intercepting the call that includes
a mixin in a class, RTR verifies the appropriate class methods satisfy the assumed
refinement types (§ 3.1). Second, RTR uses just-in-time verification to reason
about metaprogramming, following RDL’s just-in-time type checking [30]. In
this approach, (refinement) types are maintained at run-time, and methods are
checked against their types after metaprogramming code has executed but before
the methods have been called (§ 3.2).

We formalized RTR by showing how to translate λRB , a core Ruby-like lan-
guage with refinement types, into λI , a core verification-oriented language. We
then discuss how to map the latter into Rosette, which simply requires encod-
ing λI ’s primitive object construct into Rosette structs and translating some
control-flow constructs such as return (§ 4).

We evaluated RTR by using it to check a range of functional correctness
properties on six Ruby and Rails applications. In total, we verified 31 methods,
comprising 271 lines of Ruby, by encoding them as 1,061 lines of Rosette. We
needed 73 type annotations. Verification took a total median time (over multiple
trials) of 506 seconds (§ 5).

Thus, we believe RTR is a promising first step toward verification for Ruby.

2 Overview

We start with an overview of RTR, which extends the Ruby type checker RDL [30]
with refinement types. In RTR, program invariants are specified with refinement
types (§ 2.1) and checked by translation to Rosette (§ 2.2). We translate Ruby
objects to Rosette structs (§ 2.3) and method calls to function calls (§ 2.4).

2.1 Refinement Type Specifications

Refinement types in RTR are Ruby types extended with logical predicates. For
example, we can use RDL’s type method to link a method with its specification:
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type ‘(Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
def incr sec (x) if (x==59) then 0 else x+1 end ; end

This type indicates the argument and result of incr sec are integers in the range
from 0 to 59. In general, refinements (in curly braces) may be arbitrary Ruby
expressions that are treated as booleans, and they should be pure, i.e., have
no side effects, since effectful predicates make verification either complicated or
imprecise [41]. As in RDL, the type annotation, which is a string, is parsed and
stored in a global table which maintains the program’s type environment.

2.2 Verification using Rosette

RTR checks method specifications by encoding their verification into Rosette [38],
a solver-aided host language built on top of Racket. Among other features,
Rosette can perform verification by using symbolic execution to generate log-
ical constraints, which are discharged using Z3 [24].

For example, to check incr sec , RTR creates the equivalent Rosette program:
(define ( incr sec x) ( if (= x 59) 0 (+ x 1)))
(define−symbolic x in integer?)
( verify #:assume (assert 0 ≤ x < 60)

#:guarantee (assert (let ([ r ( incr sec x) ]) 0 ≤ r < 60)))
Here x in is an integer symbolic constant representing an unknown, arbitrary in-
teger argument. Rosette symbolic constants can range over the solvable types in-
tegers, booleans, bitvectors, reals, and uninterpreted functions. We use Rosette’s
verify function with assumptions and assertions to encode pre- and postcondi-
tions, respectively. When this program is run, Rosette searches for an x in such
that the assertion fails. If no such value exists, then the assertion is verified.

2.3 Encoding and Reasoning about Objects

We encode Ruby objects in Rosette using a struct type, i.e., a record. More specif-
ically, we create a struct type object that contains an integer classid identifying
the object’s class, an integer objectid identifying the object itself, and a field
for each instance variable of all objects encountered in the source Ruby program
(similarly to prior work [19, 34]).

For example, consider a Ruby class Time with three instance variables @sec,
@min, and @hour, and a method is valid that checks all three variables are valid:

class Time
attr accessor : sec , :min, :hour

def initialize (s , m, h) @sec = s; @min = m; @hour = h; end

type ‘() → bool’
def is valid 0 ≤ @sec < 60 ∧ 0 ≤ @min < 60 ∧ 0 ≤ @hour < 24; end

end
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RTR observes three fields in this program, and thus it defines:
(struct object ([ classid ][ objectid ]

[@sec #:mutable] [@min #:mutable] [@hour #:mutable]))
Here object includes fields for the class ID, object ID, and the three instance
variables. Note since object’s fields are statically defined, our encoding cannot
handle dynamically generated instance variables, which we leave as future work.

RTR then translates Ruby field reads or writes as getting or setting, respec-
tively, object’s fields in Rosette. For example, suppose we add a method mix to
the Time class and specify it is only called with and returns valid times:

type :mix, ‘(Time t1 { t1. is valid }, Time t2 { t2. is valid },
Time t3 { t3. is valid }) → Time r { r. is valid }’

def mix(t1,t2,t3) @sec = t1.sec ; @min = t2.min; @hour = t3.hour; self ; end
Initially, type checking fails because the getters’ and setters’ (e.g., sec and sec=)
types are unknown. Thus, we add those types:

type :sec , ‘() → Integer i { i == @sec }’
type :sec=, ‘(Integer i ) → Integer out { i == @sec }’

(Note these annotations can be generated automatically using our approach
to metaprogramming, described in § 3.2.) This allows RTR to proceed to the
translation stage, which generates the following Rosette function:
(define (mix self t1 t2 t3)

(set−object−@sec! self (sec t1))
(set−object−@min! self (min t2))
(set−object−@hour! self (hour t3))
self )

(Asserts, assumes, and verify call omitted.) Here (set−object−x! y w) writes w
to the x field of y and the field selectors sec, min, and hour are uninterpreted func-
tions. Note that self turns into an explicit additional argument in the Rosette
definition. Rosette then verifies this program, thus verifying the original Ruby
mix method.

2.4 Method Calls

To translate a Ruby method call e.m(e1, .., en), RTR needs to know the callee,
which depends on the runtime type of the receiver e. RTR uses RDL’s type
information to overapproximate the set of possible receivers. For example, if e
has type A in RDL, then RTR translates the above as a call to A.m. If e has a
union type, RTR emits Rosette code that branches on the potential types of the
receiver using object class IDs and dispatches to the appropriate method in each
branch. This is similar to class hierarchy analysis [16], which also uses types to
determine the set of possible method receivers and construct a call graph.

Once the method being called is determined, we translate the call into Rosette.
As an example, consider a method to sec that converts Time to seconds, after
it calls the method incr sec from § 2.1.
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type ‘(Time t { t. is valid }) → Integer r { 0≤r<90060 }’
def to sec (t) incr sec (t . sec) + 60 ∗ t.min + 3600 ∗ t.hour; end

RTR’s translation of to sec could simply call directly into incr sec ’s trans-
lation. This is equivalent to inlining incr sec ’s code. However, inlining is not
always possible or desirable. A method’s code may not be available because the
method comes from a library, is external to the environment (§ 3.1), or has not
been defined yet (§ 3.2). The method might also contain constructs that are
difficult to verify, like diverging loops.

Instead, RTR can model the method call using the programmer provided
method specification. To precisely reason with only a method’s specification,
RTR follows Dafny [22] and treats pure and impure methods differently.

Pure methods. Pure methods have no side effects and return the same result for
the same inputs, satisfying the congruence property ∀x, y.x = y ⇒ m(x) = m(y)
for a given method m. Thus, pure methods can be encoded using Rosette’s
uninterpreted functions. The method incr sec is indeed pure, so we can label it
as such:

type : incr sec , ‘( Integer x { 0≤x<60 }) → Integer r { 0≤r<60 }’, :pure
With the pure label, the translation of to sec treats incr sec as an uninter-
preted function. Furthermore, it asserts the precondition 0≤x<60 and assumes
the postcondition 0≤r<60, which is enough to verify to sec .

Impure methods. Most Ruby methods have side effects and thus are not pure.
For example, consider incr min, a mutator method that adds a minute to a Time:

type ‘(Time t { t. is valid ∧ t .min < 59 }) →Time r { r. is valid }’,
modifies: { t : @min, t: @sec }

def incr min(t)
if t . sec<59 then t.sec=incr sec(t . sec) else t .min+=1; t.sec=0 end
return t

end
A translated call to incr min generates a fresh symbolic value as the method’s
output and assumes the method’s postcondition on that value. Because the
method may have side effects, the modifies label is used to list all fields of
inputs which may be modified by the method. Here, a translated call to incr min
will havoc (set to fresh symbolic values) t’s @min and @sec fields.

We leave support for other kinds of modifications (e.g., global variables, tran-
sitively reachable fields), as well as enforcing the pure and modifies labels, as
future work.

3 Just-In-Time Verification

Next, we show how RTR handles code with dynamic bindings via mixins (§ 3.1)
and metaprogramming (§ 3.2).
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3.1 Mixins

Ruby implements mixins via its module system. A Ruby module is a collection
of method definitions that are added to any class that includes the module at
runtime. Interestingly, modules may refer to methods that are not defined in the
module but will ultimately be defined in the including class. Such incomplete
environments pose a challenge for verification.

Consider the following method that has been extracted and simplified from
the Money library described in § 5.

module Arithmetic
type ‘(Integer x)→ Float r { r==x/value }’
def div by val (x) x/value ; end

end
The module method div by val divides its input x by value. RTR’s specification
for / requires that value cannot be 0.

Notice that value is not defined in Arithmetic. Rather, it must be defined
wherever Arithmetic is included. Therefore, to proceed with verification in RTR,
the programmer must provide an annotation for value:

type :value , ‘() → Float v { 0 < v }’, :pure
Using this annotation, RTR can verify div by value . Then when Arithmetic is
included in another class, RTR verifies value’s refinement type. For example,
consider the following code:

class Money
include Arithmetic
def value()

if (@val > 0) then (return @val) else (return 0.01) end
end

end
RTR dynamically intercepts the call to include and then applies the type

annotations for methods not defined in the included module, in this case verify-
ing value against the annotation in Arithmetic. Thus, RTR follows an assume-
guarantee paradigm [20]: it assumes value’s annotation while verifying div by val
and then guarantees the annotation once value is defined.

3.2 Metaprogramming

Metaprogramming in Ruby allows new methods to be created and existing meth-
ods to be redefined on the fly, posing a challenge for verification. RTR addresses
this challenge using just-in-time checking [30], in which, in addition to code,
method annotations can also be generated dynamically.

We illustrate the just-in-time approach using an example from Boxroom, a
Rails app for managing and sharing files in a web browser (§ 5). The app defines
a class UserFile that is a Rails model corresponding to a database table:
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class UserFile < ActiveRecord::Base
belongs to : folder
... type ‘(Folder target ) → Bool b { folder == target }’

def move(target) folder = target; save !; end ...
end

Here calling belongs to tells Rails that every UserFile is associated with a folder
(another model). The move method updates the associated folder of a UserFile
and saves the result to the database. We annotate move to specify that the
UserFile’s new folder should be the same as move’s argument.

This method and its annotation are seemingly simple, but there is a problem.
To verify move, RTR needs an annotation for the folder = method, which is not
statically defined. Rather, it is dynamically generated by the call to belongs to.

To solve this problem in RTR, we instrument belongs to to generate type
annotations for the setter (and getter) method, as follows:

module ActiveRecord::Associations::ClassMethods
pre(: belongs to) do |∗args |

name = args [0]. to s
cname = name.camelize
type ‘#{name}’ , ‘() → #{cname} c’, :pure
type ‘#{name}=’, ‘(#{cname} i) →#{cname} o { #{name} == i }’
true

end
end

We call pre, an RDL method, to define a precondition code block (i.e., an anony-
mous function) which will be executed on each call to belongs to. First, the block
sets name and cname to be the string version of the first argument passed to
belongs to and its camelized representation, respectively. Then, we create types
for the name and name= methods. Finally, we return true so the contract will
succeed. In our example, this code generates the following two type annotations
upon the call to belongs to:

type ‘ folder ’ , ‘() → Folder c ’, :pure
type ‘ folder =’, ‘(Folder i ) → Folder o { folder == i }’

With these annotations, verification of the initial move method succeeds.

4 From Ruby to Rosette

In this section, we formally describe our verifier and the translation from Ruby
to Rosette. We start (§ 4.1) by defining λRB , a Ruby subset that is extended
with refinement type specifications. We give (§ 4.2) a translation from λRB to an
intermediate language λI , and then (§ 4.3) we discuss how λI maps to a Rosette
program. Finally (§ 4.5), we use this translation to construct a verifier for Ruby.
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Constants c ::= nil | true | false | 0, 1,−1, . . .
Expressions e ::= c | x | x:=e | if e then e else e | e ; e

| self | f | f :=e | e.m(e) | A.new | return(e)
Refined Types t ::= {x : A | e }

Program P ::= · | d, P | a, P
Definition d ::= def A.m(t)::t; l = e

Annotation a ::= A.m :: (t)→ t ; l with l 6= exact

Labels l ::= exact | pure | modifies[x.f ]

x ∈ var ids, f ∈ field ids, m ∈ meth ids, A ∈ class ids

Fig. 1. Syntax of the Ruby Subset λRB .

Values w ::= c | object(i, i, [f w])
Expressions u ::= w | x | x:=u | if u then u else u | u ; u

| let ([x u]) in u | x(u) | assert(u)
| assume(u) | return(u) | havoc(x.f) | x.f := u | x.f

Program Q ::= · | d,Q | v,Q
Definition d ::= define x(x) = u | define-sym(x, A)

Verification Query v ::= verify(u⇒ u)

x ∈ var ids, f ∈ field ids, A ∈ types, i ∈ integers

Fig. 2. Syntax of the Intermediate Language λI .

4.1 Core Ruby λRB and Intermediate Representation λI

λRB. Figure 1 defines λRB , a core Ruby-like language with refinement types.
Constants consist of nil, booleans, and integers. Expressions include constants,
variables, assignment, conditionals, sequences, and the reserved variable self,
which refers to a method’s receiver. Also included are references to an instance
variable f and instance variable assignment; we note that in actual Ruby, field
names are preceded by a “@”. Finally, expressions include method calls, construc-
tor calls A.new which create a new instance of class A, and return statements.

Refined types {x : A | e } refine the basic type A with the predicate e.
The basic type A is used to represent both user defined and built-in classes
including nil, booleans, integers, floats, etc. The refinement e is a pure, boolean
valued expression that may refer to the refinement variable x. In the interest
of greater simplicity for the translation, we require that self does not appear
in refinements e; however, extending the translation to handle this is natural,
and our implementation allows for it. Sometimes we simplify the trivially refined
type {x : A | true } to just A.

A program is a sequence of method definitions and type annotations over
methods. A method definition defA.m({x1 : A1 | e1 }, . . . , {xn : An | en })::t; l =
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e defines the method A.m with arguments x1, . . . , xn and body e. The type spec-
ification of the definition is a dependent function type: each argument binder xi
can appear inside the arguments’ refinements types ej for all 1 ≤ j ≤ n, and can
also appear in the refinement of the result type t. A method type annotation
A.m :: (t) → t ; l binds the method named A.m with the dependent function
type (t) → t. λRB includes both method annotations and method definitions
because annotations are used when a method’s code is not available, e.g., in the
cases of library methods, mixins, or metaprogramming.

A label l can appear in both method definitions and annotations to direct the
method’s translation into Rosette as described in § 2.4. The label exact states
that a called method will be exactly translated by using the translation of the
body of the method. Since method type annotations do not have a body, they
cannot be assigned the exact label. The pure label indicates that a method is
pure and thus can be translated using an uninterpreted function. Finally, the
modifies[x.f ] label is used when a method is impure, i.e., it may modify its
inputs. As we saw earlier, the list x.f captures all the argument fields which the
method may modify.

λI . Figure 2 defines λI , a core verification-oriented language that easily trans-
lates to Rosette. λRB methods map to λI functions, and λRB objects map to
a special object struct type. λI provides primitives for creating, altering, and
referencing instances of this type. Values in λI consist of constants c (defined
identically to λRB) and object(i1, i2, [f1 w1] . . . [fn wn]), an instantiation of an
object type with class ID i1, object ID i2, and where each field fi of the object
is bound to value wi. Expressions include let bindings (let ([xi ui]) in u) where
each xi may appear free in uj if i < j. They also include function calls, assert,
assume, and return statements, as well as havoc(x.f), which mutates x’s field
f to a fresh symbolic value. Finally, they include field assignment x.f := u and
field reads x.f .

A program is a series of definitions and verification queries. A definition is a
function definition or a symbolic definition define-sym(x, A), which binds x to
either a fresh symbolic value if A is a solvable type (e.g., boolean, integer; see
§ 2.2) or a new object with symbolic fields defined depending on the type of A.
Finally, a verification query verify(u⇒ u) checks the validity of u assuming u.

4.2 From λRB to λI

Figure 3 defines the translation function e  u that maps expressions (and
programs) from λRB to λI .

Global States. The translation uses setsM, U , and F , to ensure all the methods,
uninterpreted functions, and fields are well-defined in the generated λI term:

M ::= A1.m1, . . . , An.mn U ::= A1.m1, . . . , An.mn F ::= f1, . . . , fn
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Expression Translation e u

c c T-Const x x T-Var e1  u1 e2  u2
e1 ; e2  u1 ; u2

T-Seq

e1  u1 e2  u2 e3  u3
if e1 then e2 else e3  if u1 then u2 else u3

T-If
self self T-Self

e u
x:=e x:=u T-VarAssn e u

return(e) return(u)
T-Ret

f ∈ F
f  self.f T-Inst f ∈ F e u

f :=e self.f := u
T-InstAssn

classId(A) = ic freshID(io) fi ∈ F
A.new object(ic, io, [f1 nil] . . . [f|F| nil])

T-New

typeOf(eF ) = A exact = labelOf(A.m)
A m ∈M eF  uF ei  ui

eF .m(e) A m(uF , u)
T-Exact

typeOf(eF ) = A pure = labelOf(A.m)
A m ∈ U freshVar(x, r)

specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }
eF  uF e u ex  ux er  ur

eF .m(e) let ([x u][r A m(uF , a)]) in assert(ux) ; assume(ur) ; r
T-Pure1

typeOf(eF ) = A modifies[p] = labelOf(A.m)
specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }

hx = {u.f | f ∈ F , x.f ∈ p} hF = {uF .f | f ∈ F , self.f ∈ p}
freshVar(x, r) eF  uF e u ex  ux er  ur

eF .m(e) let ([x u]) in define-sym(r, Ar);
assert(ux) ; havoc(hF ∪ hx) ; assume(ur) ; r

T-Impure1

Program Translation P  Q

· · T-Emp P  Q

A.m :: (x1:t1, . . . , xn:tn)→ t ; l, P  Q
T-Ann

ti = {xi : Axi | exi } t = {r : Ar | er }
e u exi  uxi er  ur P  Q 1 ≤ i ≤ n

def A.m(t1, . . . , tn)::t; l = e, P  

define A m(self, x1, . . . , xn) = u;
define-sym(self, A);
define-sym(xi, Axi );
verify(ux1 , . . . , uxn ⇒ ur) ; Q

T-Def

Fig. 3. Translation from λRB to λI . For simplicity rules T-Pure1 and T-Impure1
assume single argument methods.
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In the translation rules, we use the standard set operations x ∈ X and | X | to
check membership and size of the set X . Thus, the translation relation is defined
over these sets: M,U ,F ` e  u. Since the rules do not modify these environ-
ments, in Figure 3 we simplify the rules to e  u. Note that even though the
rules “guess” these environments by making assumptions about which elements
are members of the sets, in an algorithmic definition the rules can be used to
construct the sets.

Expressions. The rules T-Const and T-Var are identity while the rules T-If,
T-Seq, T-Ret, and T-VarAssn are trivially inductively defined. The rule T-
Self translates self into the special variable named self in λI . The self variable
is always in scope, since each λRB method translates to a λI function with an
explicit first argument named self . The rules T-Inst and T-InstAssn translate
a reference from and an assignment to the instance variable f , to a read from
and write to, respectively, the field f of the variable self . Moreover, both the
rules assume the field f to be in global field state F . The rule T-New translates
from a constructor call A.new to an object instance. The classId(A) function
in the premise of this rule returns the class ID of A. The freshID(io) predicate
ensures the new object instance has a fresh object ID. Each field of the new
object, f1, . . . , f|F|, is initially bound to nil.

Method Calls. To translate the λRB method call eF .m(e), we first use the func-
tion typeOf(eF ) to type eF via RDL type checking [30]. If eF is of type A, we
split cases of the method call translation based on the value of labelOf(A.m),
the label specified in the annotation of A.m (as informally described in § 2.4).

The rule T-Exact is used when the label is exact. The receiver eF is trans-
lated to uF which becomes the first (i.e., the self ) argument of the function call
to A m. Moreover, A.m is assumed to be in the global method name setM since
it belongs to the transitive closure of the translation.

We note that for the sake of clarity, in the T-Pure1 and T-Impure1 rules, we
assume that the method A.m takes just one argument; the rules can be extended
in a natural way to account for more arguments. The rule T-Pure1 is used
when the label is pure. In this case, the call is translated as an invocation to the
uninterpreted function A m, so A.m should be in the global set of uninterpreted
functions U . The specification specOf(A.m) of the method is also enforced. Let
({x : Ax | ex })→ {r : Ar | er } be the specification. We assume that the binders
in the specification are α-renamed so that the binders x and r are fresh. We use x
and r to bind the argument and the result, respectively, to ensure, via A-normal
form conversion [33], that they will be evaluated exactly once, even though x
and r may appear many times in the refinements. To enforce the specification,
we assert the method’s precondition ex and assume the postcondition er.

If a method is labeled with modifies[p] then the rule T-Impure1 is applied.
We locally define a new symbolic object as the return value, and we havoc the
fields of all arguments (including self ) specified in the modifies label, thereby
assigning these fields to new symbolic values. Since we do not translate the called
method at all, no global state assumptions are made.
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Programs. Finally, we use the translation relation to translate programs from
λRB to λI , i.e., P  Q. The rule T-Ann discards type annotations. The rule
T-Def translates a method definition for A.m to the function definition A m
that takes the additional first argument self . The rule also considers the declared
type of A.m and instantiates a symbolic value for every input argument. Finally,
all refinements from the inputs and output of the method type are translated
and the derived verification query is made.

4.3 From λI to Rosette

We write Q� R to encode the translation of the λI program Q to the Rosette
program R. This translation is straightforward, since λI consists of Rosette ex-
tended with some macros to encode Ruby-verification specific operators, like
define-sym and return. In fact, in the implementation of the translation (§ 5),
we used Racket’s macro expansion system to achieve this final transformation.

Handling objects. λI contains multiple constructs for defining and altering ob-
jects, which are expanded in Rosette to perform the associated operations over
object structs. The expressions object(ic, io, [f w]) and havoc(x.f), and the
definition define-sym(x, A), all described in § 4.1, are expanded to perform the
corresponding operations over values of the object struct type.

Control Flow. Macro expansion is used to translate return and assume state-
ments, and exceptions into Rosette, since those forms are not built-in to the
language. To encode return, we expand every function definition in λI to keep
track of a local variable ret, which is initialized to a special undefined value and
returned at the end of the function. We transform every statement return(e) to
update the value of ret to e. Then, we expand every expression u in a function
to unless-done(u), which checks the value of ret, proceeding with u if ret is
undefined or skipping u if there is a return value.

We used the encoding of return to encode more operators. For example,
assume is encoded in Rosette as a macro that returns a special fail value when
assumptions do not hold. The verification query then needs to be updated with
the condition that fail is not returned. A similar expansion is used to encode
and propagate exceptions.

4.4 Primitive Types

λRB provides constructs for functions, assignments, control flow, etc, but does
not provide the theories required to encode interesting verification properties
that, for example, reason about booleans and numbers. On the other hand,
Rosette is a verification oriented language with special support for common
theories over built-in datatypes, including booleans, numeric types, and vectors.
To bridge this gap, we encode certain Ruby expressions, such as constants c in
λRB , into Rosette’s corresponding built-in datatypes.
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Equality and Booleans. To precisely reason about equality, we encode Ruby’s
== method over arbitrary objects using the object class’ == method if one is
defined. If the class inherits this method from Ruby’s top class, BasicObject,
then we encode == using Rosette’s equality operator equal? to check equality
of object IDs. We encode Ruby’s booleans and operations over them as Rosette’s
respective booleans and their operators.

Integers and Floats. By default, we encode Ruby’s infinite-precision Integer
and Float objects as Rosette’s built-in infinite-precision integer and real
datatypes, respectively. The infinite-precision encoding is efficient and precise,
but it may result in undecidable queries involving non-linear arithmetic or loops.
To perform (bounded) verification in such cases, we provide, via a configuration
flag, the option of encoding Ruby’s integers as Rosette’s built-in finite sized
bitvectors.

Arrays. Finally, we provide a special encoding for Ruby’s arrays, which are
commonly used both for storing arbitrarily large random-access data and to
represent mixed-type tuples, stacks, queues, etc. We encode Ruby’s arrays as a
Rosette struct composed of a fixed-size vector and an integer representing the
current size of the Ruby array. Because we used fixed-size vectors, we can only
perform bounded verification over arrays. On the other hand, we avoid the need
for loop invariants for iterators and reasoning over array operations can be more
efficient.

4.5 Verification of λRB

We define a verification algorithm RTRλ that, given a λRB program P , checks if
all the definitions satisfy their specifications. The pseudo-code for this algorithm
is shown below:

def RTRλ(P )
(F , U , M) := guess(P )
for (f ∈ F ) : add field f to object struct
for (u ∈ U ) : define uninterpreted function u
P  Q� R
return if (valid(R)) then SAFE else UNSAFE

end
First, we guess the proper translation environments. In practice (as discussed
in § 4.2), we use the translation of P to generate the minimum environments
for which translation of P succeeds. We define an object struct in Rosette con-
taining one field for each member of F , and we define an uninterpreted function
for each method in U . Next, we translate P to a λI program Q via P  Q
(§ 4.2) and Q to a the Rosette program R, via Q � R (§ 4.3). Finally, we run
the Rosette program R. The initial program P is safe, i.e., no refinement type
specifications are violated, if and only if the Rosette program R is valid, i.e., all
the verify queries are valid.

We conclude this section with a discussion of the RTRλ verifier.

13



RTRλ is Partial. There exist expressions of λRB that fail to translate into a
λI expression. The translation requires at each method call eF .m(e) that the
receiver has a class type A. There are two cases where this requirement fails:
(1) eF has a union type or (2) type checking fails and so eF has no type. In our
implementation (§ 5), we extend the translation to handle the first two cases.
Handling for (1) is outlined in § 2.4. Case (2) can be caused by either a type error
in the program or a lack of typing information for the type checker. Translation
cannot proceed in either case.

RTRλ may Diverge. The translation to Rosette always terminates. All trans-
lation rules are inductively defined: they only recurse on syntactically smaller
expressions or programs. Also, since the input program is finite, the minimum
global environments required for translation are also finite. Finally, all the helper
functions (including the type checking typeOf(·)) do terminate.

Yet, verification may diverge, as the execution of the Rosette program may
diverge. Specifications can encode arbitrary expressions, thus it is possible to
encode undecidable verification queries. Consider, for instance, the following
contrived Rosette program in which we attempt to verify an assertion over a
recursive method:

(define (rec x) (rec x))
(define−symbolic b boolean?)
( verify (rec b))

Rosette attempts to symbolically evaluate this program, and thus diverges.

RTRλ is Incomplete. Verification is incomplete and its precision relies on the
precision of the specifications. For instance, if a pure method A.m is marked as
impure, the verifier will not prove the congruence axiom.

RTRλ is Sound. If the verifier decides that the input program is safe, then all
definitions satisfy their specifications, assuming that (1) all the refinements are
pure boolean expressions and (2) all the labels are sound (i.e., methods match
the specifications implied by the labels). The assumption (1) is required since
verification under diverging (let alone effectful) specifications is difficult [41]. The
assumption (2) is required since our translation encodes pure methods as unin-
terpreted functions, while for the impure methods it havocs only the unprotected
arguments.

5 Evaluation

We implemented the Ruby refinement type checker RTR3 by extending RDL [30]
with refinement types. Table 1 summarizes the evaluation of RTR.

3 Code available at: https://github.com/mckaz/vmcai-rdl
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Benchmarks. We evaluate RTR on six popular Ruby libraries:

– Money [6] performs currency conversions over monetary quantities and relies
on mixin methods,

– BusinessTime [3] performs time calculations in business hours and days,
– Unitwise [7] performs various unit conversions,
– Geokit [4] performs calculations over locations on Earth,
– Boxroom [2] is a Rails app for sharing files in a web browser and uses metapro-

gramming, and
– Matrix [5] is a Ruby standard library for matrix operations.

For verification, we forked the original Ruby libraries and provided manually
written method specifications in the form of refinement types. The forked repos-
itories are publicly available [8]. Experiments were conducted on a machine with
a 3 GHz Intel Core i7 processor and 16 GB of memory.

We chose these libraries because they combine Ruby-specific features chal-
lenging for verification, like metaprogramming and mixins, with arithmetic-
heavy operations. In all libraries we verify both (1) functional correctness of
arithmetic operations (e.g., no division-by-zero, the absolute value of a number
should not be negative) and (2) data-specific arithmetic invariants (e.g., inte-
gers representing months should always be in the range from 1 to 12 and a data
value added to an aggregate should always fall between maintained @min and
@max fields). In the Matrix library, we verify a matrix multiplication method,
checking that multiplying a matrix with r rows by a matrix with c columns yields
a matrix of size r× c. Note this method makes extensive use of array operations,
since matrices are implemented as an array of arrays.

Quantitative Evaluation. Table 1 summarizes our evaluation quantitatively. For
each application, we list every verified Method. In our experiment, we focused
on methods with interesting arithmetic properties.

The Ruby LoC column gives the size of the verified Ruby program. This
metric includes the lines of all methods and annotations that were used to verify
the method in question. For each verified method, RTR generates a separate
Rosette program. We give the sizes of these resulting programs in the Rosette
LoC column. Unsurprisingly, the LoC of the Rosette program increases with the
size of the source Ruby program.

We present the median (Time(s)) and semi-interquartile range (SIQR) of
the Verification Time required to verify all methods for an application over
11 runs. For each verified method, the SIQR was at most 2% of the verification
time, indicating relatively little variance in the verification time. Overall, ver-
ification was fast, as might be expected for relatively small methods. The one
exception was matrix multiplication. In this case, the slowdown was due to the
extensive use of array operations mentioned above. We bounded array size (see
§ 4.4) at 10 for the evaluations. For symbolic arrays, this means Rosette must
reason about every possible size of an array up to 10. This burden is exacerbated
by matrix multiplication’s use of two symbolic two-dimensional arrays.
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Table 1. Method gives the class and name of the method verified. Ru-LoC and Ro-
LoC give number of LoC for a Ruby method and the translated Rosette program. Spec
is the number of method and variable type annotations we had to write. Verification
Time is the median and semi-interquartile range of the time in seconds over 11 runs.
App Total rows list the totals for an app, without double counting the same specs.

Method Ru-LoC Ro-LoC Spec Verification Time
Time(s) SIQR

Money
Money::Arithmetic#-@ 7 29 4 5.69 0.14

Money::Arithmetic#eql? 11 40 3 5.74 0.03
Money::Arithmetic#positive? 5 24 3 5.40 0.01
Money::Arithmetic#negative? 5 24 2 5.42 0.01

Money::Arithmetic#abs 5 30 4 5.49 0.01
Money::Arithmetic#zero? 5 26 2 5.38 0.02

Money::Arithmetic#nonzero? 5 24 2 5.43 0.03
App Total 43 197 10 38.56 0.25

BusinessTime
ParsedTime#- 10 58 8 6.28 0.02

BusinessHours#initialize 5 26 2 5.36 0.04
BusinessHours#non negative hours? 5 26 2 5.4 0.01

Date#week 7 32 2 5.53 0.01
Date#quarter 5 28 2 5.47 0.00

Date#fiscal month offset 5 25 2 5.41 0.02
Date#fiscal year week 7 33 2 5.53 0.03

Date#fiscal year month 12 35 3 5.65 0.02
Date#fiscal year quarter 9 42 2 5.72 0.03

Date#fiscal year 11 32 4 5.81 0.03
App Total 76 337 24 56.15 0.20

Unitwise
Unitwise::Functional.to cel 4 25 2 5.42 0.03

Unitwise::Functional.from cel 4 25 2 5.44 0.03
Unitwise::Functional.to degf 4 22 1 5.41 0.01

Unitwise::Functional.from degf 4 27 2 5.44 0.02
Unitwise::Functional.to degre 4 27 2 5.44 0.01

Unitwise::Functional.from degre 4 27 2 5.42 0.01
App Total 24 153 6 32.55 0.11

Geokit
Geokit::Bounds#center 7 31 4 5.4 0.02

Geokit::Bounds#crosses meridian? 7 35 6 5.59 0.12
Geokit::Bounds#== 9 60 5 5.97 0.13

Geokit::GeoLoc#province 5 26 2 5.52 0.11
Geokit::GeoLoc#success? 5 26 2 5.51 0.05

Geokit::Polygon#contains? 26 68 10 10.8 0.07
App Total 59 246 21 38.80 0.50

Boxroom
UserFile#move 12 34 3 5.57 0.05

Matrix
Matrix.* 57 94 9 334.35 3.99

Total 271 1061 73 505.98 5.10
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Finally, Table 1 lists the number of type specifications required to verify
each method. These are comprised of method type annotations, including the
refinement type annotations for the verified methods themselves, and variable
type annotations for instance variables. Note that we do not quantify the number
of type annotations used for Ruby’s core and standard libraries, since these are
included in RDL.

We observe that there is significant variation in the number of annotations
required for each application. For example, Unitwise required 6 annotations
to verify 6 methods, while Geokit required 21 annotations for 6 methods. The
differences are due to code variations: To verify a method, the programmer needs
to give a refinement type for the method plus a type for each instance variable
used by the method and for each (non-standard/core library) method called by
the method.

Case Study. Next we illustrate the RTR verification process by presenting the
exact steps required to specify and check the properties of a method from an
existing Ruby library. For this example, we chose to verify the << method of the
Aggregate library [1], a Ruby library for aggregating and performing statistical
computations over some numeric data. The method << takes one input, data,
and adds it to the aggregate by updating (1) the minimum @min and maximum
@max of the aggregate, (2) the count @count, sum @sum, and sum of squares
@sum2 of the aggregate, and finally (3) the correct bucket in @buckets.

def <<(data)
if 0 == @count

@min = data ; @max = data
else

@max = data if data > @max ; @min = data if data < @min
end
@count += 1 ; @sum += data ; @sum2 += (data ∗ data)
@buckets[to index(data)] += 1 unless outlier ?(data)

end
We specify functional correctness of the method << by providing a refine-

ment type specification that declares that after the method is executed, the input
data will fall between @min and @max.

type :<<, ‘( Integer data) → Integer { @min≤data≤@max }’, verify: :bind
Here, the symbol :bind is an arbitrary label. To verify the specification, we

load the library and call the verifier with this label:
rdl do verify :bind

RTR proceeds with verification in three steps:

– first use RDL to type check the basic types of the method,
– then translate the method to Rosette (using the translation of § 4), and
– finally run the Rosette program to check the validity of the specification.

Initially, verification fails in the first step with the error
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error : no type for instance variable ‘@count’
To fix this error, the user needs to provide the correct types for the instance
variables using the following type annotations.

var type :@count, ‘Integer’
var type :@min, :@max, :@sum, :@sum2, ‘Float’
var type :@buckets, ‘Array<Integer>’

The << method also calls two methods that are not from Ruby’s standard and
core libraries: to index , which takes a numeric input and determines the index of
the bucket the input falls in, and outlier ?, which determines if the given data is
an outlier based on provided specifications from the programmer. These methods
are challenging to verify. For example, the to index method makes use of non-
linear arithmetic in the form of logarithms, and it includes a loop. Yet, neither
of the calls to index or outlier ? should affect verification of the specification of
<<. So, it suffices to provide type annotations with a pure label, indicating we
want to use uninterpreted functions to represent them:

type : outlier ?, ’(Float i ) → Bool b’, :pure
type : to index , ’(Float i ) → Integer out ’, :pure

Given these annotations, the verifier has enough information to prove the post-
condition on <<, and it will return the following message to the user:

Aggregate instance method << is safe.
When verification fails, an unsafe message is provided, combined with a coun-

terexample consisting of bindings to symbolic values that causes the postcondi-
tion to fail. For instance, if the programmer incorrectly specified that data is less
than the @min, i.e.,

type :<<, ‘(Integer data) → Integer { data < @min }’
Then RTR would return the following message:

Aggregate instance method << is unsafe.
Counterexample: (model [ real data 0][ real @min 0] . . . )

This gives a binding to symbolic values in the translated Rosette program which
would cause the specification to fail. We only show the bindings relevant to
the specification here: when real data and real @min, the symbolic values corre-
sponding to data and @min respectively, are both 0, the specification fails.

6 Related Work

Verification for Ruby on Rails. Several prior systems can verify properties of
Rails apps. Space [26] detects security bugs in Rails apps by using symbolic
execution to generate a model of data exposures in the app and reporting a
bug if the model does not match common access control patterns. Bocić and
Bultan proposes symbolic model extraction [14], which extracts models from Rails
apps at runtime, to handle metaprogramming. The generated models are then
used to verify data integrity and access control properties. Rubicon [25] allows
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programmers to write specifications using a domain-specific language that looks
similar to Rails tests, but with the ability to quantify over objects, and then
checks such specifications with bounded verification. Rubyx [15] likewise allows
programmers to write their own specifications over Rails apps and uses symbolic
execution to verify these specifications.

In contrast to RTR, all of these tools are specific to Rails and do not apply
to general Ruby programs, and the first two systems do not allow programmers
to specify their own properties to be verified.

Rosette. Rosette has been used to help establish the security and reliability
of several real-world software systems. Pernsteiner et al. [27] use Rosette to
build a verifier to study the safety of the software on a radiotherapy machine.
Bagpipe [42] builds a verifier using Rosette to analyze the routing protocols used
by Internet Service Providers (ISPs). These results show that Rosette can be
applied in a variety of domains.

Types For Dynamic Languages. There have been a number of efforts to bring
type systems to dynamic languages including Python [10, 12], Racket [36, 37],
and JavaScript [11, 23, 35], among others. However, these systems do not support
refinement types.

Some systems have been developed to introduce refinement types to script-
ing and dynamic languages. Refined TypeScript (RSC) [40] introduces refinement
types to TypeScript [13, 29], a superset of JavaScript that includes optional static
typing. RSC uses the framework of Liquid Types [31] to achieve refinement in-
ference. Refinement types have been introduced [21] to Typed Racket as well. As
far as we are aware, these systems do not support mixins or metaprogramming.

General Purpose Verification Dafny [22] is an object-oriented language with
built-in constructs for high-level specification and verification. While it does
not explicitly include refinement types, the ability to specify a method’s type
and pre- and postconditions effectively achieves the same level of expressiveness.
Dafny also performs modular verification by using a method’s pre- and postcon-
ditions and labels indicating its purity or arguments mutated, an approach RTR
largely emulates. However, unlike Dafny, RTR leaves this modular treatment of
methods as an option for the programmer. Furthermore, unlike RTR, Dafny does
not include features such as mixins and metaprogramming.

7 Conclusion and Future Work

We formalized and implemented RTR, a refinement type checker for Ruby pro-
grams using assume-guarantee reasoning and the just-in-time checking technique
of RDL. Verification at runtime naturally adjusts standard refinement types to
handle Ruby’s dynamic features, such as metaprogramming and mixins. To eval-
uate our technique, we used RTR to verify numeric properties on six commonly
used Ruby and Ruby on Rails applications, by adding refinement type specifica-
tions to the existing method definitions. We found that verifying these methods
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took a reasonable runtime and annotation burden, and thus we believe RTR is
a promising first step towards bringing verification to Ruby.

Our work opens new directions for further Ruby verification. We plan to
explore verification of purity and immutability labels, which are currently trusted
by RTR. We also plan to develop refinement type inference by adapting Hindley-
Milner and liquid typing [31] to the RDL setting, and by exploring whether
Rosette’s synthesis constructs could be used for refinement inference. We will
also extend the expressiveness of RTR by adding support for loop invariants and
dynamically defined instance variables, among other Ruby constructs. Finally,
as Ruby is commonly used in the Ruby on Rails framework, we will extend
RTR with modeling for web-specific constructs such as access control protocols
and database operations to further support verification in the domain of web
applications.
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