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Overview
• Duplicate-Aware Scheduling Framework

• Redundancy-Aware Network Stack

• Preliminary Results

Generic	framework

New	network	stack	for	DC
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at	every	potential	bottleneck resource	in	a	DC
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In-network	purging

Prioritization

Purging	+	preemption

challenges
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e.g.	Improved	fault	tolerance

üMultipath

üMulti-destination

RANS	Transport:	Point	to	Multi-point

ØEnables:	Rich	transport

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)
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RANS	Transport:	Byte	Aggregation

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)

ØOpportunity:	Receiver	driven	transport

Response

e.g.	More	efficient	congestion	
control	(2x	or	more)

üTwo	or	more	response	streams

üAggregate	bytes	at	receiver	side
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RANS	Transport:	Priority	Assignment

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)

ØDynamic	replica	assignment

Response	+	Feedback

e.g.	Improved	replica	assignment

üFine	grained	monitoring	of	
congestion	window

üDynamically	reprioritize	flows	

üFeedback	to	Application
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50-80% improvement over the baseline across all loads.

Expecting more gains even at lower loads with 
additional straggler sources.

~2X
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Summary	&	
Future	work

• The	Issue	of	Stragglers

• Duplicate-Aware	Scheduling	Framework

• RANS

• Implementing	in	HDFS	and	Cassandra

Simple	yet	challenging	solution

A	first	step	towards	a	duplicate-aware	network
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RANS:	Feedback	and	Discussion

• Ali	Musa	Iftikhar	(musa@cs.tufts.edu)

• Fahad	R.	Dogar (fahad@cs.tufts.edu)

• Ihsan A.	Qazi (ihsan.qazi@lums.edu.pk)
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Network

Point	to	multipoint
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Priority	assignment

Priority	Queues
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+	purging
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Possible	questions	– backup	slide	
• Preemption	overhead

• Not	really	an	issue	in	the	network	because	
packets	are	small.

• Packet	purging
• PFC	(back	pressure,	build	queues	at	the	end	
hosts	and	purge	them)

• Drop	the	entire	duplicate	queue	(easier	than	
per-packet	drops)

• Recent	trend	towards	programmable	switches

• Gains	with	PQ
• More	gains	with	failures	as	stragglers	(primary	
undergoes	a	failure)

• Also	more	benefits	with	different	resources

• Duplication	overhead	at	client
• Client	is	usually	not	the	bottleneck

• Non-Idempotent	requests
• We	are	targeting	the	class	of	apps	which	have	
flexible	end	points	and	require	at	least	once	
semantics

• Replicating	only	small	packets	and	prioritizing	
them
• Only	beneficial	with	bursty small	flows
• HDFS	have	a	typical	chunk	size	b/w	64MB-
128MB

• Quorum	systems
• RANS	complements	such	systems,	they	can	use	
this	technique	and	send	K	out	of	N	requests	at	
high	prio while	N-K	as	backups

• Can’t		just	implement	at	the	app	and	get	the	
same	benefits?
• Network	could	be	a	bottleneck
• Fine	grained	control,	much	more	control

• Root	causes	of	performance	improvement
• PQ	avoids	overheads
• Now	we	can	easily	get	the	benefits	of	
duplications	like	aggregation	etc.

• Purging	will	also	at	times	purge	primary	making	
the	system	more	efficient.
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Food	for	thought

DC	Primary DC	Failover

Inter	DC	Duplicate-Aware	
Scheduling

e.g.	Google’s	Geo-
Distributed	Database	
“Spanner”	(OSDI’12)
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Food	for	thought

DC	Primary DC	Failover

Inter	DC	Duplicate-Aware	
Scheduling

e.g.	Google’s	Geo-
Distributed	Database	
“Spanner”	(OSDI’12)

Pre	fetch

Search	suggestions
Spell	check

• Search	engines	drop	spell	
check,	suggestions,	etc.	at	
high	loads.

• Can	benefit	from	duplicate-
aware	scheduling.
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When	RANS	works	best?

• Application	fanout is	high	and	stragglers	are	frequent.
• End-points	are	flexible	and	“at	least	once”	semantics	are	sufficient.
• Client	is	not	the	bottleneck.
• Request	sizes	are	small	(or	preemption	overhead	is	minimal).
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