Tufts

UNIVERSITY

st

Towards a Redundancy-Aware
Network Stack for Data Centers

Ali Musa Iftikhar Fahad R. Dogar lhsan Ayyub Qazi
(LUMS)

‘L ‘
L 0 >
] I;\;
W

N

The Problem of Tail Latency in Data Centers!

The Problem of Tail Latency in Data Centers!

The Problem of Tail Latency in Data Centers!

Straggler

* Load imbalance
~+ Background tasks
* Failures, etc.

High fan-out

The Problem of Tail Latency in Data Centers!

Straggler

* Load imbalance

* Background tasks
* Failures, etc.

High fan-out

High fan-out 4 Stragglers - Long tail latency

How to avoid stragglers?

® = >

Reactively Proactively

How to avoid stragglers?

<

Reactively

Hopper (
C3 (

Sinbad(

PRO: low | CON: requires
overhead | straggler detection
(slow and inaccurate)

—>

Proactively

How to avoid stragglers?

> == ~>
Reactively Proactively
Hopper (Dolly ()
C3 (Low latency via
Sinbad(redundancy (
PRO: low | CON: requires PRO: fast and | CON: requires
overhead | straggler detection accurate | determining
(slow and inaccurate) threshold load

(non-trivial)

How to avoid stragglers?

& —
Reactively Proactively
Hopper (Dolly ()
C3 (Low latency via
Sinbad(redundancy (
PRO: low | CON: requires PRO: fast and | CON: requires
overhead | straggler detection accurate | determining
(slow and inaccurate) threshold load
(non-trivial)

Can we achieve the benefits of both without their limitations?

* Duplicate-Aware Scheduling Framework

Generic framework

 Redundancy-Aware Network Stack

New network stack for DC

* Preliminary Results

Duplicate-aware scheduling

Client

Duplicate-aware scheduling

1. Priority Queues

Client

12

Duplicate-aware scheduling

1. Priority Queues

request

I

Client

13

Duplicate-aware scheduling

1. Priority Queues

request

I

Client

14

Duplicate-aware scheduling

1. Priority Queues

request

C\I\ient B

15

Duplicate-aware scheduling
[

P
1. Priority Queues l

high

low =

Replica 1

request

I

Client

16

Duplicate-aware scheduling

1. Priority Queues l low
l

request oct 1€5P°

Client

17

Duplicate-aware scheduling

1. Priority Queues ..ow
2. Purging m Replica 1
e \P)
request yest cesPO"
red
'
Client
high
L8] o

= |l
puree \ Replica 2

18

Need for Priority Queuing

» Duplication has an overhead! .] high
primary

® :

backup } low

19

Need for Priority Queuing

» Duplication has an overhead! .] high
primary

® :

Properties required:

backup } low

v/Strict priorities
v'"Work conservation

v Preemption

20

Need for Priority Queuing

»Duplication has an overhead! - high
]] low
Properties required:

v'Strict priorities

makes the overhead of duplication low.

21

Need for Priority Queuing

»Duplication has an overhead! - high
]] low
Properties required:

v'Strict priorities

makes the overhead of duplication low.

essential .

Importance of Purging

»Stale requests block new requests. high

- _
[rqu}[ﬂ] low

v
stale

23

Importance of Purging

»Stale requests block new requests. high

®

low

stale

makes the system more efficient!

24

Importance of Purging

»Stale requests block new requests. high

®

low

stale

makes the system more efficient!

optimization .

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Network /W\

/\ /NN /\

27

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Network

Compute

28

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Network

Compute

Memory

29

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Network

Compute

Memory

File system / Database

30

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC

Network

Compute

Memory

File system / Database

Storage %

Realizing Duplicate-Aware Scheduling

at every potential bottleneck resource in a DC
(challenges \

Network In-network purging

Compute

Memory Prioritization

File system / Database

Storage Purging + preemption 32

Redundancy Aware Network Stack (RANS)

Layer New Role

Application Duplicate-Awareness

Expressive Interface

Transport Point to multipoint

+ purging

Priority Queues

Network + purging

Link Same as before

Physical Same as before

33

Redundancy Aware Network Stack (RANS)

Applications need to
be modified.

Layer New Role

Application Duplicate-Awareness

Expressive Interface

Transport Point to multipoint
+ purging

Priority Queues
+ purging

Network

Link Same as before

Physical Same as before

34

Redundancy Aware Network Stack (RANS)

Applications need to

be modified.

Layer New Role

Application Duplicate-Awareness
Expressive interface allows rich
communication b/w App and
Expressive Interface = Transport.
E.g. DAG

Transport Point to multipoint
+ purging

Priority Queues
+ purging

get(<10ms,...) ,ESI
’I
C K C
S

Network

Link Same as before

Physical Same as before

35

Redundancy Aware Network Stack (RANS)

Applications need to

be modified.

New Role

Application Duplicate-Awareness
Expressive interface allows rich
communication b/w App and
Expressive Interface = Transport.
E.g. DAG

Transport Point to multipoint

+ purging

get(<10ms,...) ,E
,l
C K C
N L
N
N
S2

challenge

Hard to implement
per packet purging.

Priority Queues
+ purging

36

Redundancy Aware Network Stack (RANS)

Layer New Role Applications need to
be modified.
Application Duplicate-Awareness Nl
Expressive interface allows rich
communication b/w App and
Expressive Interface = Transport.
E.g. DAG
get(<10ms,...) ,E
Transport Point to multipoint C K. c

S2

+ purging

challenge

Hard to implement
per packet purging

Priority Queues
+ purging

Adds support for existing
PQs in DC switches.

37

Redundancy Aware Network Stack (RANS)

Applications need to

be modified.

Layer New Role

Application Duplicate-Awareness
Expressive interface allows rich
communication b/w App and
Expressive Interface = Transport.
E.g. DAG
get(<10ms,...) ,E
Transport Point to multipoint C K. | C

S2

+ purgin
PLISING challenge

B Priority Queues Hard to implement
+ purging :
per packet purging

Network

Adds support for existing

m PQs in DC switches.

38

RANS Transport: Point to Multi-point

' Sender 1

: <7 (replica 1)
» Enables: Rich transport

v'Multipath =
v'Multi-destination
e.g. Improved fault tolerance Receiver

(client)

Sender 2

= (replica 2)

39

RANS Transport: Byte Aggregation

'" Sender 1
B (replica 1)

» Opportunity: Receiver driven transport

v"Two or more response streams

=

v'Aggregate bytes at receiver side iﬂ

e.g. More efficient congestion Receiver
control (2x or more) (client)

Sender 2
(replica 2)

40

RANS Transport: Priority Assignment

'" Sender 1
B (replica 1)

» Dynamic replica assignment

v'Fine grained monitoring of =
congestion window Response + Feedback

v'Dynamically reprioritize flows Receiver

v'Feedback to Application (client)

e.g. Improved replica assignment

Sender 2
(replica 2)

41

Overview

* Duplicate-Aware Scheduling Framework
 Redundancy-Aware Network Stack

* Preliminary Results

42

Preliminary Evaluation: ns-2 setup details

» Storage scenario

III
<=
Cllent N N ®
@Q, o
77N
0%, N y

10 servers

43

Preliminary Evaluation: ns-2 setup details

» Storage scenario

bottlenecks

<

Cllent

~ Replica 2

10 servers

44

Preliminary Evaluation: ns-2 setup details

» Storage scenario

bottlenecks

Traffic Details
o?’
NS _ E' Replica 1

Total requests

Arrival process Poisson
® Server & replica selection Uniformly random
o
o

N
Replica 2

10 servers
45

Preliminary Evaluation: ns-2 setup details

» Storage scenario

bottlenecks

Traffic Details
o?’
NS _ E' Replica 1

Total requests

Arrival process Poisson

® Server & replica selection Uniformly random

N
C' Replica 2 The only source of stragglers is load

imbalance.

10 servers
46

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

@
Q
S
-
-
o
i)

@
Q.
s
O
@)
)
(s
Q
>
O
Q
(a'el

Load (%)

Average request
completion time of:

” No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

Expecting more gains even at lower loads with
additional straggler sources.

©u
Q
&
+—
-
o
o+
Q
o
&
O
o
o+
Vs
Q
-
O
)
o

Load (%)

Average request
completion time of:

“ No duplicates (baseline)

" 2-copies (proactive w/o PQ)
AA +ros

+ Purging

_ + Byte Aggregation (RANS)

Expecting more gains even at lower loads with
additional straggler sources.

©
Qv
&
-
(-
O
o+
Q
Q.
-
O
@)
o+
(Vs
Qv
>
O

Load (%)

The Issue of Stragglers

Duplicate-Aware Scheduling Framework
Simple yet challenging solution

RANS

A first step towards a duplicate-aware network

Implementing in HDFS and Cassandra

RANS: Feedback and Discussion

e Ali Musa Iftikhar (musa@cs.

* Fahad R. Dogar (fahad@cs.

* lhsan A. Qazi (ihsan.qazi@

.edu)
.edu)

.edu.pk)

New Role

Duplicate-Awareness

Application

Expressive Interface

Point to multipoint
Byte aggregation
Priority assighment

+ purging

Transport

Priority Queues
+ purging

56

Possible questions — backup slide

Preemption overhead * Replicating only small packets and prioritizing
* Not really an issue in the network because them
packets are small. * Only beneficial with bursty small flows
Packet purging HDFS have a typical chunk size b/w 64MB-
* PFC (back pressure, build queues at the end 128MB
hosts and purge them) * Quorum systems
* Drop the entire duplicate queue (easier than « RANS complements such systems, they can use
per-packet drops) this technique and send K out of N requests at
* Recent trend towards programmable switches high prio while N-K as backups
Gains with PQ e Can’t justimplement at the app and get the

* More gains with failures as stragglers (primary same benefits?

undergoes a failure) * Network could be a bottleneck
* Also more benefits with different resources * Fine grained control, much more control
Duplication overhead at client * Root causes of performance improvement
* Client is usually not the bottleneck * PQavoids overheads

* Now we can easily get the benefits of
duplications like aggregation etc.

e Purging will also at times purge primary making
the system more efficient.

Non-ldempotent requests

* We are targeting the class of apps which have
flexible end points and require at least once
semantics

DC Primary

Food for thought

e.g. Google’s Geo-
Distributed Database
“Spanner” ()

DC Failover

Inter DC Duplicate-Aware
Scheduling

58

Food for thought

e.g. Google’s Geo-
Distributed Database
“Spanner” ()

DC Primary DC Failover

: Spell check
Inter DC Duplicate-Aware Search suggestions
Scheduling Google ‘ spetng() g8
spelling city
spelling bee e Search engines drop spell
222:::23 words check, suggestions, etc. at

About 5,740,000 results (U.39's °
(high loads.

Showing results for spelling city
Search instead for spelln . o
"™ « Can benefit from duplicate-

Pre fetch < Spelling City aware scheduling.

https://www.spellingcity.com/ ~
build vocabulary, literacy, phonics, & spelling skills with Vi
core reading skill, with gamified context-rich.

Spelling City
Teaching spelling and vocabulary is
easy with ... 59

When RANS works best?

* Application fanout is high and stragglers are frequent.
* End-points are flexible and “at least once” semantics are sufficient.
* Client is not the bottleneck.

* Request sizes are small (or preemption overhead is minimal).

