
Towards	a	Redundancy-Aware	
Network	Stack	for	Data	Centers

Ali	Musa	Iftikhar	
(Tufts)

Ihsan Ayyub	Qazi
(LUMS)

Fahad	R.	Dogar
(Tufts)	

The	Problem	of	Tail	Latency in	Data	Centers!

2

The	Problem	of	Tail	Latency in	Data	Centers!

High	fan-out

3

The	Problem	of	Tail	Latency in	Data	Centers!

• Load	imbalance
• Background	tasks
• Failures,	etc.

High	fan-out

Straggler

4

The	Problem	of	Tail	Latency in	Data	Centers!

• Load	imbalance
• Background	tasks
• Failures,	etc.

Long	tail	latencyHigh	fan-out Stragglers+

High	fan-out

Straggler

5

How	to	avoid	stragglers?

Reactively Proactively

6

How	to	avoid	stragglers?

Reactively Proactively

PRO:	low	
overhead

Hopper	(SIGCOMM’15)
C3	(NSDI’15)

Sinbad(SIGCOMM’13)

CON:	requires	
straggler	detection
(slow	and	inaccurate)

7

How	to	avoid	stragglers?

Reactively Proactively

PRO:	low	
overhead

Dolly	(NSDI’13)
Low	latency	via	

redundancy	(CoNext’13)

Hopper	(SIGCOMM’15)
C3	(NSDI’15)

Sinbad(SIGCOMM’13)

PRO:	fast	and	
accurate

CON:	requires	
determining
threshold	load
(non-trivial)

CON:	requires	
straggler	detection
(slow	and	inaccurate)

8

How	to	avoid	stragglers?

Reactively Proactively

PRO:	low	
overhead

Can we achieve the benefits of both without their limitations?

Dolly	(NSDI’13)
Low	latency	via	

redundancy	(CoNext’13)

Hopper	(SIGCOMM’15)
C3	(NSDI’15)

Sinbad(SIGCOMM’13)

PRO:	fast	and	
accurate

CON:	requires	
determining
threshold	load
(non-trivial)

CON:	requires	
straggler	detection
(slow	and	inaccurate)

9

Overview
• Duplicate-Aware Scheduling Framework

• Redundancy-Aware Network Stack

• Preliminary Results

Generic	framework

New	network	stack	for	DC

10

Duplicate-aware	scheduling

Replica	1

Client

Replica	2 11

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

low

1. Priority	Queues

12

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

low

request

1. Priority	Queues

13

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

low

request

1. Priority	Queues

14

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

low

P

request

B

1. Priority	Queues

15

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

P

high

lowB

request

1. Priority	Queues

16

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

lowB

request

1. Priority	Queues

17

Duplicate-aware	scheduling

Replica	1

Client

Replica	2

high

low

high

lowB

request

purge

1. Priority	Queues
2. Purging

18

Need	for	Priority	Queuing

high

lowbackup

primary

19

ØDuplication	has	an	overhead!

L

Need	for	Priority	Queuing

high

lowbackup

primary

üStrict	priorities
üWork	conservation
üPreemption

20

ØDuplication	has	an	overhead!

L
Properties		required:

Need	for	Priority	Queuing

high

lowbackup

primary

üStrict	priorities
üWork	conservation
üPreemption

21

ØDuplication	has	an	overhead!

L
Properties		required:

PQ makes the overhead of duplication low. sJ

Need	for	Priority	Queuing

high

lowbackup

primary

üStrict	priorities
üWork	conservation
üPreemption

22

ØDuplication	has	an	overhead!

L
Properties		required:

PQ makes the overhead of duplication low. sJ
essential

Importance	of	Purging

ØStale	requests	block	new	requests.

L
high

lowreq1req2

stale

23

Importance	of	Purging

high

lowreq1req2

stale

ØStale	requests	block	new	requests.

L

Purging makes the system more efficient! A J
24

Importance	of	Purging

high

lowreq1req2

stale

ØStale	requests	block	new	requests.

L

Purging makes the system more efficient! A J
optimization 25

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

26

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

Network

27

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

Compute

Network

28

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

Memory

Compute

Network

29

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

GFSHDFS BigTable

Memory

Compute

File	system	/	Database

Network

30

Realizing	Duplicate-Aware	Scheduling
at	every	potential	bottleneck resource	in	a	DC

GFSHDFS BigTable

Storage

Memory

Compute

File	system	/	Database

Network

31

at	every	potential	bottleneck resource	in	a	DC

GFSHDFS BigTable

Memory

Compute

Storage

Network

File	system	/	Database

In-network	purging

Prioritization

Purging	+	preemption

challenges

32

Realizing	Duplicate-Aware	Scheduling

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

+	purging

33

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

Applications	need	to	
be	modified.

challenge

+	purging

34

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

Applications	need	to	
be	modified.

Expressive	interface	allows	rich	
communication	b/w	App	and	

Transport.
E.g.	DAG

challenge

opportunity

+	purging

35

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

Applications	need	to	
be	modified.

Expressive	interface	allows	rich	
communication	b/w	App	and	

Transport.
E.g.	DAG

challenge

opportunity

Hard	to	implement	
per	packet	purging.

challenge
+	purging

36

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

Applications	need	to	
be	modified.

Expressive	interface	allows	rich	
communication	b/w	App	and	

Transport.
E.g.	DAG

challenge

opportunity

Hard	to	implement	
per	packet	purging.

challenge

Adds	support	for	existing	
PQs	in	DC	switches.

opportunity

+	purging

37

Redundancy	Aware	Network	Stack	(RANS)

Application

Transport

Link

Network

Duplicate-Awareness

Point	to	multipoint

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Layer New	Role

+	purging

Applications	need	to	
be	modified.

Expressive	interface	allows	rich	
communication	b/w	App	and	

Transport.
E.g.	DAG

challenge

opportunity

Hard	to	implement	
per	packet	purging.

challenge

Adds	support	for	existing	
PQs	in	DC	switches.

opportunity

+	purging

38

e.g.	Improved	fault	tolerance

üMultipath

üMulti-destination

RANS	Transport:	Point	to	Multi-point

ØEnables:	Rich	transport

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)

39

RANS	Transport:	Byte	Aggregation

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)

ØOpportunity:	Receiver	driven	transport

Response

e.g.	More	efficient	congestion	
control	(2x	or	more)

üTwo	or	more	response	streams

üAggregate	bytes	at	receiver	side

40

RANS	Transport:	Priority	Assignment

Sender	1
(replica	1)

Receiver
(client)

Sender	2
(replica	2)

ØDynamic	replica	assignment

Response	+	Feedback

e.g.	Improved	replica	assignment

üFine	grained	monitoring	of	
congestion	window

üDynamically	reprioritize	flows	

üFeedback	to	Application

41

Overview
• Duplicate-Aware Scheduling Framework

• Redundancy-Aware Network Stack

• Preliminary Results

42

Preliminary	Evaluation:	ns-2	setup	details
Ø Storage	scenario

Client

10	servers

Replica	1

Replica	2

43

Preliminary	Evaluation:	ns-2	setup	details
Ø Storage	scenario

Client

10	servers

Replica	1

Replica	2

bottlenecks

44

Preliminary	Evaluation:	ns-2	setup	details

Traffic	Details

Total	requests 20K

Arrival	process Poisson

Server	&	replica	selection Uniformly	random

Ø Storage	scenario

Client

10	servers

Replica	1

Replica	2

bottlenecks

45

Preliminary	Evaluation:	ns-2	setup	details

Traffic	Details

Total	requests 20K

Arrival	process Poisson

Server	&	replica	selection Uniformly	random

Ø Storage	scenario

Client

10	servers

Replica	1

Replica	2

bottlenecks

The only source of stragglers is load
imbalance.

46

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

47

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

48

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

49

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

50

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

51

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

~2X

52

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

~2X

Expecting more gains even at lower loads with
additional straggler sources.

53

No	duplicates	(baseline)

2-copies	(proactive	w/o	PQ)

+	PQs

+	Purging

+	Byte	Aggregation	(RANS)

Average	request	
completion	time	of:

Load	(%)

Re
qu

es
t	c
om

pl
et
io
n	
tim

e	
(s
)

50-80% improvement over the baseline across all loads.

Expecting more gains even at lower loads with
additional straggler sources.

~2X

54

Summary	&	
Future	work

• The	Issue	of	Stragglers

• Duplicate-Aware	Scheduling	Framework

• RANS

• Implementing	in	HDFS	and	Cassandra

Simple	yet	challenging	solution

A	first	step	towards	a	duplicate-aware	network

55

RANS:	Feedback	and	Discussion

• Ali	Musa	Iftikhar	(musa@cs.tufts.edu)

• Fahad	R.	Dogar (fahad@cs.tufts.edu)

• Ihsan A.	Qazi (ihsan.qazi@lums.edu.pk)
Transport

Link

Network

Point	to	multipoint
Byte	aggregation
Priority	assignment

Priority	Queues

Physical Same	as	before

Same	as	before

Expressive	Interface

Application Duplicate-Awareness

Layer New	Role

+	purging

+	purging

56

Possible	questions	– backup	slide	
• Preemption	overhead

• Not	really	an	issue	in	the	network	because	
packets	are	small.

• Packet	purging
• PFC	(back	pressure,	build	queues	at	the	end	
hosts	and	purge	them)

• Drop	the	entire	duplicate	queue	(easier	than	
per-packet	drops)

• Recent	trend	towards	programmable	switches

• Gains	with	PQ
• More	gains	with	failures	as	stragglers	(primary	
undergoes	a	failure)

• Also	more	benefits	with	different	resources

• Duplication	overhead	at	client
• Client	is	usually	not	the	bottleneck

• Non-Idempotent	requests
• We	are	targeting	the	class	of	apps	which	have	
flexible	end	points	and	require	at	least	once	
semantics

• Replicating	only	small	packets	and	prioritizing	
them
• Only	beneficial	with	bursty small	flows
• HDFS	have	a	typical	chunk	size	b/w	64MB-
128MB

• Quorum	systems
• RANS	complements	such	systems,	they	can	use	
this	technique	and	send	K	out	of	N	requests	at	
high	prio while	N-K	as	backups

• Can’t		just	implement	at	the	app	and	get	the	
same	benefits?
• Network	could	be	a	bottleneck
• Fine	grained	control,	much	more	control

• Root	causes	of	performance	improvement
• PQ	avoids	overheads
• Now	we	can	easily	get	the	benefits	of	
duplications	like	aggregation	etc.

• Purging	will	also	at	times	purge	primary	making	
the	system	more	efficient.

57

Food	for	thought

DC	Primary DC	Failover

Inter	DC	Duplicate-Aware	
Scheduling

e.g.	Google’s	Geo-
Distributed	Database	
“Spanner”	(OSDI’12)

58

Food	for	thought

DC	Primary DC	Failover

Inter	DC	Duplicate-Aware	
Scheduling

e.g.	Google’s	Geo-
Distributed	Database	
“Spanner”	(OSDI’12)

Pre	fetch

Search	suggestions
Spell	check

• Search	engines	drop	spell	
check,	suggestions,	etc.	at	
high	loads.

• Can	benefit	from	duplicate-
aware	scheduling.

59

When	RANS	works	best?

• Application	fanout is	high	and	stragglers	are	frequent.
• End-points	are	flexible	and	“at	least	once”	semantics	are	sufficient.
• Client	is	not	the	bottleneck.
• Request	sizes	are	small	(or	preemption	overhead	is	minimal).

60

