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Multi-Tenant Data Centers

» Flexible pay as you go model is attractive to tenants
* Meets variability in tenant demands

* Yet, there are challenges to deal with
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e Data center is a shared resource

 Leads to high variability in the network

» Potentially results in tenant's cost variability

Thus we need to provide some sort of Predictability
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Virtual Abstractions for Predictable Performance

Virtual abstractions:
» Expose a virtual network to the tenants

« Tenants can then demand for guaranteed bandwidth

Examples of such abstractions include: Bandwidth B

{Oktopus, FairCloud, CloudMirror} (Sigcomm ‘11 '12 ‘14), Hadrian (NSDI ‘13)

But, they tend to ignore a crucial factor!



A stark Reality — Failures!

Datacenter Network Failures are common:

e Studies have shown: (Understanding network failures in data centers, Sigcomm ‘11)
* 30% of the components show less than four 9s of availability
e Time between successive failures could be as short as 5 minutes

» Time for recovery could even go beyond 1 week

» These failures result in significant service downtimes hurting the tenants!
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Datacenter Network Failures are common:

e Studies have shown: (Understanding network failures in data centers, Sigcomm ‘11)
* 30% of the components show less than four 9s of availability
e Time between successive failures could be as short as 5 minutes

» Time for recovery could even go beyond 1 week
» These failures result in significant service downtimes hurting the tenants!

Thus we need to provide Reliability + Predictability
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"Predictability + Resilience”: Requirements

Requirement(s)

Predictability Bandwidth Reservation

» Firstly: Provide Backup Resources to enable recovery
Resilience

» Secondly: Ensure speedy recovery (4spen Trees CONEXT 13, F10 NSDI '13)



"Predictability + Resilience”: Requirements

Requirement(s)

Predictability

Resilience

Bandwidth Reservation

Focus of this talk

Firstly: Provide Backup Resources to enable recovery




Providing Backup Resources for Resilience

One approach:

* Reserve Backup Bandwidth to tolerate failures along with tenant

reservations

We simulate this approach on a typical fat-tree topology to test our

hypothesis.



Reserving Backup Bandwidth on Fat-Tree: Simulation

Simulation details:

48—ary fat-tree: A Scalable, Commodity Data Center Network Architecture (Sigcomm '08)

Induce failure model: Understanding network failures in data centers (Sigcomm '11)

Virtual cluster abstraction: Oktopus (Sigcomm ‘11)

Metric:

Total uptime experienced by tenants

0
Total duration x100%

Percentage Availability =



Reserving Backup Bandwidth on Fat-Tree: Simulation

99.85
Simulation details: S, 298
e
‘5 99.75
o 48-ary fat-tree: A Scalable, Commodity Dc ®
2 99.7
e Induce failure model: Understanding net °
(<)
99.65
e Virtual cluster abstraction: Oktopus (Sig
99.6
Metri 0 10 20 30 40
. etric: .
% BW Reserved per Link

Total uptime experienced by tenants
Total duration

Percentage Availability = x100%



Reserving Backup Bandwidth on Fat-Tree: Simulation

Simulation details: S, 298
e
‘5 99.75
o 48-ary fat-tree: A Scalable, Commodity Dc ®
2 99.7
e Induce failure model: Understanding net °
(<)
99.65
e Virtual cluster abstraction: Oktopus (Sig
99.6
Metri 0 10 20 30 40
. etric: .
% BW Reserved per Link

Total uptime experienced by tenants
Total duration

Percentage Availability = x100%



Reserving Backup Bandwidth on Fat-Tree: Simulation

Simulation details: S, 298
e
‘5 99.75
o 48-ary fat-tree: A Scalable, Commodity Dc ®
2 99.7
e Induce failure model: Understanding net °
(<)
99.65
e Virtual cluster abstraction: Oktopus (Sig
99.6
Metri 0 10 20 30 40
. etric: .
% BW Reserved per Link

Total uptime experienced by tenants
Total duration

Percentage Availability = x100%

So what did we overlook?



Single Point of Failure — ToRs




Single Point of Failure — ToRs

Inherent to the fat-tree topology
* No alternate path to reroute ToR traff

Potential solutions:

e VM migration
Failure
« Has its own set of challenges

* Modify topology
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Key idea: Multi-home the end hosts
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Which requires having the same number and size of switches



Fat-Resilient-Trees: High Level Idea

Key idea: Multi-home the end hosts
Goals we target:

* Must have the same cost as its fat-tree counterpart

Which requires having the same number and size of switches
So we simply Rearrange the existing redundancy

« Introducing redundancy at ToR level by stripping it form overly redundant levels.
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* Uniformly remove the

overly redundant links
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Fat-Resilient-Trees: High Level Idea

* Uniformly remove the

overly redundant links

e Reconnect them in a
way which ensures that
every end-host is
connected to every

other end-host

- - - - Links to remave
—— Links to maintain
—— Links to add
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Works because of Locality in

Traffic:

Fat-Resilient-Trees: High Level Idea

Collocation motivates that

full bisection BW is

perhaps at every level an

7

Preliminary simulation results show

overkill

- - - - Links to remave
—— Links to maintain
—— Links to add



Ongoing Work

« Understand and evaluate the implications Fat-Resilient-Trees
« Extensively compare against existing topologies

 Build a fast recovery mechanism



Questions & Feedback? Thank you for your time ©
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VM Migration

Backup Slides

oktopus + nothing
oktopus + t2t backup
oktopus+ t2t + 2 backups
oktopus + e2e + 1 backup
oktopus + e2e + 2 backups
oktopus + sharing + 1 pod

oktopus + sharing + 5 pods

oktopus + new topology + backups
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