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1 Introduction

C-- is a compiler-target language. The idea is that a compiler for a high-level language translates programs
into into C--, leaving the C-- compiler to generate native code. C--’s major goals are these:

• C-- encapsulates compilation techniques that are well understood, but difficult to implement. Such
techniques include instruction selection, register allocation, instruction scheduling, and optimization
of imperative code with loops.

• C-- is a language, rather than a library (such as gcc’s RTL back end). As such, it has a concrete syntax
that can be read by people, and a semantics that is independent of any particular implementation.

• C-- is a portable assembly language. It is, by design, as low-level as possible while still concealing
details of the particular machine architecture.

• C-- is independent of both source programming language and target architecture. Its design accom-
modates a variety of source languages and leaves room for back-end optimization, all without upcalls
from the back end to the front end.

• C-- is efficient—or at least admits efficient implementation. So C-- provides almost as much flexibility
and performance (assuming a good C-- compiler) as a custom code generator.

A client of C-- is divided into two parts. The front-end compiler generates programs written in the C--
language, which the C-- compiler translates into efficient machine code. This code interoperates with the
front-end run-time system, which implements such services as garbage collection, exception dispatch, thread
scheduling, and so on. The front-end run-time system relies on mechanisms provided by the C-- run-time
system; they interact through the C-- run-time interface. This document describes the C-- language and
run-time interface. It is intended for authors who wish to write clients of the C-- system.

The C-- team has prepared some demonstration front ends that may help you learn to use C--.

• Paul Govereau’s tigerc compiler includes a compiler for Tiger (the language of Andrew Appel’s
compiler text) as well as a small run-time system with garbage collector. The tigerc compiler is
written in Objective Caml.

• Norman Ramsey’s lcc back end works with lcc to translate C into C--. It is written in C.

• Reuben Olinsky’s interpreter, which is packaged with the Quick C-- sources, includes sample run-time
clients for garbage collection and exception dispatch.

All this code is available through the C-- web site at http://www.cminusminus.org.

1.1 What C-- is not

C-- has some important non-goals:

• C-- is not an execution platform, such as the Java Virtual Machine or the .NET Common Language
Runtime. These virtual machines are extremely high-level compared to C--. Each provides a rich type
system, garbage collector, class loader, just-in-time compiler, byte-code verifier, exception-dispatch
mechanism, debugger, massive libraries, and much more besides. These may be good things, but
they clearly involve much more than encapsulating code-generation technology, and depending on your
language model, they may impose a significant penalty in both space and time.
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• C-- is not “write-once, run-anywhere”. It conceals most architecture-specific details, such as the
number of registers, but it exposes some. In particular, C-- exposes the word size, byte order, and
alignment properties of the target architecture, for two reasons. First, to hide these details would
require introducing a great deal of complexity, inefficiency, or both—especially when the front-end
compiler needs to control the representation of its high-level data types. Second, these details are easy
to handle in a front-end compiler. Indeed, a compiler may benefit, because it can do address arithmetic
using integers instead of symbolic constants such as FloatSize and IntSize.

1.2 Run-time services

C--’s main goal is to encapsulate code generation. One reason that this encapsulation has proved troublesome
in the past is that code generation interacts with the provision of run-time services, such as:

• Garbage collection

• Exception handling

• Concurrency

• Debugging

These services are typically implemented through intimate collaboration between the code generator and a
run-time system, but such close collaboration is impeded by the abstractions needed to make a code generator
reusable. Nevertheless, it would be wrong for C-- to offer such services; no one semantics, object layout,
and cost model could possibly satisfy all clients.

Instead, C-- also comes with a small run-time system, which provides some low-level, primitive mechanisms,
on top of which a C-- client can implement high-level services. The C-- run-time interface offers abstractions
that, for example, enable a garbage collector to walk the stack and an exception-dispatch mechanism to
unwind or cut the stack. The run-time interface is described in Section 8.

1.3 A glimpse of C--

Much of C-- is unremarkable. C-- has parameterized procedures with declared local variables. A procedure
body consists of a sequence of statements, which include (multiple) assignments, conditionals, gotos, calls,
and jumps (tail calls).

To give a feel for C--, Figure 1 presents three C-- procedures, each of which computes the sum and product
of the integers 1..n. Figure 1 illustrates two features that are common in assemblers, but less common
in programming languages. First, a procedure may return multiple results. For example, each procedure
in Figure 1 returns two results, and sp1 contains a call to a multi-result procedure (namely sp1 itself).
Second, a C-- procedure may explicitly tail-call another procedure. For example, sp2 tail-calls sp2 help

(using “jump”), and the latter tail-calls itself. A tail call has the same semantics as a regular procedure call
followed by a return, but it is guaranteed to deallocate the caller’s resources (notably its activation record)
before the call.

All memory access is explicit. For example, the statement

bits32[x] = bits32[y] + 1;

loads a 32-bit word from the memory location whose address is in the variable y, increments it, and stores
it in the memory location whose address is in the variable x.
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/* Ordinary recursion */

export sp1;

sp1( bits32 n ) {

bits32 s, p;

if n == 1 {

return( 1, 1 );

} else {

s, p = sp1( n-1 );

return( s+n, p*n );

}

}

/* Tail recursion */

export sp2;

sp2( bits32 n ) {

jump sp2_help( n, 1, 1 );

}

sp2_help( bits32 n, bits32 s, bits32 p ) {

if n==1 {

return( s, p );

} else {

jump sp2_help( n-1, s+n, p*n );

}

}

/* Loops */

export sp3;

sp3( bits32 n ) {

bits32 s, p;

s = 1; p = 1;

loop:

if n==1 {

return( s, p );

} else {

s = s+n;

p = p*n;

n = n-1;

goto loop;

} }

Figure 1: Three procedures that compute the sum
∑n

i=1
i and product

∏n

i=1
i, written in C--.
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2 Fundamentals of C--

C-- combines features of assembly languages and compiler intermediate codes. To provide context for the
detailed descriptions in the rest of the manual, this section introduces the major concepts of C--.

2.1 Classification of errors

Although C-- compilers detect some compile-time errors, and the C-- run-time system detects some checked
run-time errors, C-- is by design an unsafe language with many unchecked run-time errors—it’s an assem-
bler. A compile-time error or checked run-time error is one the the C-- implementation guarantees to detect.
An unchecked run-time error is one that it is up to the front-end compiler and run-time system to avoid; after
an unchecked run-time error, the behavior of a C-- program is arbitrary. Examples of unchecked run-time
errors include unaligned memory accesses that are not so annotated in the source, passing the wrong number
or types of arguments, and returning the wrong number or types of results.

2.2 C-- procedures

All code is part of some C-- procedure, which is defined at the top level of a compilation unit. Procedures
are described in detail in Section 5. Their two unusual features are:

• They support fully general, optimized tail calls (§6.8).

• A procedure may return more than one result (§6.8).

A procedure is a first-class value—for example it may be passed as a parameter, or stored in a data structure—
and a call may be indirect.

There are no limits on the number of parameters a C-- procedure expects or the number of results it can
return, but the number and types of parameters and results for any particular procedure are fixed at compile
time. C-- has no support for “varargs”.1 Calls and returns are unchecked and unsafe. C-- provides multiple
calling conventions; the default calling convention is chosen by the back end. The default calling convention
supports proper tail calls, but they must be written explicitly by the front end, using the keyword jump.
C-- also provides the C calling convention, which does not support tail calls.

A C-- procedure may include labels and computed gotos. It is an unchecked run-time error for a goto to
cross a procedure boundary. For control flow across procedure boundaries, the analogs of goto and label are
cut to and continuation. As in assembly languages, a label is visible throughout the compilation unit in
which it appears, so for example, a front end can build a jump table. A continuation is visible only in the
procedure in which it appears.

The primary purpose of a procedure is to be executed, but a C-- procedure is also a form of initialized data.
This fact is important if, for example, a front end wants to define initialized data that mimics the layout of
a heap object containing executable code.

2.3 Registers and memory

Like machine instructions, C-- programs manipulate registers and memory. In C--, variables are like
registers; they have no addresses, and assigning to one cannot change the value of another. Variables may
be local (private) to a procedure, but C-- also supports global register variables that are shared by all
procedures. An implementation of C-- does its best to map variables onto actual hardware registers.

1There is a proposal hanging fire that would extend C-- with support for a variable number of arguments, but this proposal
would not be compatible with C varargs or with C’s stdarg.h. Various research projects notwithstanding, varargs in the C style
are incompatible with optimized tail calls.
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Labels, procedure names, imported names, and other names that refer to memory locations are immutable.
Just as in an assembler, one does not assign to these names; instead, one uses explicit fetch and store
operations that specify both the memory address and the size of the value to be transferred. Addresses and
address arithmetic are in units of the target “memsize,” which should be specified to be the number of bits
in the normal addressing unit of the machine. If not specified explicitly, a program’s target memsize defaults
to 8 bits.

Memory access uses the byte order of the target machine, which must be specified explicitly using a target
byteorder directive.2 Fetches and stores include (implicit) assertions about alignment of addresses; it is an
unchecked run-time error to violate these assertions.

2.3.1 Rights to memory

Memory is a resource that must be shared by C-- and its client. The “rules of the road” are as follows:

• The C-- run-time system includes initialized data that belongs to C--. The client may not read or
write this data.

• When the C-- compiler translates a compilation unit, it generates initialized data that is used either
to implement the dynamic semantics of procedures (e.g., generated machine instructions, jump tables)
or to support the C-- run-time system (e.g., stack maps). The client must not write this data, and it
is not guaranteed to be granted read access to the data.

• The heap belongs to the client. The front-end run-time system manages all allocation; the C-- run-time
system never allocates.

• Stacks are shared between the client and C--. Initially, the client owns the system stack, any OS-
thread stacks, and any stacks allocated on the heap. But when the client calls into a C-- procedure,
C-- takes over the rights to the stack. The C-- stack is a private data structure, and the front end
may not read or write locations on the stack, except that the front end may read or write any locations
declared within stackdata.

2.3.2 Aliasing

A C-- compiler is intended to perform many scalar and loop optimizations, including instruction scheduling,
redundancy elimination, peephole optimization, and loop-invariant code motion. The C-- compiler can do
a better job if it can tell when two memory references may interfere or alias. Because may-alias information
can be very difficult to recover from low-level codes, C-- provides annotation mechanisms by which the front
end can communicate may-alias information to the optimizer:

• Each memory reference (load or store) may be annotated with a list of alias names (§7.3.2).

• Each procedure call may be annotated with a list of alias names read and a list of alias names written
(§6.8.1).

• The front end provides an interpretation of the alias names that enables the back end to determine
whether two references may alias.

The annotations on memory references and on calls are specified in this manual. But the mechanism by which
the front end provides an interpretation is not specified; instead it is left up to each individual implementation
of C--. We expect that once we have sufficient experience with C--, a future version of this specification
will describe a mechanism that every implementation of C-- will be required to provide.

2This requirement ensures that every well-typed C-- program has a semantics that is independent of target machine.
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If C-- variables are like machine registers, why aren’t there different types of variables? For example, why
doesn’t C-- distinguish integer variables from floating-point variables, since most machines distinguish
integer registers from floating-point registers? Earlier versions of C-- did draw such distinctions, but
when we thought about how this information was used, we gradually moved to other mechanisms.

A C-- compiler needs to know which registers to use to hold the values of variables and to pass parameters
and results. We can’t predict what kinds of registers a machine will have. Many machines have just integer
and floating-point registers, but not all. The 68k Dragonball, which is used in older Palm Pilots, has
separate registers for integers and pointers. Some DSP chips have two sets of general-purpose registers,
sometimes called the X and Y registers. The StrongARM has predicate registers. Using a different
C-- type for each kind of machine register would create more work for front ends, and it would make
it difficult to generate code for new kinds of architectures without having to change C--. We therefore
decided that part of the role of C-- should be to hide not only the number of registers on the machine,
but also what kinds of registers exist.

A C-- back end has all the information it needs to place local variables in machine registers, because
it can see all the locations where such variables are defined and used. But a back end does not always
have enough information to know where to put formal and actual parameters, because those locations
are determined by the calling convention, and many calling conventions use different locations for values
depending on the high-level types of those values. For example, most calling conventions pass integer
values in integer registers and floating-point values in floating-point registers. To help determine where
parameters should be passed, C-- uses “kinds” on formal parameters, actual parameters, and results.
The kinds are string literals, so we expect they will accommodate new source-level types and calling
conventions far into the future.

Figure 2: Sidebar: The C-- type system

2.4 The type system

The C-- type system serves only two purposes. It helps the back end choose the proper machine instruction
for each operation, depending on the sizes of the operands, and it helps the back end make effective use
of condition codes. The type system does not protect the programmer. As in a real assembler, distinctions
between signed, unsigned, and floating-point values are in the operators, not in the types of the operands.

There are just two types in C--:

• A k-bit value has type bitsk; for example, a four-byte word is specified as bits32. Values may be
stored in variables, passed as parameters, returned as results, and fetched from and stored in memory.

• A Boolean value has type bool. Booleans govern control flow in conditionals. Boolean values are not
first class: they cannot be stored in variables or passed to procedures.

A rationale appears in Figure 2.

For each target architecture, each implementation of C-- designates two special bitsk types:

The native pointer type is a type bitsp of machine addresses. For example, the name of a procedure,
like sp1 in Figure 1, denotes an immutable value of the native pointer type. The size p of the native
pointer type is called the native pointer size. There is no separate pointer type.

The native word type is a type bitsw that is the type of a literal that is not explicitly typed (§3.3.3).
The size w of the native word type is called the native word size.
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2.5 Kinds

The C-- type system deliberately does not distinguish floating-point numbers from integers or signed integers
from unsigned ones. Instead, a C-- implementation is expected to decide (say) what sort of register to use
for a C-- variable depending on what operations are performed on that variable. In this way, C-- is not
vulnerable to such architecture-specific variations as (say) whether pointers and data values must be held in
different register banks.

There are two places, however, where a C-- implementation does not have enough information to make an
effective decision:

• The arguments and results of a procedure. For example, in a procedure definition it may be clear that
the first parameter is treated as a floating-point number, but the procedure calls may not be able to
“see” the definition, or even know statically what procedure is being called.

• To establish a suitable storage location for each global variable (§4.4.1) would require a whole-program
analysis.

C-- therefore allows the programmer to annotate these constructs with optional kinds. A kind is simply
a literal string; a C-- implementation must advertise what kinds it understands. Kinds supply additional
information to the implementation, to enable it to make better calling sequences and allocation decisions.

Kinds for procedure definitions and calls are described in Sections 5.1 and 6.8 respectively. It is an unchecked
error for a C-- program to supply different kinds at the definition and call site of a procedure. It follows
that a C-- implementation may safely use kinds to drive the calling convention.

Kinds for global variables are described in Section 4.4.1.

2.6 Compilation units

Like an assembly-language file, a C-- compilation unit specifies the creation of a sequence of named sections.
Each section may contain a mix of code, initialized data, and uninitialized data. Labels point to locations
within sections and are visible throughout a compilation unit. A C-- compiler may produce output in the
form of assembly language, object code, or perhaps binary code and data directly in memory.

2.7 Naming and visibility

C-- uses a single name space for values. A name may denote a register variable, which is mutable, or one
of several kinds of immutable value. Not all immutable values are link-time or compile-time constants; for
example, a continuation value is immutable but is not available until run time.

C-- has a separate name space for types and another separate name space for the names of primitive
operators.

C-- uses three nested scoping levels: the program, the compilation unit, and the procedure. C-- does not
have “definition before use;” a name is visible in the entire compilation unit or procedure in which it appears.
The “normal” scope is the compilation unit, but local register variables, continuations, and stack labels are
private to procedures, and their names may hide names with larger scope. Scoping does not always coincide
with the syntactical structure of a program: names declared in sections are part of the unit scope and labels
(for goto or memory access) always have unit scope.

As in Haskell and Modula-3, a C-- name is visible throughout the scope in which it is declared. The order
of declarations is irrelevant, and it is a checked compile-time error to declare the same name twice in the
same scoping level. A name in an inner scope hides the same name in an outer scope.

A name has program scope if and only if it is explicitly exported by the compilation unit that defines it. If
the name is used in another unit, the other unit must import it explicitly.
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2.8 The run-time model

To the front end, C-- procedures appear to run on a stack. The front-end run-time system can use the run-
time interface to inspect and modify one stack and one activation record at a time. The front-end runtime
can cause control to resume at a different activation or different continuation within an activation. It can
also inspect and modify the values of local and global register variables, as well as memory.

To enable a C-- compiler to optimize a program without introducing errors, the front end must annotate
the source code with information about how the run-time system may change control flow. The front end
may also annotate the source code with information about how the run-time system may change the values
of variables. For example, if a variable is not changed by the run-time system, it may be marked invariant.
It is an unchecked run-time error for the front-end run-time system to disregard an annotation.

To record front-end information, like which C-- variables point to heap objects, the front end can put spans
around statements and procedures. These spans can be used at run time to map the program counter to
arbitrary values deposited by the front end.

We anticipate that users of C-- will wish to create multiple threads of computation that run on multiple
stacks. But the design of suitable abstractions for managing stack overflow and stack underflow remains a
research problem. For this reason Version 2.0 of this specification is regretfully single-stacked. Support for
multiple threads will appear in a future version.

The run-time interface is described in Section 8.

2.9 Portability

C-- is not a write-once-run-anywhere language. As a matter of design, it exposes some aspects of the
machine architecture. These are aspects that are relatively easy for a front-end compiler to take account of
and relatively hard for a C-- compiler to abstract.

A C-- compiler should advertise, for each particular target architecture, the following facts:

Supported data types: which bitsk types are supported (§2.4).

Native types: the bitsk types that implement the native pointer type and native word type (§2.4, §4.7).

Addressing unit: the number of bits m in the smallest addressable unit of memory (§4.7).

Byte order: in a load or store that is wider than the addressing unit, does the lower-addressed location
contain the most-significant or least-significant bits of the data (§4.7).

Primitive operators: which primitive operators are supported, and at what sizes (§7.4). Also what prim-
itive operators are available in forms that use alternate-return continuations and what those continu-
ations mean.

Back-end capabilities: which expressions the back end can generate code for (§7).

Foreign interface: What foreign calling conventions are supported (§5.4).

Kinds in calling conventions: What kinds may be used in calls and returns, and what the kinds mean.
In particular, it must be clear what kind and C-- type corresponds to each C type.

Kinds in register declarations: What kinds may be used in global register declarations, and how those
kinds are used to request different kinds of registers.

Names of hardware registers: What hardware registers are available to be used as global register vari-
ables, and by what names those hardware registers are known.
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3 Syntax

As befits an assembler, the syntax of C-- is designed for flexibility, not beauty. For example, most “top-level”
declarations may actually appear anywhere in a program, even in the middle of a procedure. Commas may
be used as separators or as terminators, at the discretion of the front end. Some primitives are expressible
both in the standard prefix form and in a C-like infix form.

The syntax of C-- is given in Figures 3 and 4 on pages 14 and 15.

This rest of this section describes the lexical aspects of C--, while subsequent sections deal with the syntactic
structure.

3.1 Character set

The source code of a C-- program uses the ASCII character set only. (A future extension may support
Unicode.)

3.2 Line renumbering

When reporting errors and warnings, a C-- compiler uses a source-code location that includes a file name
and line number. C-- numbers the lines in a compilation unit starting from one. The end of a line is
marked by a newline character. To facilitate interoperability with other tools, a line directive can be used
to associate source code lines to a location in a different file. A line directive has the following form:

# number "file"

A line directive must be on a line of its own and must start with the # character; number is a decimal number
in the file name file. One or more space or tab characters must be used to delimit the three tokens of a line
directive. The syntax of the line directive is the one used by the C preprocessor cpp.

The line directive associates the following line in the source code with line line in file. Line numbering
continues from there on linearly and thus all subsequent lines are considered to be from file file.

3.3 Lexemes

All lexemes are formed from printable, 8-bit, ASCII characters. They include names, integer literals, floating-
point literals, character literals, and string literals, as well as symbols and reserved words.

3.3.1 White space

Whitespace may appear between lexemes. Whitespace is a nonempty sequence of characters consisting only
of space-like characters: space, tab, newline, return, and form feed.

3.3.2 Lexical names

A maximal sequence of letters, digits, underscores, dots, dollar signs, and @ signs is a name, unless the
sequence is a reserved word or the sequence begins with a digit. Uppercase and lowercase letters are distinct.

As examples, the following are C-- names:

x _foo.name_abit_12.long

foo Sys.Indicators

_912 .9Aname

aname12 $1

@name
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unit ⇒
{

toplevel
}

toplevel ⇒ section string {
{

section
}

}

| decl
| procedure

section ⇒ decl
| procedure
| datum
| span expr expr {

{

section
}

}

decl ⇒ import import
{

, import
} [

,
]

;

| export export
{

, export
} [

,
]

;

| const
[

type
]

name = expr ;

| typedef type name
{

, name
} [

,
]

;

|
[

invariant
]

registers ;

| pragma name { pragma }

| target
{

memsize int
∣

∣ byteorder
(

little
∣

∣ big
)

∣

∣ pointersize int
∣

∣ wordsize int
}

;

import ⇒
[

string as
]

name

export ⇒ name
[

as string
]

datum ⇒ name :

| align int ;

| type
[

size
] [

init
]

;

init ⇒ { expr
{

, expr
} [

,
]

}

| string

| string16

registers ⇒
[

kind
]

type name
[

= string
] {

, name
[

= string
]} [

,
]

size ⇒ [
[

expr
]

]

body ⇒
{

decl
∣

∣ stackdecl
∣

∣ stmt
}

procedure ⇒
[

conv
]

name (
[

formals
]

) { body }

formal ⇒
[

kind
] [

invariant
]

type name

actual ⇒
[

kind
]

expr

kind ⇒ string

formals ⇒ formal
{

, formal
} [

,
]

actuals ⇒ actual
{

, actual
} [

,
]

stackdecl ⇒ stackdata {
{

datum
}

}

Figure 3: Syntax of C--, part I
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stmt ⇒ ;

| if expr { body }
[

else { body }
]

| switch expr {
{

arm
}

}

| span expr expr { body }

| lvalue
{

, lvalue
} [

,
]

= expr
{

, expr
} [

,
]

;

| name = %% name (
[

actuals
]

)
{

flow
}

;

|
[

kindednames =
] [

conv
]

expr (
[

actuals
]

)
[

targets
] {

flow
∣

∣ alias
}

;

|
[

conv
]

jump expr
[

(
[

actuals
]

)
] [

targets
]

;

|
[

conv
]

return
[

< expr / expr >
] [

(
[

actuals
]

)
]

;

| name :

| continuation name (
[

kindednames
]

) :

| goto expr
[

targets
]

;

| cut to expr (
[

actuals
]

)
{

flow
}

;

kindednames ⇒
[

kind
]

name
{

,
[

kind
]

name
} [

,
]

arm ⇒ case range
{

, range
} [

,
]

: { body }

range ⇒ expr
[

.. expr
]

lvalue ⇒ name

| type [ expr
[

assertions
]

]

flow ⇒ also
(

cuts
∣

∣ unwinds
∣

∣ returns
)

to name
{

, name
} [

,
]

| also aborts
[

,
]

| never returns
[

,
]

alias ⇒
(

reads
∣

∣ writes
)

name
{

, name
} [

,
]

targets ⇒ targets name
{

, name
} [

,
]

expr ⇒ int
[

:: type
]

| float
[

:: type
]

| ’ char ’
[

:: type
]

| name

| type [ expr
[

assertions
]

]

| ( expr )

| expr op expr
| ~ expr
| % name

[

(
[

actuals
]

)
]

type ⇒ bitsn

| name

string16 ⇒ unicode ( string )

conv ⇒ foreign string

assertions ⇒ aligned int
[

in name
{

, name
}]

| in name
{

, name
} [

aligned int
]

op ⇒ ‘ name ‘
∣

∣ +
∣

∣ -
∣

∣ *
∣

∣ /
∣

∣ %
∣

∣ &
∣

∣ |
∣

∣ ^
∣

∣ @<<
∣

∣ >>
∣

∣ ==
∣

∣ !=
∣

∣ >
∣

∣ <
∣

∣ >=
∣

∣ <=

Figure 4: Syntax of C--, part II
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These are not C-- names:

3illegal

import

section

3.3.3 Integer literals

An integer literal is a sequence of digits and denotes a number. An integer literal must fit into a stated
number of bits, which is determined by the type of the literal. By default, this type is bitsk, where k is
the native word size (§2.4), but the type may be made explicit by providing a :: type suffix. The type must
denote a bitsk type.

Unlike a C-- value, an integer literal is either signed or unsigned. The sign of a literal determines how C--
decides whether it fits into its type:

• An unsigned literal fits into k bits if it evaluates to a two’s-complement representation in which all but
the least significant k bits are zero.

• A signed literal fits into k bits if it begins with a minus sign and it evaluates to a two’s-complement
representation in which all but the least significant k− 1 bits are one. That is, the most significant bit
of a negative literal must be one.

• A signed literal fits into k bits if it begins with a digit and it evaluates to a two’s-complement repre-
sentation in which all but the least significant k − 1 bits are zero. That is, the most significant bit of
a positive literal must be zero.

It is a checked compile-time error when an integer literal does not fit into its type.

An integer literal may be notated in several ways; the notation determines the base of the literal and whether
it is signed or unsigned.

1. A literal starting with 0x or 0X is in hexadecimal notation (base 16) and is unsigned.

2. A literal starting with 0 is in octal notation (base 8) and is unsigned.

3. A literal starting any of the digits 1 through 9 and ending in the letter u or U is in decimal notation
(base 10) and is unsigned. Also, a literal 0u or 0U is in decimal notation and is unsigned.

4. A literal starting with any of the digits 1 through 9 and ending in a digit is in decimal notation (base 10)
and is signed.

5. A literal starting with a minus sign, followed by any of the digits 1 through 9, and ending in a digit,
is in decimal notation (base 10) and is signed.

The following EBNF grammar defines the syntax int for integer literals:

int ⇒ (signed-int
∣

∣ unsigned-int)
[

:: type
]

signed-int ⇒
[

-
]

dec

unsigned-int ⇒ hex
∣

∣ oct
∣

∣ dec (u
∣

∣ U)
∣

∣ 0 (u
∣

∣ U)

decdigit ⇒ 0
∣

∣ 1
∣

∣ 2
∣

∣ 3
∣

∣ 4
∣

∣ 5
∣

∣ 6
∣

∣ 7
∣

∣ 8
∣

∣ 9

hexdigit ⇒ decdigit
∣

∣ a
∣

∣ b
∣

∣ c
∣

∣ d
∣

∣ e
∣

∣ f
∣

∣ A
∣

∣ B
∣

∣ C
∣

∣ D
∣

∣ E
∣

∣ F

octdigit ⇒ 0
∣

∣ 1
∣

∣ 2
∣

∣ 3
∣

∣ 4
∣

∣ 5
∣

∣ 6
∣

∣ 7
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dec ⇒ (1
∣

∣ 2
∣

∣ 3
∣

∣ 4
∣

∣ 5
∣

∣ 6
∣

∣ 7
∣

∣ 8
∣

∣ 9)
{

decdigit
}

hex ⇒ 0 ( x
∣

∣ X) hexdigit
{

hexdigit
}

oct ⇒ 0
{

octdigit
}

The following examples are integer literals:

5 01234 23::bits8 077::bits16 0x00 255U::bits8 -128::bits8

For each bit vectory, there are four ways to write that vector as an integer literal: hex, octal, signed decimal,
and unsigned decimal. Here is an example:

0x81::bits8 0201::bits8 129U::bits8 -127::bits8

Each of the following integer literals will be rejected because it does not fit into its type:

255::bits8 -129::bits8

3.3.4 Floating-point literals

A floating-point literal denotes a floating-point number. Its type is bitsk where k is the native word size.
Like an integer literal, a floating-point literal can be followed by a type to give it an explicit type bitsk. It
is a checked compile-time error when the floating-point literal cannot be represented by k bits. The syntax
of a floating-point literal is described by the following EBNF grammar for float :

float ⇒
{

decdigit
}

.
{

decdigit
} [

exp
] [

:: type
]

|
{

decdigit
}

exp
[

:: type
]

exp ⇒ (e
∣

∣ E)
[

+
∣

∣ -
] {

decdigit
}

A floating-point literal may not begin with a dot. The following are examples of floating-point literals:

3.1415 3e-5 1e+2 23.3e-4 2.71828e0::bits64

The mapping of floating-point literal to bit vector is determined by the C-- program’s floating-point se-
mantics. At present, the only semantics supported is the IEEE 754 semantics, but C-- provides for future
extension by means of a (currently undocumented) target float directive.

3.3.5 Character literals

A character literal is a value of type bits8 by default. It is specified as an ASCII character enclosed in single
quotes: ’a’ denotes the decimal value 97 (ASCII code for “a”). The characters ’ and \ must be escaped
with \ if used in a character literal, as must any non-printing characters. Like an integer or floating-point
literal, a character literal can be followed by an optional type denoting the number of bits k to hold the
value: ’a’::bits16 is a bits16 value.

character ⇒ ’ char ’
[

:: type
]

char ⇒ printable character
| \ escape
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In order to use the ASCII codes of non-printing characters and the quote character these symbols can be
denoted with an escape mechanism. A backslash followed by one or more digits or letters is interpreted
according to the following table:

Escape Sequence Interpretation
\a Alert (Bell)
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\\ Backslash
\’ Single quote
\" Double quote
\? Question mark
\x{hexdigit} The value of the hexdigit sequence, which must contain at least one and at

most two hexdigits
\{octdigit} The value of the octdigit sequence, which must contain at least one and at

most three octdigits

The hexadecimal and octal notation enable specification of a character by its numeric code. It is a checked
compile-time error to specify a value too large to be represented in the number of bits available for the literal.

Examples of legal character literals:

’a’ ’a’::bits16 ’\0’ ’\0x0’ ’\010’ ’\r’

3.3.6 String literals

A string literal is an abbreviation for a sequence of character literals and can be used only to define the initial
value of data. A string literal is terminated by double quotes and must contain only printable characters.
Each character is value of type bits8. To include non-printable characters the backslash-escape mechanism
defined for character literals is used: characters following a backslash are interpreted according to the table
in Section 3.3.5. It is a checked compile-time error when a numerical escape code specifies a value larger
than 8 bits. Examples:

"hello" "world\0" "(%d) (%s) \n"

string ⇒ "
{

printable character
}

"

3.3.7 Reserved words

The following identifiers are reserved words and may not be used as C-- names.

aborts align aligned also as big bits byteorder case const continuation cut

cuts else equal export foreign goto if import in invariant invisible jump

little memsize pragma reads register return returns section semi span stackdata

switch target targets to typedef unicode unwinds writes

Future revisions of the C-- may require additional reserved words, but no C-- reserved word will ever
contain an @, $, or . character, so a front end using these characters is guaranteed never to collide with a
reserved word.
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3.4 Comments

C-- supports the standard C comment conventions. A one-line comment starts with //; the comment
includes all characters up to, but not including, the next newline character. A multi-line comment starts
with /* and ends with */. Multi-line comments do not nest; a multi-line comment ends at the first */ after
the opening /*. It is a checked compile-time error when an opened comment is not closed in a compilation
unit. Comments are not recognized inside string and character literals.

/* This is a multi-line

comment */

// */ this is a one-line comment

/*// this comment

ends at the end of this line, not at the end of the line above */
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4 Top-level structure of a compilation unit

The top level of a C-- compilation unit consists of sections that hold procedures, data, and declarations.
Top-level declarations and sections define names that are visible in the entire compilation unit, even before
their definition. Procedures can contain local declarations, which shadow global declarations except when
noted. A local declaration is visible in the entire body of a procedure. Declarations control:

• The import and export of names into and out of a compilation unit (§4.1).

• Names for constants (§4.2).

• Names for types (§4.3).

• Names for registers (§4.4).

• The layout of initialized and uninitialized data sections (§4.5).

• The characterization of the target architecture (§4.7).

Many of these declarations may also appear inside a procedure body, as discussed in §5.2.

4.1 Import and export

decl ⇒ import import
{

, import
} [

,
]

;

| export export
{

, export
} [

,
]

;

Names that are to be used outside of the C-- compilation unit must be exported with the export declaration.
Likewise, names that the compilation unit uses and does not declare must be imported with the import

declaration. It is a checked compile-time error to import a name that is also declared locally. Only labels or test this

the names of procedures can be imported and exported; to share a C-- register variable across compilation
units, declare it as a global variable in each unit (§4.4.1). An imported and exported name always denotes
a link-time constant of the native pointer type (§2.4).

An example:

〈toplevel example〉≡
import printf, sqrt; /* C procedures used in this C-- program */

export f3; /* To be used outside this C-- program */

Like any other C-- name, an imported name is visible throughout the scope in which the import declaration
appears; it is not necessary to import a name before using it.

Each name that is explicitly exported or imported is guaranteed to appear in the symbol table of the compiled
object code with precisely the name given in the source C-- program. A name that is used only internally
within a compilation unit might be mangled before appearing in the symbol table, or it might not appear in
the symbol table at all.

To avoid conflicts with reserved words, an external name can be renamed during import or export. For
example:

〈toplevel example〉+≡
import "jump" as ext_jump;

imports the external symbol jump and makes it accessible as ext jump inside the compilation unit. In the
same way, export ext jump as "jump" exports the name ext jump under the external name jump. The
string notation makes it possible to import and export names that are not legal C-- identifiers.

It is legitimate to export or import the same name more than once.



Revision 1.128 21
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Table 1: Primitive Operations available for constant declaration.

4.2 Constants

decl ⇒ const
[

type
]

name = expr ;

The const declaration gives a name to a compile-time constant value. The defining expression of a constant
can refer only to numerical and character literals, other constants, and some primitive operations. The type
of the expression is the type of the constant; since expression types are inferred they cannot be declared.
The scope of a constant defined in a procedure is the body of the procedure. Constants are values and share
the same name space with other values like procedures and labels. It is a checked compile-time error when
a constant definition refers directly or indirectly to itself.

〈toplevel example〉+≡
const pi = 3.1415; /* type bits k - native word size */

const mega = kilo * kilo; /* type bits k - native word size */

const kilo = 1024; /* type bits k - native word size */

const nl = ’\n’; /* type bits8 */

A constant is a value and thus has type bitsk. It is a checked compile-time error to declare a constant of
any other type, i.e. bool. Thus, const true = 1 == 1 is illegal.

Table 1 lists the primitive operations available during constant evaluation. The corresponding infix abbre-
viations can be used to access them.

C-- does not distinguish floating-point constants from integer constants. An expression such as kilo + pi

is well typed but may not have the value it would have in C.

4.3 Type definitions

decl ⇒ typedef type name
{

, name
} [

,
]

;

The typedef declaration introduces a name for a value type. The name and the defining type are totally
interchangeable in a program. For example, after the declarations below, the new type word is indistin-
guishable from bits32. Type names live in the type name space, which is different from the value name
space.

〈toplevel example〉+≡
typedef bits32 code;

typedef bits32 word;

typedef bits32 data;

When a named type is used, it is resolved at compile time. It is a checked compile-time error when a type
declaration refers directly or indirectly to itself or when another declaration for that name exists in the same
scope. Local type declarations have local scope and thus shadow global type declarations.
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4.4 Register variables

decl ⇒
[

invariant
]

registers ;

registers ⇒
[

kind
]

type name
[

= hardware-string
] {

, name
[

= hardware-string
]} [

,
]

A C-- variable should be thought of as a machine register. In particular, one cannot take the address of
a C-- variable, and distinct C-- variables therefore cannot possibly alias with one another or with any
memory location. Unlike real registers, C-- variables come in unlimited numbers. A C-- program may let
the compiler simulate unlimited variables using a limited number of hardware registers, or it may reserve
particular hardware registers to hold the values of particular C-- variables.

Any register variable may be declared invariant. Such a declaration amounts to a guarantee, provided
by the front end, that the front-end run-time system will not change the value of the variable while a C--
computation is suspended. N.B. proposed

extension:
invisibleThere are two distinct sorts of C-- variables: global (§4.4.1) and local (§4.4.2).

4.4.1 Global variables

A variable declared at the top level of a C-- program is called a global variable or global register. It is visible
throughout the entire compilation unit in which it appears, and its value is preserved by interprocedural
control flow (call, return, cut to) that uses the native C-- calling convention. (For managing global registers
when calling foreign functions, see Section 8.5 on page 56).

For example, given the declaration

〈toplevel example〉+≡
bits64 hp;

the implementation maps variable hp to a machine register if there is one available, otherwise the imple-
mentation maps hp to a memory location. The C-- program cannot tell the difference; it should view all
variables as registers.

A declaration of one or more global-register variables may be tagged with a kind that requests hardware
registers drawn from a particular class.

〈toplevel example〉+≡
"address" bits64 hptr, hplim;

"float" bits80 epsilon;

The set of kinds that may be used with each type must be specified by the C-- implementation.

A declaration of a global-register variable may also request a particular hardware register by following the
variable’s name with = hardware-string , where hardware-string is a string literal that names the register
requested. For example, the declaration

〈toplevel example〉+≡
bits32 rm = "IEEE 754 rounding mode";

makes rm a synonym for the hardware register that holds the rounding mode used for floating-point compu-
tation.

As with kinds, an implementation must specify which hardware registers may be requested by name.

So that separately-compiled C-- modules can agree about the way machine registers are allocated, C--
requires that all separately compiled modules have identical top-level variable declarations, including kinds
and named hardware registers. An implementation of C-- must detect violations no later than link time.
The means of enforcement may vary among implementations, but it is likely that a front end will have to
identify one compilation unit as the “master,” and that C-- will ensure that all other compilation units
match the master. It is also likely that error messages will be mysterious.
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4.4.2 Local variables

A local variable, declared in the body of a particular C-- procedure, is private to that procedure, and it dies
when the procedure returns.

A declaration of a local variable may not have a kind and may not request a particular hardware register.

4.5 Data sections

A section defines the memory layout of initialized and uninitialized data. Both initialized and uninitialized
data reserve memory to be used at run time; only initialized data specifies the contents.

A datum in a section may define a label, set alignment, or reserve space for an array of cells. If the values
of those cells are specified, the reserved space is initialized data; otherwise it is uninitialized data. A value is
specified by a link-time constant expression.

Here is an example that creates initialized data. The example is explained in detail below.

〈toplevel example〉+≡
section "data" {

foo: bits32[] {1::bits32,2::bits32,3::bits32,ff}; // ff is a forward reference

bits32[] {1::bits32,2::bits32};

ff: bits32[] {2,3}; bits32[]{ff,foo};

str: bits8[] "Hello world\0";

bits16[10];

}

A compilation unit can define any number of named sections. Two sections with the same name are treated
as one section with their contents concatenated. Each section maintains a location counter. The location
counter tracks the address at which the next datum is stored. Every initialized or uninitialized datum (such
as bits8[10]) increases the location counter by its size (§4.6). A label (such as foo or ff) captures the
value of a location counter and makes it accessible as a link-time constant (§4.5.1).

No padding is added in a section, so it is possible to find any desired datum by starting from a label and
adding the correct offset, as in, for example, the expression bits16[foo+4]. The address foo+4 need not
point to the beginning of a data element; it can point into the middle.

By default, each location counter is unaligned; even if the target architecture has alignment constaints, C--
never aligns the location counter automatically. A location counter’s alignment may be increased using an
align directive. To align a label (and hence the datum it points to) to a specific boundary, an alignment
directive (§4.6.1) has to be placed before the label. In the following example, baz and quux might or might
not be the same address, but quux is guaranteed to be aligned on an 8 memsize boundary.

〈toplevel example〉+≡
section "data" {

baz: align 8;

quux: bits32 {0};

}
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It is possible to define a section with no labels; there is no way to access the resulting data.

A C-- procedure is a special form of initialized data (§4.6.2).

A sequence of directives may be wrapped in a span (§4.6.3). [Simon says: Say more here][Norman says:
What more needs to be said?]

4.5.1 Labels

A label declaration consists of a name followed by a colon. It associates the name with the current location
counter in the section in which it appears. The name therefore denotes a link-time constant which points to
a fixed memory location; its type is the native pointer type. The scope of a label is the entire compilation
unit in which it appears; thus, a label can be used in its scope before it is declared.

A label provides no information about the type of data it points to.

〈toplevel example〉+≡
section "text" {

hello: bits8[] "hello world\n\0";

/* hello is of the native pointer type */

}
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4.6 The data directive

A datum reserves memory and may also define its initial contents. More specifically, a datum is defined by
a type, the number of elements of that type to reserve memory for, and optionally the initial values of the
elements:

datum ⇒ type
[

size
] [

init
]

;

| . . .

size ⇒ [
[

expr
]

]

The amount of memory reserved is determined by the type and the number of elements. Since both the
size and the initial values are syntactically optional, a number of variants exist. The general rule is that a
program can specify the size explicitly or let the number of initial values determine the size implicitly.

1. type ; Memory is reserved for one element of type type with unspecified initial value.

2. type [ expr ] ; The compile-time constant expression expr defines a nonnegative integer n. Memory
is reserved for n elements of type type with unspecified initial values.

3. type [ ] {
[

expr
{

, expr
} [

,
]]

} ; The syntax allows initialization to be specified by zero or more
link-time constant expressions, with the comma used either as a separator or a terminator. The number
of link-time constant expressions defining the initial values determine a number n ≥ 0 of elements of
type type. Memory is reserved for n elements of type type and the values from the list of expressions
are used to initialize it. It is a checked compile-time error when any expression’s type is different from
type.

4. type [ expr ] {
[

expr
{

, expr
} [

,
]]

} ; This is the same case as before except that the size given by
the compile-time constant must exactly match the number of elements used for the initial values.

5. bits8 [ ] string ; The bytes defined by the non-empty string string define the amount of reserved
memory and its initial value. Unlike a C string, a C-- string is not implicitly terminated by a null
character. If null-termination is desired, the C-- literal must end in \0.

6. bits8 [ expr ] string ; This is the same case as before except that the number of bytes defined by
the string must match the compile-time constant for the size.

7. C-- is eventually intended to support Unicode in both programs and string literals, but this part of
the design is not yet developed. We welcome suggestions.

8. To use any other syntactically possible variant is a checked compile-time error.

A link-time constant as used to define an initial value belongs to one of the following cases:

1. The link-time constant is a compile-time constant.

2. The link-time constant is a label or imported name.

3. The link-time constant is a sum or difference of other link-time constants.

Since the representation of an initialized value might depend on the byte order, the only way to ensure that
a reference to the initialized value sees the proper value is to ensure that the reference uses the same type
that was used to initialize the value (§7.3). For example, if a datum is initialized with

section "data" { foo: bits16{17}; },

when that datum is read back with bits8[foo], the value will be 0 or 17 depending on whether the C--
program specifies target byteorder big or target byteorder little, but if the same datum is read
with bits16[foo], it is guaranteed to be 17 regardless of the byte order that is specified.
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4.6.1 Alignment

The align n directive ensures the location counter is a multiple of n, by increasing it if necessary. If the
location counter is increased, the contents of any “padding” memory are not specified. The parameter n of
an alignment directive must be an integer power of two, otherwise this is a checked compile-time error.

In the following example, one is aligned to a 4-byte boundary and pi to an 8-byte boundary. In both cases
padding may be inserted: for example, between the last byte of the bits32 and the first byte of the bits64

(the datum pointed to by one ) there may be padding in order to place the bits64 on an 8-byte boundary.

〈toplevel example〉+≡
section "data" {

align 4;

one_: bits32 {1};

align 8;

pi_: bits32 {3.1415};

}

In a sequence of alignment directives, the directive with the largest parameter defines the alignment:

〈toplevel example〉+≡
section "data" {

align 1;

align 16;

align 8;

label: bits32[] {1,2,3};

}

In this example, the first bits32 value 1 is placed on a 16-cell boundary. (The cell is the target memsize,
typically 8 bits, so on a byte-addressed machine, a 16-cell boundary is a 16-byte boundary.)

4.6.2 Procedures as section contents

Declarations of procedures are initialized data. They can appear in a section, possibly interleaved with
declarations of datum:

〈toplevel example〉+≡
section "data" {

const PROC = 3;

bits32[] {p_end, PROC};

p (bits32 i) {

loop:

i = i-1;

if (i >= 0) { goto loop ; }

return;

}

p_end:

}

The example shows how to create a data structure that includes a procedure and a pointer to the end of the
procedure. The expression p end is a link-time constant expression and thus can be used to initialize data.

A procedure that appears at top level outside of any section declaration is deemed to appear in the "text"
section.



Revision 1.128 27

4.6.3 Spans

In a section, a span directive may wrap declarations, procedures, data, and other spans. The C-- run-time
system function Cmm GetDescriptor looks up information using the spans that enclose a program point at
which computation is suspended. Spans may be used to mark source-code regions of interest. Needs examples

Syntactically, a span directive has two expressions and a body. The first expression, called the key, is a
compile-time constant expression of the native word size; it identifies all spans sharing the same value for
the key. The second expression, called the value, is a link-time constant expression of the native pointer
type. It contains user-supplied data that is returned by the runtime system when the corresponding span is
found to be the smallest span that contains the requested key and encloses the current program counter.

Each expr in a span is syntactically restricted: if the expression is not a single lexical token, such as a name
or an integer literal, it must be enclosed in parentheses.

4.7 Target Directive

So that a C-- compilation unit may have a well-defined semantics independent of the target machine, we
require that the front end specify fundamental properties of the target architecture it expects.

• Addressing unit : The memsize directive specifies the number of bits in the smallest addressable unit
of memory, which is called a cell. The default is memsize 8.

• Byte order : The byteorder directive determines the semantics of references to values in memory that
are larger than one addressable unit. C-- recognizes only two byte orders: big and little. For
example, the Intel Pentium is a byteorder little architecture, and the Sun SPARC is a byteorder

big architecture. Byte order cannot be defaulted; it must be given explicitly.

• Pointer size: The pointersize directive specifies the number of bits in a value of the native pointer
type. The default is pointersize 32.

• Word size: the wordsize directive specifies the number of bits in a literal constant whose type is not
given explicitly. The default is wordsize 32.

The following example describes the Intel Pentium:

〈toplevel example〉+≡
target

memsize 8

byteorder little

pointersize 32

wordsize 32 ;

A compilation unit may contain many target declarations, but they must be consistent; it is a checked
compile-time error if a single compilation unit contains inconsistent target directives. Every compilation
unit must specify byte order; it a checked compile-time error if a compilation unit specifies no byte order.

The target directives in all compilation units must describe the same architecture. It is an unchecked
link-time error when target descriptions across compilation units mismatch. This should be

checked. When
the target is
encoded into an
MD5 encoded
linker symbol this
should be
detectable at
link-time.

The target directive provides a sanity check and helps ensure that the meaning of a C-- program is
independent of the target machine, but no C-- compiler is obligate to translate an arbitrary C-- program
for an arbitrary target machine. For example, a 32-bit C-- compiler need not be able to translate a
C-- program containing 64-bit code. Every C-- compiler must advertise what target directives it can
accomodate for targets it supports.
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5 Procedures

A C-- procedure definition plays a dual role: it is both data and code. Like initialized data, it reserves space
with specific contents, but the contents are not values; they are target-machine instructions. A procedure
also has a dynamic semantics. The front-end run-time system can call a C-- procedure, which can then call
another, and so on—which is the whole point, after all.

Overall, C-- procedures are quite a bit like C procedures, but there are many differences:

• A C-- procedure may not only accept an arbitrary number of parameters, but may return an arbitrary
number of results.

• The number of arguments passed to a C-- procedure is fixed; there is no support for “varargs.”

• Calls to procedures are not typechecked. The number of actual parameters and types and kinds of those
parameters at a call site must be identical to the number, types, and kinds of the formal parameters
in the definition of the procedure being called. The calling convention at the call site must also be
identical to the calling convention in the procedure definition. Any mismatch is an unchecked run-time
error.

• A procedure cannot be called from an expression.

5.1 Procedure definition

A procedure definition has the following syntax:

procedure ⇒
[

conv
]

name (
[

formals
]

) { body }

formals ⇒ formal
{

, formal
} [

,
]

formal ⇒
[

kind
] [

invariant
]

type name

• conv is the calling convention used to call the procedure (§5.4).

• name is name of the procedure; it denotes an immutable (link-time constant) value of the native pointer
type. This value can be stored in data structures, etc., and then later retrieved and used in call and
jump statements (§6.8 and §6.8). Like other code labels, the name of a procedure is visible throughout
a compilation unit, or if named in an export declaration, throughout the program.

• formals are the formal parameters, if any. The formal parameters are in the scope of the procedure
body and denote run-time values of the declared types. A call to a procedure passes arguments by
value. This means that changes to a parameter from within the procedure are not visible at the call
site.

A parameter declared as invariant tells C-- that the front-end run-time system promises not to
change the value of a parameter while the computation is suspended.

Unlike C, C-- does not permit a procedure to accept a variable number of arguments.

• A kind, which is a string literal, is an implementation-dependent way to guide parameter passing. It
does not affect the semantics of a C-- program except to make the program undefined if kinds do not
match. A missing kind is equivalent to a kind of "". An implementation of C-- should advertise what
kinds it understands; most implementations should understand the kinds "float" for floating-point
numbers, "address" for pointers, and "" for integers and other data.

(The results returned by a C-- procedure also require kinds, but these kinds appear on return state-
ments in the body , not as part of the procedure’s header.)
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• The body of a procedure is a sequence of decls (declarations of local register variables or of stack-
allocated data), interleaved with a sequence of stmts (statements). The sequence of statements specifies
a control-flow graph. Every path in such a graph must end in jump, return, or cut to; a procedure
in which control “falls off the end” is rejected by the C-- compiler with a checked compile-time error.

Because C-- is an unsafe language, a C-- procedure has no return types; types of results are known at call
sites and returns.

For example, procedure goo expects one 32-bit argument. Inside goo’s body, the local register variable x is
declared. goo assigns to x, then makes a tail call to procedure bar.

〈toplevel example〉+≡
goo(bits32 y) {

bits32 x;

x = y + 1;

jump bar(x);

}

When a procedure is called, a new activation for that procedure is created. The activation holds the values
of the procedure’s parameters and local register variables. An activation dies when its procedure returns or
jumps to another procedure, when a younger activation cuts past it to an older activation on the same stack,
or when the front-end run-time system cuts or unwinds the stack past that activation.

5.2 Procedure body and nested declarations

body ⇒
{

decl
∣

∣ stackdecl
∣

∣ stmt
}

A procedure body consists of a mixture of declarations, stackdata declarations (§5.3), and statements (§6),
in any order.

A procedure may contain nested declarations (decl in the syntax of Figure 3) of any kind, including const,
typedef, import and so on. Each such declaration is visible throughout the entire body of the procedure;
as long as each declaration occurs somewhere within the procedure’s body, the order and placement of the
declarations are irrelevant.

Declarations appearing in a procedure body have the same syntax and semantics as if they occurred at top
level, with the following exceptions:

Scope. A local declaration within a procedure obeys the following scope rules:

• The name declared is visible throughout the entire procedure body and only within that body.

• If the same name is declared at top level, the local declaration hides the top-level declaration
throughout the procedure.

It is a checked compile-time error to declare a single name more than once within a single procedure.

Lifetime. A register variable declared within a procedure refers to a distinct value for each activation of the
procedure in which it appears. The value lives only as long as the activation. A local variable cannot
be shared between different activations of the same procedure.

Local registers. A local register cannot have a kind, and it cannot be mapped to a hardware register using
= string following the type in its declaration.
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5.3 Allocating space on the stack

To handle a high-level value that can’t conveniently fit in a register, like a record or an array, C-- can allocate
an area in the procedure’s activation record. The syntax is the same as for uninitialized data, except the
labels and declarations appear in stackdata { ... }. No initial value can be provided.

〈toplevel example〉+≡
f2 (bits32 x) {

bits32 y;

stackdata { p : bits32;

q : bits32[40];

}

/* Here, p and q are the addresses of the relevant chunks of data.

* Their type is the native pointer type of the machine.

*/

return (q - p);

}

As with data, the names p and q are immutable values of the native pointer type, but they are not link-time
constants; they may be different in every activation of f. A C-- program may use address arithmetic on
p and q to refer to any memory location within the stackdata definition, but to use address arithmetic
on p and q to refer to a memory location outside the stackdata definition is an unchecked run-time error.
Because p and q don’t outlive f, it is also an unchecked run-time error to use p or q to refer to memory after
the activation containing them has died.

The scope of the names declared within stackdata is the entire procedure body (as for nested declarations),
and the lifetime of the allocated memory is the same as that of the activation of the enclosing procedure.

C-- does not provide dynamically sized stack allocation.

5.4 Foreign calling conventions

To use a foreign-language calling convention for a procedure, the name of the calling convention should be
declared before the procedure name with the foreign keyword. Here, foo is called using the standard C

calling convention. It then makes a call to bar, using the native C-- calling convention. Then bar returns,
and finally ceefun returns, again using the standard C calling convention.

〈toplevel example〉+≡
export ceefun;

foreign "C" ceefun() {

bits32 x;

x = bar(x);

foreign "C" return (x);

}

bar(bits32 a) {

return (a + 1);

}
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The calling conventions that every implementation of C-- is required to support are:

1. "C--" is the native convention and is guaranteed to support tail calls.

2. "C" is the standard C calling convention. Every implementation of C-- must say what C-- size and
kind go with each C type.

Depending on the platform, it may or may not be possible to use the run-time interface with a for-
eign "C" activation on the stack (§8.1.1).

3. "paranoid C" is like the standard C calling convention, except that a “paranoid” C function does not
restore callee-saves registers. It would be dangerous to define a C-- function with this convention,
because such a function would not be safely callable from C. But it is useful to use this “paranoid”
convention to call a foreign C function. When calling a foreign function using a paranoid convention,
C-- does not rely on the C compiler to save registers properly. This means it is always possible to use
the run-time interface with a foreign "paranoid C" activation on the stack (§8.1.1).

Every implementation of C-- must advertise what calling conventions and kinds it recognizes. Implementa-
tions are encouraged to support the following kinds:
"float" A floating-point number
"address" A memory address or pointer
"" Any non-float, non-pointer data, including signed and unsigned integers, bit vectors, records

passed by value, and so on
When calling a foreign function, it is up to the front end to handle parameters that are not passed by value.
For example, if a C convention requires that a struct argument be passed by reference, or if it requires that
a struct result be replaced by a “hidden” argument that points to a stack slot in the caller’s frame, it is up
to the front end to generate C-- code that passes a suitable reference, not the struct itself.
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6 Statements

A statement can read and write memory and registers, and a statement can change the flow of control.
Statements appears only within procedures. Their syntax is as follows:

stmt ⇒ span expr expr { body }

| ;

| lvalue
{

, lvalue
} [

,
]

= expr
{

, expr
} [

,
]

;

| name = %% name (
[

actuals
]

)
{

flow
}

;

| if expr { body }
[

else { body }
]

| switch
[

[ range ]
]

expr {
{

arm
}

}

| name :

| goto expr
[

targets
]

;

| continuation name (
[

kinded-names
]

) :

| cut to expr (
[

actuals
]

)
{

flow
}

;

|
[

kinded-names =
] [

conv
]

expr (
[

actuals
]

)
[

targets
] {

flow
}

;

|
[

conv
]

jump expr
[

(
[

actuals
]

)
] [

targets
]

;

|
[

conv
]

return
[

< expr / expr >
] [

(
[

actuals
]

)
]

;

body ⇒
{

decl
∣

∣ stackdecl
∣

∣ stmt
}

6.1 Span

The span statement provides a key-value pair that can be looked up by the C-- run-time system. A span
encloses a sequence of statements; whenever control is suspended within the span (e.g., at a call site), the
C-- run-time system function Cmm GetDescriptor can “see” the key-value pair. More precisely, because
spans can be nested, when Cmm GetDescriptor is called on an activation suspended at a particular point,
it is given a key, and it returns the value of the smallest enclosing span with that key (§8.4). The dynamic
semantics of the span is the semantics of the statements it encloses. A span can be also part of a section,
where it encloses procedures (§4.6.3).

Syntactically, a span directive has two expressions and a body. The first expression, called the key, is a
compile-time constant expression of the native word size; it identifies all spans sharing the same value for
the key. The second expression, called the value, is a link-time constant expression of the native pointer
type. It contains user-supplied data that is returned by the runtime system when the corresponding span is
found to be the smallest span that contains the requested key and encloses the current program counter.

Each expr in a span is syntactically restricted: if the expression is not a single lexical token, such as a name
or an integer literal, it must be enclosed in parentheses.

6.2 Empty statement

The empty statement, which is written as a bare semicolon (;), can appear anywhere a statement can. It
has no effects.
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6.3 Assignment

C-- assignments are multiple assignments ; C-- computes the values of all right-hand sides and addresses
before performing any assignments. An assignment statement assigns values from a list of expressions or a
value returned by a primitive operator.

stmt ⇒ lvalue
{

, lvalue
} [

,
]

= expr
{

, expr
} [

,
]

;

| name = %% name (
[

actuals
]

)
{

flow
}

;

The type of each lvalue in an assignment must match the type of the corresponding expression on the
right-hand side (§7.5). To violate this rule is a checked compile-time error.

lvalue ⇒ name

| type [ expr
[

assertions
]

]

Either an lvalue is the name of a register variable or it is a reference to memory. The rules governing
references to memory are explained in Section 7.3, but in brief, type gives the size of the location to which
the right-hand value is assigned, expr gives the address of that location, and any assertions make claims
about aliasing and alignment.

Here is an example of a multiple assignment, including a swap instruction.

〈toplevel example〉+≡
swap (bits32 x) {

bits32 p,q;

p,q = x, x+1::bits32;

bits32[p], bits32[q] = bits32[q], bits32[p];

return;

}

The %% form for assigning the results of a primitive operator is intended to provide clients a way to recover
from a primitive operation that may fail. For example, it may be possible to provide an alternate-return
continuation (§6.8.1) to detect division by zero. For this version of the C-- specification, however, the details
have not yet been worked out.

6.4 Conditional statement

Conditional execution of code is accomplished with the if statement. It has the following syntax:

statement ⇒ if expr {
{

body
}

}
[

else {
{

body
}

}
]

The expression expr is evaluated at run time and must have type bool; that is, it must denote a condition,
not a value. Most commonly, such an expression will be the result of applying a relational operator, but this
is not a requirement.

As in C, the else branch is optional, and both statement blocks may be empty, but unlike C, C-- requires
the curly braces even for single statements, as here:

if x == 0 { x = x + 1;}

Also unlike C, C-- does not require the condition to be parenthesized.
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When the condition is true, the block of statements immediately following the condition is executed. Other-
wise, if an optional else branch has been specified, its block of statements is executed. Execution of either
block resumes at the first statement after the if or if/else, unless of course the code in the block changes
flow of control with a goto, return, cut to, or jump.

Here’s an example:

〈toplevel example〉+≡
f0(bits32 x) {

bits32 y;

y = 0;

if (y >= bits32[foo+8]) {

y = y + 1;

return (y);

} else {

x = x - 1;

if x != 0 {

y = y + 2;

}

return (y);

}

}

6.5 The switch statement

A switch statement evaluates an expression expr and based on the value, executes an arm. Each arm is
guarded by ranges of (compile-time constant) expressions. The switch statement executes the first arm (in
the order of appearence) that is guarded by a value that is equal to the value of the evaluated expression.
Here’s the syntax:

stmt ⇒ switch expr {
{

arm
}

}

arm ⇒ case range
{

, range
} [

,
]

: { body }

range ⇒ expr
[

.. expr
]

3

The meaning of a range e1..e2 is all the bit patterns n such that e1 ‘leu‘n and n ‘leu‘e2; the meaning of a list
of ranges is their union. This use of unsigned comparison may seem a bit strange, but it gives the expected
results for both positive and negative two’s-complement ranges. (For ranges that cross zero, however, the
results may be most unexpected. Beware!) A range with e1 ‘gtu‘ e2 is empty. Ranges are evaluated at
compile-time and thus are compile-time constant expressions.

• The expression expr , called the scrutinee, is evaluated at run time and yields a value.

• Every arm is guarded by a non-empty list of non-empty ranges. The types of all values of the range
must be equal and must match the type of the expression. The switch executes the first arm (in order
of appearance) that is guarded by a range into which falls the value of the scrutinee. Unless the arm
changes the flow of control, control then flows from the arm to the statement after the switch. Unlike
in C, “fall through” between arms is impossible.

An implementation of C-- may assume that earlier arms are more likely to be executed.
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• It is an unchecked run-time error to execute a switch statement in which the value of the scrutinee
does not appear in the ranges of any of the arms. The arms must cover all possible values of expr .
Unlike C, C-- does not include a default arm in a switch statement. A default arm can be simulated
by guarding the last arm with a range such as 0 .. 0xffffffff.

In the following example, expression x+23 is assumed to yield a value in between 0 and 7. If the value is 1,
2, or 3, then the first branch is taken. If the value is 5, then the second branch is taken. If the value is 0, 4,
6, or 7, then the third branch is taken.

〈toplevel example〉+≡
f6 (bits32 x, bits32 y) {

import bits32 f;

switch (x + 23) {

case 1,2,3 : { y = y + 1;}

case 5 : { y = x + 1; x = y;}

case 0,4,6,7 : { y = f();

if y == 0 { x = 1;}

}

}

return (x, y);

}

6.6 Control labels and goto

A control label is used as the target of a goto to change control flow within a procedure. Like a data label,
a control label is declared by giving its name, followed by a colon. The name denotes a link-time constant
value of the native pointer type. Unlike C, C-- provides first-class labels and computed gotos. As in an
assembler, the scope of a control label is the entire compilation unit in which the label appears. In particular,
a label can appear in initialized data in another section.

The syntax is

stmt ⇒ name :

| goto expr
[

targets name
{

, name
}[

,
]]

;

In general, the goto is a “computed” or “indirect” goto. The expression expr must evaluate to the value of
one of the labels in the targets list; otherwise, executing the goto is an unchecked run-time error. Each
label in the targets list must be defined in the local procedure, otherwise this is a checked compile-time error.
In the special case where the expr consists of the name of a (local) label, the targets list may be omitted,
and it defaults to that label. Otherwise, it is a checked compile-time error to omit the targets list.

〈toplevel example〉+≡
f3 () {

stackdata {

bar: bits8[64];

}

f3_label:

bits64[bar] = 18::bits64;

bits64[bar+4*8] = bits64[bar];

if (%zx32(bits8[bar+4*8]) == 18) { return; }

goto f3_label;

}
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6.7 Continuations and cut to

A continuation is a bit like a control label, except that it enables control flow between procedures, not just
within a single procedure. Like a label definition, a continuation statement marks a point of control and
introduces a name that has a C-- value. But unlike a control label, a continuation encapsulates a particular
activation of a procedure as well as a point in the source code. Also, a continuation can take parameters.

The name of the continuation denotes a value of the native pointer type. The name is visible only inside
the procedure in which it appears. This value, which encapsulates a stack pointer and program counter, is
different for every activation of the procedure in which the continuation appears. The value is first-class—
that is, it can be passed around and stored in data structures—but it has a limited lifetime: it dies when its
procedure activation dies.

stmt ⇒ continuation name (
[[

kind
]

name
{

,
[

kind
]

name
} [

,
]]

) :

| cut to expr (
[

actuals
]

)
{

flow
}

;

flow ⇒ also
(

cuts
∣

∣ unwinds
∣

∣ returns
)

to name
{

, name
} [

,
]

| also aborts

| never returns

The cut to statement changes the flow of control to a previously captured continuation value expr : control
returns to the activation of the continuation and resumes at the continuation statement. The continuation
being cut to is typically fetched from a data structure or register.

A cut to statement is the only way to pass control to a continuation. It is a checked compile-time error for
control to fall through to a continuation statement or for a continuation to be on the targets list of a goto.

A continuation can receive values that are passed from cut to. To receive values, the continuation statement
lists local variables into which the values should be placed. The values passed from cut to are stored in
these variables. In is an unchecked run-time error when the number, types, and kinds of values passed by
cut to do not match the number, types, and kinds of the formal parameters of the receiving continuation.

A continuation’s value is of the native pointer type. It is a checked compile-time error to cut to a value not
of the native pointer type. It is an unchecked run-time error to cut to a continuation inconsistent with the
flow annotation on the cut to:

• The also aborts annotation indicates that the cut to may cut to a continuation in an older activation
in the same stack, destroying the current activation. This is the default if

{

flow
}

is empty.

• The also cuts to annotation names all continuations in the current activation that may be cut to.

• The also returns to and also unwinds to annotations are meaningless for a cut to. To include
one of these annotations on a cut to is a checked compile-time error.

• The never returns annotation is superfluous for a cut to, but it is permissible.

A continuation is live as long as its procedure activation is live. It is an unchecked run-time error to cut to

a dead continutation.

6.8 Procedure calls, tail calls, and returns

A call statement, which is also called a call site, suspends a procedure activation and starts executing another
procedure. This procedure may call other procedures, and so on, but eventually it resumes the suspended
activation by executing a matching return. Alternatively, another procedure may execute the matching
return after a sequence of tail calls. A tail call does not suspend an activation; instead, the activation
making the tail call dies and is replaced by an activation of the called procedure. For this reason, a tail
call does not have a matching return. Finally, an activation suspended at a call site may be resumed at a
continuation, which is reached by a cut to, a return, or through the run-time system (§8.4). All methods
of transferring control between procedures—including call, tail call, return, and cut to—may pass values.
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6.8.1 Calls and tail calls

Because a procedure call is a statement, not an expression, it cannot be used inside an expression. For
example, a phrase such as y = f(g(x)) + 1; is not legal C--.

In general, a C-- call or tail call is indirect: the procedure to be called is computed by an expression whose
value need not be known until run time. The syntax of call and tail call is as follows:

stmt ⇒
[

kinded-names =
] [

conv
]

expr (
[

actuals
]

)
[

targets
] {

flow
∣

∣ alias
}

;

|
[

conv
]

jump expr
[

(
[

actuals
]

)
] [

targets
]

;

kinded-names ⇒
[

kind
]

name
{

,
[

kind
]

name
} [

,
]

actuals ⇒
[

kind
]

expr
{

,
[

kind
]

expr
} [

,
]

targets ⇒ targets name
{

, name
} [

,
]

flow ⇒ also
(

cuts
∣

∣ unwinds
∣

∣ returns
)

to name
{

, name
} [

,
]

| also aborts

| never returns

alias ⇒
(

reads
∣

∣ writes
) [

name
{

, name
} [

,
]]

• The results of a call are assigned to variables. It is an unchecked run-time error when the number,
types, or kinds of the variables at a call site differs from the number, types, or kinds of the values at
the matching return.

A tail call has no results; the calling activation dies immediately.

• For both a call and a tail call, an optional conv identifies the calling-convention to use when calling the
procedure. A missing calling convention is equivalent to foreign "C--". Other calling conventions
are needed for interoperability with foreign code (§5.4). Every convention supports calls, but a foreign
convention is not guaranteed to support tail calls. In particular, the foreign "C" convention does not
support tail calls.

It is an unchecked run-time error if the calling convention at a call site differs from the calling convention
at the definition of the procedure called. It is also an unchecked run-time error if the calling convention
at the call site differs from the calling convention at the matching return.

• For both a call and a tail call, the expression expr must evaluate to the address of a procedure. It is
a checked compile-time error if expr ’s type is not the native pointer type; it is an unchecked run-time
error if expr evaluates to something that is not a procedure.

• For both a call and a tail call, the list of expressions actuals is evaluated at run time and passed by
value to the called procedure. Because in a correct C-- program, evaluating an expression has no side
effect, order of evaluation is not specified.

A kind attached to an actual parameter has an implementation-dependent meaning—it guides the C--
compiler in putting the actual parameter in an appropriate location. A missing kind is equivalent to
a kind of "". It is an unchecked run-time error if the number, types, or kinds of actual parameters
differs from the number, types, or kinds of formal parameters at the definition of the procedure called.

• For both a call and a tail call, the optional list “targets” enumerates the names of the procedures
that expr can evaluate to. If a list is present, the C-- compiler may use it to optimize (for example,
by using a nonstandard calling convention). If the list is supplied, it is an unchecked run-time error if
expr evaluates to the address of a procedure not on the list.
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• When a called procedure returns normally, the flow of control continues at the statement following
the call. The called procedure, however, can use cut to, return, or the C-- run-time system to
pass control to a continuation and effectively perform a non-local return. The call must be annotated
accordingly using flow annotations. It is an unchecked run-time error when the called procedure
transfers control to a continuation not listed in the flow annotations, or when it transfers control by a
means not consistent with the flow annotations. The annotations’ requirements are as follows:

– An also aborts indicates that the called procedure may cut to a continuation in an older activa-
tion in the same stack, destroying the current activation. This is the default when no annotation
is given.

– An also cuts to lists continuations to which the called procedure can transfer control using cut

to.

– An also unwinds to lists continuations to which the called procedure can transfer control with
the help of the C-- run-time system (§8.4).

– An also returns to lists continuations to which the called procedure can transfer control using
return, as discussed below.

– A never returns annotation indicates that control never returns using the normal return con-
tinuation, but only by one of the paths indicated by the other annotations above.

A continuation listed in also cuts to, also unwinds to, or also returns to must be defined in
the same procedure as the call site, or else it is a checked compile-time error.

• The optional alias annotation may identify alias names (§2.3.2) that are read or written by the proce-
dure call. These alias names are used to determine when the call may interfere with a load or a store
operation. If not annotated, the call is assumed to read or write any legal memory location, which
means that it may interfere with any load or store. If annotated with an empty list of names, the call is
assumed not to read or write any location visible to the calling context, which means it interferes with
no loads or stores. Otherwise, the meaning of the list of names is determined by the front end (§7.3.2).

• A future version of this specification may describe additional annotations by means of which a front
end will be able to tell C-- how a call depends on or affects the values of global register variables.

A continuation reached only by also cuts to or also returns to may have any arguments at all. But a
continuation that is reached by also unwinds to must have arguments whose sizes and kinds correspond
to C types. This restriction is necessary because such arguments are passed directly from C using the
Cmm MakeUnwindCont function (§8.4).

Here is an example of using a tail call to write an infinite loop with no stack growth:

〈toplevel example〉+≡
f7(bits32 x, bits32 y) {

jump f7(y, x); /* Loop forever */

}
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6.8.2 Returns

A return statement transfers control (and results) back to a matching call site. A return kills the activation of
the procedure containing the return, so the once the return is executed, the local variables and continuations
of the procedure die. The syntax is:

stmt ⇒
[

conv
]

return
[

< expr / expr >
] [

(
[

actuals
]

)
]

;

actuals ⇒
[

kind
]

expr
{

,
[

kind
]

expr
} [

,
]

The return statement may be qualified with the calling convention to be used (§5.4); a missing qualification
is equivalent to foreign "C--". It is an unchecked run-time error for the convention at a return to differ
from the convention at the matching call site.

The actuals are the expressions whose values are returned. A procedure may return any number of values.
Because in a correct C-- program, evaluating an expression has no side effect, order of evaluation is not
specified. It is an unchecked run-time error for the number, kinds, or types of the actuals to differ from the
number, kinds, or types of the variables on the left-hand side of the matching call site. As in a call, a missing
kind is equivalent to a kind of "".

A return statement normally passes values to the left-hand side of its call site, and execution of the suspended
activation resumes with the statement following the call site. But a return may also return to a continution
that is listed in the call site’s also returns to annotation. In this case, the actuals of the return are assigned
to the formal parameters of the continuation, and execution of the suspended activation resumes with the
continuation. The choice of continuation is made by using the form return < i / n >

[

(
[

actuals
]

)
]

. The
matching call site must be annotated with exactly n also returns to continuations, and execution resumes
with the continuation numbered i, where continuations are numbered from 0. If i = n, execution resumes
after the matching call site, just like a normal return. If the < i / n > notation is missing, it is equivalent to <

0 / 0 >. The expressions i and n are evaluated at compile time. It is a checked compile-time error if i or n

is not a compile-time constant expression (§4.2), if i or n has a type that is not the native word type, or if
i falls outside the range 0..n. Also, it is an unchecked run-time error if n differs from the number of also
returns to continuations at the matching call site. Finally, each of the expressions i and n is syntactically
restricted: either the expression is a single name or literal, or else it is enclosed in parentheses.

Here is an example showing return with multiple values.

〈toplevel example〉+≡
f4() {

bits32 x, y;

x, y = f5(5);

return (x,y);

}

f5(bits32 x) {

return (x, x+1);

}
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7 Expressions

A C-- expression can be a literal, a name, a reference to a value in memory, or a primitive operator
applied to other expressions (see Figure 4 on page 15). Evaluating a C-- expression produces either a k-bit
value or a Boolean condition. A value may be stored in a variable, passed as a parameter, returned as a
result, or fetched from and stored in memory. A condition governs control flow in if. An expression that
produces a k-bit value has type bitsk; an expression that produces a condition has type bool. As in an
assembler, distinctions between signed integers, unsigned integers, pointers, and floating-point values are in
the operators, not in the types of operands.

The type of an expression is determined by the types of the names and operators that appear in the expression.
C-- has no overloading, no implicit conversions, and no typecasts.

An implementation of C-- need not be able to generate code for a C-- program containing expressions of
type bitsk for arbitrary k. Instead, each implementation is required to advertise what expressions it can
generate code for. It is reasonable to expect that a C-- compiler generating code for a 32-bit platform will
be able to translate expressions of type bits32, and so on.

7.1 Literals

expr ⇒ int
[

:: type
]

| float
[

:: type
]

| ’ char ’
[

:: type
]

The simplest building blocks of expressions are literals. Any literal may be given an explicit size by using
the notation :: type . There are literal expressions for integers, floating-point numbers, and characters, but
not strings; string literals can be used only to initialize data (§4.6).

Integer literals default to the native word size. An integer literal produces the bit vector that is the
two’s-complement representation of the integer (§3.3.3).

Floating-point literals default to the native word size. The meaning of a floating-point literal (down to
the bit level) will be covered only under a future version of this specification. The intent is that the a
decimal floating-point literal will produce the “most appropriate” IEEE 754 bit vector, whatever that
means. A client that wants a definite IEEE floating-point value is advised to emit an integer literal
(perhaps using hexadecimal notation) that denotes the appropriate bit vector.

Character literals have type bits8 by default (§3.3.5).

Both floating-point and integer literals have type bitsk and thus are not distinguished in the type sys-
tem (§7.5). So for example, the expression 3.1415 + 1 is legal in C--, but since + denotes two’s-complement
integer addition, the result might be unexpected: the bit pattern of 3.1415 is considered as an integer and
added to 1, so essentially what you get is 3.1415 plus one unit in the last place. In particular, 3.1415 is
not rounded to 3 and thus the result is not 4. More useful expressions include %f2i32(3.1415, rm) + 1

and 3.1415 ‘fadd‘ %i2f32(1, rm), where rm refers to rounding modes.



Revision 1.128 41

7.2 Names

expr ⇒ name

A name in an expression denotes one of the following values:

1. A C-- register register variable; its type is as declared.

2. A constant; its type is inferred from its defining expression.

3. A code label (possibly a procedure); its type is the native pointer type.

4. A data label, either in a section or on the stack; its type is the native pointer type.

5. A continuation; its type is the native pointer type.

Every has a type of the form bitsk. Since a condition for an if statement has type bool, a name cannot
denote a condition. A value of type bitsk can be converted to a condition of type bool by comparing it
with zero.

7.3 References to memory

expr ⇒ type [ expr
[

assertions
]

]

A memory reference type [expr] consists of an address expr and a type, possibly with assertions . The type
type is of the form bitsk and describes the size of the memory object being read (or written); k must be
a multiple of an addressable memory unit as declared by target memsize (§4.7). The typical memsize is
8, so typically bits8 and bits16 are legal but bits17 is not. The address expr determines the location(s)
in memory to which the reference refers. The type of the address must be the native pointer type, which is
checked at compile time. As described below, the reference may include assertions that describe the address’s
alignment or the (abstract) set of values from which it may be drawn.

A memory reference refers to a location, or possibly an aggregate of locations. For example, a reference
of type bits32 might refer to an aggregate of four 8-bit bytes. When a reference appears as an expr , it
denotes the contents of its location(s). When the reference appears as an lvalue, on the left-hand side of an
assignment, it denotes the location(s) into which the corresponding value on the right-hand side should be
stored (§6.3).

When a memory reference refers to an aggregate of locations—that is, when type is larger than will fit
in a single addressable memory unit—addressable memory units are aggregated according to the target

byteorder (§4.7). For example, if a reference of type bits32 refers to an aggregate of four 8-bit bytes, and
if the target byteorder is big, then the first byte (the one at expr) forms the most significant byte of the
reference, and so on.

It is an unchecked run-time error for a C-- program to refer to a location in memory to which it does not
have rights (§2.3.1).

Here are two examples, both of which assume that target memsize is 8.

• The assignment “bits8[label+4] = ’A’;” stores the byte 0x41 (value of charcter literal ’A’) into
the location label+4; label must be a value of the native pointer type.

• The expression “bits32[label + i*4]” denotes the contents of the specified memory location; the
expression label+i*4 must evaluate to a native pointer that is aligned on a 4-byte boundary.
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7.3.1 Alignment and memory access

A memory reference of the form bitsk [expr] implicitly asserts that expr evaluates to an address that is
aligned on an n-byte boundary, where k is n times the target memsize. If the address is not so aligned,
it is an unchecked run-time error. For example, in the typical case of target memsize 8, the address in a
bits16 reference must be aligned to 2 bytes. If the front end cannot guarantee the expected alignment, it
must annotated the reference with an alignment assertion, which gives the maximum alignment that can be
expected:

assertions ⇒ aligned int

Such an assertion guarantees that the address is aligned on an int-unit boundary; to violate the guarantee is
an unchecked run-time error. For example, a completely unaligned access should be annotated aligned 1.
Examples:

• The assignment “bits64[label aligned 4] = expr ;” is a 8-byte store to a 4-byte aligned address.

• The expression “bits32[label aligned 1]’ is a 4 byte-reference at an unaligned address.

7.3.2 Aliasing assertions

A typical front end usually has some information about how memory references must differ (may not alias).
For example, a front end may be able to identify stores to a newly allocated, uninitialized object, which
cannot possibly interfere with loads from an old, initialized object. By communicating this information to
the C-- back end, the front end enables to the back end to do a better job scheduling loads, for example.

The front end communicates this information in two parts.

• Each memory reference may be annotated with a list of names. The syntax is

assertions ⇒ in name
{

, name
}

• The front end provides a procedure that, when presented with two lists of names, tells whether the
corresponding references may alias. The mechanism by which the front end provides this procedure is
not covered under this specification.

It is anticipated that there will be a simple default mechanism that will suffice for many clients, but no such
mechanism is covered by this specification.

7.4 Applications of primitive operators

C-- has over 75 primitive operators. An implementation of C-- should advertise what subset it supports.

Each primitive operator produces one result, the type and size of which is determined by the name of the
operator and the types and sizes of its operands. Primitive operators are free of side effects: they do not
change memory, registers, or the flow of control. If the application of a primitive operator causes a system
exception, such as division by zero, this is an unchecked run-time error. (A future version of this specification
may provide a way for a program to recover from such an exception.)

Table 2 lists the primitive operators grouped by function. Table 4 lists and explains the operators, dividing
them into just two groups—floating-point operators and other operators—and in alphabetical order within
each group. Many primitive operators have polymorphic types, which are explained in §7.4.2.
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Floating-point operations

Comparisons

feq Equal
fne Unequal
fge Greater than or equal to
fgt Greater than
fle Less than or equal to
flt Less than
fordered Ordered (comparable)
funordered Unordered (incomparable)

Arithmetic

fabs Absolute value
fadd Add
fdiv Divide
fmul Multiply
fmulx Multiply, extended
fneg Negate
fsqrt Square root
fsub Subtract

Conversions

f2fk Convert float to float (change size)
i2fk Convert integer to float
f2ik Convert float to integer

Particular values

NaNk Not a number
minfk Minus infinity
pinfk Plus infinity
mzerok Minus zero
pzerok Plus zero

Rounding modes

round down Toward −∞
round nearest Toward nearest
round up Toward +∞
round zero Toward 0

Non-floating-point operations

Arithmetic

add Add
addc Add with carry in
carry Carry out (from addc)
sub Subtract
subb Subtract with borrow in
borrow Borrow out (from subb)
neg Negate
mul Multiply (signed or unsigned)
mulux Multiply unsigned, extended
mulx Multiply signed, extended
div Signed divide (round to −∞)
quot Signed quotient (round to 0)
divu Unsigned divide (round to 0)
mod Signed modulus (with div)
rem Signed remainder (with quot)
modu Unsigned modulus (with divu)

Overflow checking

add overflows mulu overflows

div overflows quot overflows

mul overflows sub overflows

Boolean operations

bit Convert Boolean to bit
bool Convert bit to Boolean
conjoin Boolean and
disjoin Boolean or
false Falsehood
not Boolean complement
true Truth

Bit operations

and Bitwise and
com Bitwise complement
or Bitwise or
xor Bitwise exclusive or
rotl Bit rotate left
rotr Bit rotate right
shl∗ Shift left
shra∗ Shift right, arithmetic
shrl∗ Shift right, logical
popcnt Population count

∗Table 4 describes restrictions on operands

Comparisons

eq Equal
ne Unequal
ge Greater than or equal to (signed)
gt Greater than (signed)
le Less than or equal to (signed)
lt Less than (signed)
geu Greater than or equal to, unsigned
gtu Greater than, unsigned
leu Less than or equal to, unsigned
ltu Less than, unsigned

Width changing

lobitsk Extract low bits
sxk Sign extend
zxk Zero extend

Table 2: Primitive operators grouped by function
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Operator Associativity Meaning

~ - (unary) right com neg

/ * % left divu mul modu

- + left sub add

>> << left shrl shl

& left and

^ left xor

| left or

>= > <= < != == none geu gtu leu ltu ne eq

‘name‘ none name

Operators at the top of the table have highest precedence;
operators on the same line have equal precedence.

Table 3: Infix operators with precedence and associativity

7.4.1 The syntax of primitive operators

expr ⇒ % name
[

(
[

actuals
]

)
]

| expr op expr
| ~ expr
| - expr

op ⇒ ‘ name ‘
∣

∣ +
∣

∣ -
∣

∣ *
∣

∣ /
∣

∣ %
∣

∣ &
∣

∣ |
∣

∣ ^
∣

∣ <<
∣

∣ >>
∣

∣ ==
∣

∣ !=
∣

∣ >
∣

∣ <
∣

∣ >=
∣

∣ <=

Each application of a primitive operator takes one of four syntactic forms:

• In standard prefix form, the operator’s name is preceded by a “%” symbol, and the arguments appear
in parentheses, as in %mul(n, m). Every operator can be written in this form.

• In symbolic infix form, the operator’s symbol is written between the two arguments, as in n * m. Only
operators listed Table 3 have symbols and can be written in this form; the table shows the associativity,
precedence, and meaning of each operator symbol. (The associativity and precedence of infix operators
are as in C, but there is a big difference: in C--, an infix operator is an abbreviation for exactly one
primitive operator. For example, * is always integer multiplication.)

• In backquoted infix form, the operator’s name is written in backquotes between its two arguments, as
in n ‘mul‘ m. Only binary operators may be written in this form. A backquoted operator has least
precedence and no associativity; when multiple backquoted operators are used in the same expression,
they must be disambiguated with parentheses.

• In symbolic prefix form, the operator’s symbol appears before its argument. There are only two prefix
operators: ~ expr means %com(expr) (bitwise complement), and - expr means %neg(expr) (integer
negation).

The names of primitive operators do not occupy the same name space as other C-- names, so for example a
procedure named add can coexist with the primitive %add. The set of primitive operators is fixed at compile
time; an expression cannot call a user-defined procedure.

The lexical treatment of the percent sign depends on whitespace: If a percent sign is followed by whitespace,
it is an infix operator. If a percent sign is followed by a letter, it is part of the standard prefix form of an
operator. For example, 10 % b denotes the same expression as %modu(10, b), but 10%b is parsed as 10

followed by the name of a primitive b.
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7.4.2 Primitive operators and types

Most primitive operators are polymorphic—that is, they accept arguments of more than one type. For
example, add can be use to add values of any width. We write the type of a polymorphic operator using ∀;
for example,

add ∀α.bitsα × bitsα → bitsα

eq ∀α.bitsα × bitsα → bool

The type of add can be read “for any width α, add takes two values of type bitsα and delivers a result of
the same type”. In general, we form the type of an operator, optype, as follows:

optype ::= t1 × . . . × tn → t monomorphic operator, n ≥ 0
| ∀α.t1 × . . . × tn → t polymorphic operator, n ≥ 0

t ::= bool

| bitsk some particular k > 0
| bitsα α bound by ∀α in a polymorphic type

In C--, it is always possible to deduce the type of an operator application from the types of its arguments.
To enable this deduction, C-- requires that in any application of the primitive operators f2fk, i2fk, f2ik,
NaNk, lobitsk, minfk, mzerok, pinfk, pzerok, sxk, or zxk, the k in the operator’s name must be replaced
by the width of the desired result. For example, to zero-extend a byte in memory to a 32-bit word, one
might write %zx32(bits8[a]). To zero-extend the same byte to 64 bits, one would write %zx64(bits8[a]).

7.5 Typing rules for expressions

An expression in C-- has a single type, which is either bitsk or bool. The type (and k) are identified at
compile time, according to the following rules.

• The type of a literal annotated with :: type is type.

• The type of an unannotated integer or floating-point literal is the native word type, i.e., bitsk, where
k is the target wordsize.

• The type of an unannotated character literal is bits8.

• The type of a name declared as a register variable is its declared type.

• The type of a name defined as a constant expression is the type of the constant expression.

• The type of a name that is imported or is the name of a continuation or a label (in initialized data;
in stackdata; or in a procedure, including the name of the procedure) is the native pointer type, i.e.,
bitsk, where k is the target pointersize.

• The type of a reference to memory memory type[expr
[

assertions
]

] is the declared type.

• The type of an application of a primitive operator %name(
[

actuals
]

) is the type returned returned by
the primitive operator, provided the application is well typed. (The type of an application notated in
infix or prefix-symbolic form is the same as the type of the same application notated in standard prefix
form.)

An application is well typed if (a) it is possible to instantiate the operator’s type (by substituting for
the ∀-bound variable, if any) to t1 × t2 × . . . × tn → t; (b) if the operator is f2fk, i2fk, f2ik, NaNk,
lobitsk, minfk, mzerok, pinfk, pzerok, sxk, or zxk, then t is type bitsk; and (c) the operator is
applied to n arguments, where argument i has type ti. In this case, the type of the application is t.

An application that is not well typed results in a checked compile-time error.
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C-- primitive operators

IEEE 754 Floating-point operations

i2fk ∀α.bitsα × bits2→ bitsk

Converts a two’s-complement integer of α bits into an IEEE 754 floating-point value
of k bits, using the rounding mode given as the second argument.

f2fk ∀α.bitsα × bits2→ bitsk

Converts an IEEE 754 floating-point value of α bits to a floating-point value of
k bits, using the rounding mode given as the second argument.

f2ik ∀α.bitsα × bits2→ bitsk

Converts an IEEE 754 floating-point value of α bits to a two’s-complement integer
value of k bits, using the rounding mode given as the second argument.

fabs ∀α.bitsα → bitsα

Absolute value of a floating-point value.
fadd ∀α.bitsα × bitsα × bits2→ bitsα

Floating-point add with explicit rounding mode.
fdiv ∀α.bitsα × bitsα × bits2→ bitsα

Floating-point divide with explicit rounding mode.
feq ∀α.bitsα × bitsα → bool

Floating equality. Compares floating-point numbers and produces a Boolean di-
rectly.

fgt ∀α.bitsα × bitsα → bool

Floating greater than. Compares floating-point numbers and produces a Boolean
directly.

fge ∀α.bitsα × bitsα → bool

Floating greater than or equal. Compares floating-point numbers and produces a
Boolean directly.

flt ∀α.bitsα × bitsα → bool

Floating less than. Compares floating-point numbers and produces a Boolean di-
rectly.

fle ∀α.bitsα × bitsα → bool

Floating less than or equal. Compares floating-point numbers and produces a
Boolean directly.

fmul ∀α.bitsα × bitsα × bits2→ bitsα

Floating-point multiply with explicit rounding mode.
fmulx ∀α, β.bitsα × bitsα → bits2α

Floating-point multiply, extended: Multiply two α-bit, floating-point numbers and
return the exact 2α-bit product, with no rounding.

fne ∀α.bitsα × bitsα → bool

Floating inequality. Compares floating-point numbers and produces a Boolean di-
rectly.

fneg ∀α.bitsα → bitsα

Negation of a floating-point value.
fordered ∀α.bitsα × bitsα → bool

Floating ordered predicate. Returns true if and only if two floating-point numbers
are comparable.

fsqrt ∀α.bitsα × bits2→ bitsα

Square root of a floating-point value, with explicit rounding mode.
fsub ∀α.bitsα × bitsα × bits2→ bitsα

Floating-point subtract with explicit rounding mode.

Table 4: C-- primitive operators
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C-- primitive operators, continued

funordered ∀α.bitsα × bitsα → bool

Floating unordered predicate. Returns true if and only if two floating-point numbers
are not comparable.

minfk ∀α.bitsk

IEEE 754 representation of minus infinity.
mzerok ∀α.bitsk

IEEE 754 representation of minus zero.
NaNk ∀α.bitsα → bitsk

NaN n is an IEEE 754 NaN with significand n. For a 32-bit NaN, the significand has
α = 23 bits. For a 64-bit NaN, the significand has α = 52 bits. It is an unchecked
run-time error to pass a zero significand to %NaN.

pinfk ∀α.bitsk

IEEE 754 representation of plus infinity.
pzerok ∀α.bitsk

IEEE 754 representation of plus zero.
round down bits2

IEEE 754 rounding mode for rounding down.
round up bits2

IEEE 754 rounding mode for rounding up.
round nearest bits2

IEEE 754 rounding mode for rounding to nearest.
round zero bits2

IEEE 754 rounding mode for rounding toward zero.

Other operations, alphabetically by name

add ∀α.bitsα × bitsα → bitsα

Two’s-complement integer addition.
addc ∀α.bitsα × bitsα × bits1→ bitsα

Two’s-complement integer addition with carry in.
add overflows ∀α.bitsα × bitsα → bool

Tells whether a signed integer addition would overflow, i.e., if an addition would
produce a result with a sign different from the sign of both arguments.

and ∀α.bitsα × bitsα → bitsα

Bitwise and.
bit bool→ bits1

Convert boolean value to a 1-bit value.
bool bits1→ bool

Convert a 1-bit value to a Boolean.
borrow ∀α.bitsα × bitsα × bits1→ bits1

The bit borrow(x, y, bi) is the “borrow bit” needed when computing the subtraction
x−y−bi, where x and y are two’s-complement α-bit integers, and bi is the “borrow
bit”.

carry ∀α.bitsα × bitsα × bits1→ bits1

The bit carry(x, y, ci) is the “carry out” bit produced by adding x + y + ci where
x and y are two’s-complement integers, and ci is the “carry in” bit.

com ∀α.bitsα → bitsα

Bitwise complement of value.
conjoin bool× bool→ bool

Boolean conjunction. x ‘conjoin‘ y ≡ if x then y else false.

Table 4: C-- primitive operators
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C-- primitive operators, continued

disjoin bool× bool→ bool

Boolean disjunction. x ‘disjoin‘ y ≡ if x then true else y.
div ∀α.bitsα × bitsα → bitsα

Two’s-complement signed integer division, rounding towards minus infinity. It is an
unchecked run-time error to divide by zero.

div overflows ∀α.bitsα × bitsα → bool

Tells whether signed integer division would overflow, that is, if it would divide the
most negative integer by −1 to produce a positive result too large to be represented
in two’s-complement notation. It is an unchecked run-time error to ask whether
division by zero would overflow.

divu ∀α.bitsα × bitsα → bitsα

Unsigned integer division, rounding down (towards both zero and minus infinity).
It is an unchecked run-time error to divide by zero.

eq ∀α.bitsα × bitsα → bool

Equality. True, if values are bitwise equal.
false bool

Boolean falsehood.
ge ∀α.bitsα × bitsα → bool

Greater than or equal. Compares two’s-complement signed integers.
geu ∀α.bitsα × bitsα → bool

Greater than or equal, unsigned. Compares two unsigned integers.
gt ∀α.bitsα × bitsα → bool

Greater than. Compares two’s-complement signed integers.
gtu ∀α.bitsα × bitsα → bool

Greater than, unsigned. Compares two unsigned integers.
le ∀α.bitsα × bitsα → bool

Less or equal. Compares two’s-complement signed integers.
leu ∀α.bitsα × bitsα → bool

Less or equal, unsigned. Compares two unsigned integers.
lobitsk ∀α.bitsα → bitsk

The k least significant bits of the argument.
lt ∀α.bitsα × bitsα → bool

Less than. Compares two’s-complement signed integers.
ltu ∀α.bitsα × bitsα → bool

Less than, unsigned. Compares two unsigned integers.
mod ∀α.bitsα × bitsα → bitsα

Signed modulus, satisfying x ‘mod‘ y = x − y ‘mul‘ (x ‘div‘ y) for all y 6= 0. It is an
unchecked run-time error to take the modulus when dividing by zero.

modu ∀α.bitsα × bitsα → bitsα

Unsigned modulus, satisfying x ‘modu‘ y = x − y ‘mul‘ (x ‘divu‘ y) for all y 6= 0. It
is an unchecked run-time error to take the modulus when dividing by zero.

mul ∀α.bitsα × bitsα → bitsα

Multiply two α-bit integers and return the least significant α bits of the (signed)
product. The most significant α bits of the product are silently discarded. Notice
that the answer is the same whether a signed or an unsigned multiply is used, so
there is only one variant. (N.B. It may still be worth providing two variants in order
to take better advantage of instructions that detect overflow.)

Table 4: C-- primitive operators
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C-- primitive operators, continued

mul overflows ∀α.bitsα × bitsα → bool

Tells whether an extended, signed multiply would require the high word, i.e.,
whether the most significant α bits of the product would differ from the sign bit of
the least significant α bits.

mulu overflows ∀α.bitsα × bitsα → bool

Tells whether an extended, unsigned multiply would require the high word, i.e.,
whether the most significant α bits of the product would differ from zero.

mulux ∀α.bitsα × bitsα → bits2α

Multiply, unsigned, extended: Multiply two α-bit, unsigned integers and return the
exact 2α-bit (unsigned) product.

mulx ∀α.bitsα × bitsα → bits2α

Multiply, extended: Multiply two α-bit, two’s-complement, signed integers and
return the exact 2α-bit (signed) product.

ne ∀α.bitsα × bitsα → bool

Inequality. Compares two’s-complement signed integers.
neg ∀α.bitsα → bitsα

Two’s-complement negation.
not bool→ bool

Logical complement
or ∀α.bitsα × bitsα → bitsα

Bitwise or.
parity ∀α.bitsα → bits1

Computes the number of 1 bits in its argument, modulo 2.
popcnt ∀α.bitsα → bitsα

Returns the number of one bits in its argument.
quot ∀α.bitsα × bitsα → bitsα

Two’s-complement, signed integer division, rounding towards zero. It is an
unchecked run-time error to divide by zero.

quot overflows ∀α.bitsα × bitsα → bool

Tells whether signed integer quotient would overflow, that is, if it would divide the
most negative integer by −1 to produce a positive result too large to be represented
in two’s-complement notation. It is an unchecked run-time error to ask whether
quotient by zero would overflow.

rem ∀α.bitsα × bitsα → bitsα

Remainder, satisfying x ‘rem‘ y = x − y ‘mul‘ (x ‘quot‘ y) for all y 6= 0. It is an
unchecked run-time error to take the remainder when dividing by zero.

rotl ∀α.bitsα × bitsα → bitsα

Rotate left.
rotr ∀α.bitsα × bitsα → bitsα

Rotate right.
shl ∀α.bitsα × bitsα → bitsα

Shift left. It is an unchecked run-time error for the shift amount to be as large as α.
If in doubt, shift by n mod α.

shra ∀α.bitsα × bitsα → bitsα

Shift right, arithmetic. It is an unchecked run-time error for the shift amount to be
as large as α. If in doubt, shift by n mod α.

shrl ∀α.bitsα × bitsα → bitsα

Shift right, logical. It is an unchecked run-time error for the shift amount to be as
large as α. If in doubt, shift by n mod α.

Table 4: C-- primitive operators
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C-- primitive operators, continued

sub ∀α.bitsα × bitsα → bitsα

Two’s-complement integer subtraction.
subb ∀α.bitsα × bitsα × bits1→ bitsα

Two’s-complement integer subtraction with borrow in.
sub overflows ∀α.bitsα × bitsα → bool

Tells whether a signed integer subtraction would overflow, i.e., if the two arguments
differ in sign and the result would have the sign of the right-hand argument.

sxk ∀α.bitsα → bitsk

Sign-extend an α-bit, two’s-complement, signed integer to produce a k-bit, two’s-
complement, signed integer, where k > α.

true bool

Boolean truth.
xor ∀α.bitsα × bitsα → bitsα

Bitwise exclusive or.
zxk ∀α.bitsα → bitsk

Zero-extend an α-bit value to produce a k-bit value, where k > α. Argument and
result represent the same value when interpreted as unsigned integers.

Table 4: C-- primitive operators
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8 The C-- run-time interface

A typical program created using C-- includes not only compiler-generated C-- code but also a hand-written
run-time system (the front-end runtime). Although it may be helpful to write small parts of the front-end
run-time in C--, the bulk of the front-end runtime is normally written in a high-level language, such as C.

As a program executes, control may be transferred back and forth between C-- code and the front-end
runtime. The C-- run-time interface gives the front-end runtime the ability to inspect and modify the state
of a suspended C-- computation. The interface can also be used to create a new C-- computation and to
transfer control to it.

8.1 The C-- run-time model

This section presents the model of computation that is supported by the C-- run-time system.

8.1.1 Activations, stacks, and continuations

A C-- computation uses a stack of activations to hold its state. An activation, which is created when a
procedure is called, holds the values of that procedure’s local variables (including parameters) and stack data,
as well as any temporary values that are used during the evaluation of expressions. When the procedure
returns or makes a tail call, the activation is destroyed. Activations may also be destroyed by a cut to, as
discussed below.

Activations are stored on a stack, which grows from older to younger activations. (In order to avoid confusion
about the direction of stack growth, we use the term “youngest end” rather than “top” of the stack.)
A C-- stack may reside on the system stack or in memory allocated by the front-end run-time system.

A stack can include activations of foreign procedures as well as of procedures compiled with C--. When an
activation of a foreign procedure is visited during a stack walk, it looks like an activation of a C-- procedure
with no spans, no formal parameters, no local variables, and no stackdata labels.

Depending on the specification of the foreign calling convention, it may or may not be possible to use the
run-time interface to recover values of callers’ variables. The problem is that although all foreign conventions
specify what registers are saved, not all conventions specify where they are saved. Each implementation of
C-- must advertise what capabilities it supports for each foreign convention. Implementations of C-- are
encouraged to provide a “paranoid” version of each foreign calling convention, to be used when it is necessary
to guarantee access to local variables through the run-time interface.

The state of a C-- stack can be encapsulated as a continuation (§6.7). Such a continuation, when presented
to the run-time interface, enables a client to inspect and modify the stack.

A C-- continuation is not a thread, and C-- does not implement a thread scheduler. Instead it offers hooks
that enable the front-end runtime to implement a scheduler.

8.1.2 Transferring control between the front-end run-time system and C--

Control is transferred between the front-end run-time system and C-- code using ordinary calls and returns.

• The front-end run-time system may call a C-- procedure directly, provided the procedure is defined
to use the foreign "C" calling convention (§5.4).

• The front-end run-time system may return to a C-- procedure, which must have called it with with a
foreign "C" call.

• A C-- procedure may call the front-end run-time system with a foreign "C" call.
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• A C-- procedure may return with a foreign "C" return, provided it was originally called by a front-
end C procedure. (Any number of tail calls may intervene between the C call and the C return. For
example, it is possible for the front-end run-time system to make a foreign call to C-- procedure f,
which makes a tail call to g, which returns with a foreign "C" return.)

8.1.3 Transferring control between C-- stacks

A C-- procedure running on one stack may transfer control to a C-- procedure running on another stack
by executing cut to k, where k is a continuation. This mechanism can be used to coroutine between C--
stacks.

When a C-- procedure executes cut to k, the continuation k refers to a particular activiation on a particular
stack. The cut to k destroys all activations younger than k on the destination stack. Therefore, if the
continuation k points into the currently active stack, the activations from the current activation to (but not
including) k are destroyed. This usage is more like raising an exception than like a coroutine.

If a C-- procedure wants to transfer control to the front-end run-time system on a different stack, it must
do so in two steps: first change stacks using cut to, then get to the front-end runtime using a foreign call
or return.

8.1.4 Walking a stack

A C-- continuation provides not only a target for cut to but also a representation of its stack. Such a
continuation can be presented to the C-- run-time system and used to walk the stack. A front-end runtime
can visit each activation on a stack, find and modify local variables of each activation, and even create a
new continuation that (when cut to) will resume execution at a given activation.

8.2 Overview and numbering conventions

Table 5 presents an overview of the C-- run-time interface. There are a couple of surprises in the exported
types: Although C-- does not distinguish a code pointer from a data pointer, the C interface must do so
lest the C compiler complain. And although the C programming language forces the interface to expose the
representation of struct cmm activation, it is an unchecked error for a front-end run-time system to refer
to any field of this structure.

8.2.1 Numbering

The C-- runtime interface uses ordinal numbers to refer to parameters, variables, stackdata labels, and
continuations. The following rules apply for numbering:

• Global variables are numbered from 0 in the order in which they appear in the source code.

• Formal parameters and local variables of a single procedure are numbered together, from 0, in the order
in which they appear in the source code. The numbering sequence is separate for each C-- procedure.

〈toplevel example〉+≡
fn (bits32 x /* 0 */, bits32 y /* 1 */) {

bits32 m /* 2 */, n /* 3 */;

return (y,x);

}
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Types:
Cmm CodePtr Native pointer (to code)
Cmm DataPtr Native pointer (to data)
Cmm Activation ≡ struct cmm activation An opaque structure representing an activation of a C--

procedure.
Cmm Cont ≡ struct cmm cont An opaque structure representing a C-- continuation.

Stack-walking and -unwinding functions:

Cmm_Activation Cmm_YoungestActivation (const Cmm_Cont *k);

int Cmm_isOldestActivation (const Cmm_Activation *a);

Cmm_Activation Cmm_NextActivation (const Cmm_Activation *a);

int Cmm_ChangeActivation (Cmm_Activation *a);

Cmm_Cont* Cmm_MakeUnwindCont (const Cmm_Activation *a, unsigned n, ...);

void Cmm_CutTo (const Cmm_Cont *k);

Span-lookup function:

Cmm_Dataptr Cmm_GetDescriptor(const Cmm_Activation *a, Cmm_Word token);

Access to global variables, local variables, and stack labels:

unsigned Cmm_LocalVarCount (const Cmm_Activation *a);

void* Cmm_FindLocalVar (const Cmm_Activation *a, unsigned n);

void Cmm_LocalVarWritten (const Cmm_Activation *a, unsigned n);

void* Cmm_FindDeadLocalVar (const Cmm_Activation *a, unsigned n);

void* Cmm_FindStackLabel (const Cmm_Activation *a, unsigned n);

Table 5: Overview of the run-time interface

• Labels appearing in stackdata in a single procedure are numbered from 0 in the order in which they
appear in the source code. The numbering sequence is separate for each C-- procedure.

• At a call site, continuations in also unwinds to are numbered from 0 in the order in which they
appear in the source code. If a continuation appears more than once in also unwinds to lists at a call
site, that continuation has more than one number. The numbering for each call site may be different.4

〈unimplemented toplevel example〉≡
fc () {

f() also unwinds to c1, c0, c2;

return (99);

continuation c0 (): return (11);

continuation c1 (): return (22);

continuation c2 (): return (33);

}

When control is suspended at the call to f, continuation c1 has number 0 for the MakeUnwindCont

runtime function.

4This numbering enables the C-- run-time system to check the index’s correctness using a single compare instruction. The
alternative, to use one numbering for the procedure, precludes some front-end tricks for sharing continuation tables across call
sites.
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8.3 Creating a new stack

A future version of this specification will show how to run a C-- computation on a stack allocated by the
front-end run-time system. Until the future arrives, implementors are encouraged to experiment with ways
of supporting this feature.

8.4 Walking a stack and inspecting its contents

These functions allow the front-end runtime to walk a stack. The starting point is always a C-- continuation,
which encapsulates the state of a stack.

An activation handle, a C value of type *Cmm Activation, encapsulates a single activation. The information
so encapsulated includes a pointer into a C-- stack, the program counter to which control will return, and
the values of the callee-saves registers. (The availability of callee-saves registers is what distinguishes an
activation handle from a continuation.)

To get a handle for the youngest activation on a stack, the front end calls Cmm YoungestActivation, passing
a continuation. To get older activations, the front end calls Cmm NextActivation or Cmm ChangeActivation.
Given an activation, the front end can get to its local variables using CmmFindLocalVar.

Cmm Activation Cmm YoungestActivation(const Cmm Cont *k) Returns an activation handle that encap-
sulates the activation from which continuation k came. Cmm YoungestActivation returns a structure,
not a pointer, so that the C compiler can arrange to allocate memory for the structure in the caller’s
frame. As noted above, it is an unchecked run-time error for the front-end runtime to mess with the
internals of this structure.

int Cmm IsOldestActivation(const Cmm Activation *a) Returns nonzero if and only if *a is the oldest
activation on its stack; that is, iff *a has no caller.

Cmm Activation Cmm NextActivation(const Cmm Activation *a) Returns the activation to which a will
return. A checked run-time error occurs unless !Cmm IsOldestActivation(a).

int Cmm ChangeActivation(Cmm Activation *a) Combines testing and walking in one call:

rc = Cmm_ChangeActivation(&a);

is equivalent to

if (Cmm_IsOldestActivation(&a))

rc = 0;

else {

a = Cmm_NextActivation(&a);

rc = 1;

}

but it may be faster.

Cmm Cont *Cmm MakeUnwindCont(Cmm Activation *a, unsigned n, ...) returns a parameterless C-- con-
tinuation that, when cut to, passes Cmm MakeUnwindCont’s parameters to an also unwinds to con-
tinuation of the call site at which the activation a is suspended. The parameter n identifies the call-site
continuation by indexing the also unwinds to lists. The remaining parameters are the values to be
passed to that continuation. It is a checked run-time error for n to be out of range. It is an unchecked
run-time error for the number or the C types of the remaining parameters to be inconsistent with the
number, C-- types, and kinds of the formal parameters of the continuation. (As usual, it is up to each
implementation of C-- to advertise what size and kind correspond to each C type.)

Calling Cmm MakeUnwindCont(a, n, arg1, arg2, ...)may write into *a, and it kills every activation
that is younger than a and shares a stack with a. After this call, therefore, it is an unchecked run-time
error to do any of the following:
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• To cut to the continuation returned by Cmm MakeUnwindCont after the memory associated with
*a has been reused

• To pass a to any procedure in this interface

• To read or write any local variable of activation a or of any activation that is younger than a and
shares a stack with a

• To cut to any other continuation in activation a or in any activation that is younger than a and
shares a stack with a

• To return to activation a or to any activation that is younger than a and shares a stack with a

N.B. It is an unchecked run-time error to kill an activation that is suspended at a call site unless that
call site is annotated with also aborts.

The intent of the restrictions above is that once you have called Cmm MakeUnwindCont, you can either
cut to the continuation right away, or provided you preserve *a, you can save the continuation in a
data structure and cut to it later. A common application is to use Cmm MakeUnwindCont to trim the
stack during exception handling.

It is not possible to use Cmm MakeUnwindCont to unwind a stack to the normal return continuation. If
this outcome is desired, the front end must instead explicitly create an also unwinds to continuation
that goes to the same point as the normal return continuation.

void Cmm CutTo(Cmm Cont *k) Cuts to a parameterless continuation. Useful for applying to a continuation
returned by Cmm MakeUnwindCont.

void *Cmm FindLocalVar(const Cmm Activation *a, unsigned n) where n is an index into the formal
parameters and local variables of activation a, using the numbering conventions of §8.2.1.

• If n refers to a live variable, FindLocalVar returns a pointer to a location containing the value
of that variable. The pointer can be used to read and change the value of the variable. It is an
unchecked run-time error to change the value of a variable that has been declared invariant.

• If n refers to a dead variable, FindLocalVar returns NULL.

• It is a checked run-time error for n to be out of range.

Because Cmm FindLocalVar returns a pointer to the location containing the variable, the front-end
runtime can use this pointer to modify the variable (provided it is not annotated invariant). But if
it does so, it must afterward announce the modification to C-- by calling Cmm LocalVarWritten. To
modify a local variable without making this call is a checked run-time error.

void Cmm LocalVarWritten (const Cmm Activation *a, unsigned n) announces to C-- that the front-
end run-time system has changed the value of the local variable numbered n. For the front-end run-time
system to change the value of a local variable without announcing the change is an unchecked run-time
error. The announcement must take place before the next Cmm NextActivation, Cmm ChangeActivation,
Cmm MakeUnwindCont, or cut to.

unsigned Cmm LocalVarCount(const Cmm Activation *a) returns the number of formal parameters and
local variables of activation a.

void *Cmm FindDeadLocalVar(const Cmm Activation *a, unsigned n) n is an index into the formal pa-
rameters and local variables of activation a. If n refers to a dead variable, FindLocalVar returns a
pointer to a location containing the last known value of that variable, or NULL if no such location exists.
Otherwise, FindDeadLocalVar returns Cmm FindLocalVar(a, n). It is an unchecked run-time error
to write through a pointer returned by FindDeadLocalVar. This function might be used to support a
debugger.

void *Cmm FindStackLabel(const Cmm Activation *a, unsigned n) where n is the index of one of the
stack labels of the activation. FindStackLabel returns the (immutable) value of that label, namely a
pointer into the stack-allocated data area. It is a checked run-time error for n to be out of range.
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Cmm Dataptr Cmm GetDescriptor(const Cmm Activation *a, Cmm Word key) Returns the value associ-
ated with the smallest span tagged with key and containing the program point where the activation a

is suspended. Returns (Cmm Dataptr) 0 if there is no such span.

8.5 The global registers

A running C-- computation may use global registers (§4.4.1). Conceptually, these global variables live in
fixed machine registers. They are left undisturbed by all control transfers to C-- code (call, return, cut to,
etc).

If, however, a C-- program makes a foreign call to non-C-- code, such as the front-end run-time system,
the global-register variables are saved in a place from which they are no longer accessible by either C-- code
or the run-time system. If a C-- computation wishes the the global registers to be made accessible, it must
explicitly save them before a foreign call and restore them afterward.
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9 Frequently asked questions

1. Can the import import directive be used to import a variable declared in another compilation unit?

No. Only labels and procedures can be imported. If you want to share a C-- global register variable
across compilation units, that variable needs to be declared in every compilation unit. Once declared,
C-- global register variables are automatically shared across compilation units. N.B. Every compilation
unit must contain identical global-variable declarations.

2. I want something like a C global variable, but I don’t want to burn a register. What do I do?

Here’s an example that shows how one might translate a C global variable (of struct type) into C--.

The C source code containing the definition of the global variable pt

struct point { int x; int y; } pt;

becomes the C-- source code

section "data" {

pt: align 4; bits32[2];

export pt;

}

In another compilation unit, the C source code containing the external reference

extern struct point { int x; int y; } pt;

becomes

import pt;

And in either compilation unit, the C source code

pt.x = pt.y + 1;

becomes the C– source code

bits32[pt] = bits32[pt+4] + 1;

3. How do I program floating-point computations with the hardware rounding modes?

Here is one example:

target byteorder little;

bits2 rm = "IEEE 754 rounding mode";

p() { return ("float" %i2f32(3, rm)); }

foreign "C" main(bits32 argc, "address" bits32 argv) {

bits32 x;

"float" x = p();

foreign "C" printf("address" answer, "float" %f2f64(x, rm));

foreign "C" return(0);

}
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section "data" {

answer: bits8[] "Integer 3 converts to floating-point %4.2lf\n\0";

}

import printf; export main;

4. How do I build my own jump tables?

Ordinary code labels are visible throughout the compilation unit in which they appear. So label each
jump target, put a table in initialized data (in a data section outside your procedure), and put in a
computed goto labeled with a targets directive, e.g.,

section "data" { align 4; jump_tab: bits32[] { L1, L2, L3 }; }

f (bits32 x) {

goto bits32[jump_tab + 4*x] targets L1, L2, L3;

L1: return (1);

L2: return (2);

L3: return (3);

}
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10 Common mistakes

• Getting a floating-point result from C without a "float" kind is a mistake.

• Passing a 32-bit floating-point value to C’s printf function is a mistake. The rules of C require that
when there is no prototype, a float be promoted to double, so for example the correct way to print
a 32-bit floating-point value x is

bits32 x;

foreign "C" printf("address" str, "float" %f2f64(x, System.rounding_mode));
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11 Potential extensions

This section describes potential extensions, which may become part of C-- version 2.1.

11.1 Run-time information about C-- variables

The current version of C-- provides a front end all the capabilities it needs to manipulate variables. Arbitrary
information about a variable can be coded as initialized data, and this information can be associated with
the variable using a span which (again by coded initialized data) relates the information to the variable’s
number. But although C-- is in this sense complete, experience is showing us that it is not always convenient.
In particular, we have observed two problems:

• To use C-- today, a front end must contain a fair amount of mechanism, e.g., to hold initialized data
for emission at the end of a procedure, to keep track of the numbers of interesting variables, and so on.
This sort of mechanism is no problem for a large, existing compiler, which probably already contains
something suitable. But the mechanism is a nuisance for a small, simple compiler, such as a student’s
compiler.

• The interface is not tuned to make any particular common case easy. For example, one common case
is to identify some set of variables as pointers and to iterate over these variables, e.g., for garbage
collection. For this common case, there are two obvious things a front end can do:

– Accumulate a list of the numbers of interesting variables, code that list as initialized data, point
to the list with a span, and iterate over the list at run time.

– Associate a bit with each variable, make the bit zero for uninteresting variables and one for
interesting ones, code the bit vector as initialized data, point to the bit vector with a span, iterate
over all variable numbers at run time, and test the bits.

We are thinking of extending C-- with several mechanisms that will help ease the burden of targeting C--,
especially for simple front ends.

Indirect initialized data We propose that a C-- program be able to emit initialized data from anywhere
in the program that an expression is expected. The proposed syntax would be to add the following production
to the grammar:

expr ⇒ indirect string {
{

datum
}

}

This is syntactic sugar for allocating
{

datum
}

as initialized data in the section named by the string. The
value of the expression is a pointer to the initialized data, after initial alignment (if any).

For example, the phrase

foreign "C" printf(indirect "rodata" { bits8[] "hello, world\n\0"; });

would be internally rewritten to

foreign "C" printf(L72);

...

section "rodata" { L72: bits8[] "hello, world\n\0"; }

where L72 is an internally generated name.

Similarly, the phrase

span 1 (indirect "rodata" {

align 4;

bits32[] { 3, 10, 30, 99 };

}) { ... }
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would be rewritten to

span 1 L73 { ... }

...

section "rodata" {

align 4;

L73:

bits32[] { 3, 10, 30, 99 };

}

where L73 is an internally generated name.

If two indirect expressions have the same context and are allocated in a read-only section, perhaps they
could share space.

Variable metadata When a front end wants to associate metadata with a variable, it must put the
metadata in an array indexed by variable number, then point to the array with a span. For a simple front
end, it would be easier simply to include metadata when a variable is declared. Our proposal is

• Every local C-- variable is associated with one word of metadata, specified when the variable is declared
(and defaulting to 0). Like a span value, a metadata value must be a link-time constant expression.

• In the run-time interface, a variable’s metadata is just like its location: if the variable is live, its
metadata can be found with Cmm FindMetadata.

The proposed syntax would be to replace the existing grammar’s definition of registers with the following
definition:

registers ⇒
[

kind
]

type name register-modifier
{

, name register-modifier
} [

,
]

register-modifier ⇒
[

= string
∣

∣ metadata expr
]

The proposed run-time interface would be

void* Cmm_FindMetadata(const Cmm_Activation *a, unsigned n);

If a variable number n is live in activation a, Cmm FindMetadata(a, n) returns that variable’s metadata;
otherwise, it returns 0.

For example, suppose one wishes a variable’s metadata to be a pointer to a two-word block of memory. The
first word tells if the metadata is a pointer; the second word gives the source-language name of the variable.
One could write

bits32 i@437

metadata indirect "rodata" {

align 4;

bits32[] { 1, indirect "rodata" { bits8[] "deads_list\0"; } };

};

To print the name of a variable at run time, one could write

struct metadata {

int is_pointer;

const char *source_name;

}

...

struct metadata *m;

m = Cmm_FindMetadata(a, n);

if (m) printf("var name is %s\n", m->source_name);

...
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Iteration groups A common pattern in run-time systems is to iterate over a group of variables that are
(within the group) considered indistinguishable. For example,

• A garbage collector may wish to iterate over all pointer variables while ignoring non-pointer variables.

• A diagnostic stack walker may with to iterate over all C-- variables that represent source-language
variables (e.g., to print their names and values) while ignoring C-- variables that represent temporaries
introduced by the front-end compiler.

As noted above, the present version of C-- requires the front end either to code a list of the relevant variable
numbers or somehow to associate group membership with each variable.

A possible alternative would be to tag each variable with a list of iteration groups to which it could belong.
A possible syntax would be to add

register-modifier ⇒ iteration expr

as a new register-modifier , with the understanding that expr must be a compile-time constant expression
that evaluates to a small, nonnegative integer.

Iteration groups would be supported by the following additions to the run-time interface:

typedef void (*Cmm_iterator)(void *location, void *metadata, void *closure);

void Cmm_Iterate(const Cmm_Activation *a, unsigned iteration_number, Cmm_iterator iterate, void *closure);

A call to Cmm Iterate(a, n, iter, cl) has the effect of the following loop:

for each live variable v in iteration group n do

let i be v’s number
iter(Cmm FindLocalVar(i), Cmm FindMetadata(i), cl);

An iterator visits only live variables.

Variations on the numbering of variables At present, every local variable in a C-- procedure is
numbered by the C-- compiler. At run time, the number can be passed to Cmm FindLocalVar (and under
the new proposal, Cmm FindMetadata). Several users have objected to this interface on the grounds “why
should I spend space on stack maps for variables that I know I am never going to care about at run time?”
An implementation of C-- seems to have two alternatives:

• Use space proportional to the total number of variables. Cmm FindLocalVar and Cmm FindMetadata

require a range check and an array lookup, taking constant time.

• Use space proportional to the number of live variables. Cmm FindLocalVar and Cmm FindMetadata

require a range check and a binary search, taking time logarithmic in the number of live variables.

We are considering several alternatives:

• The front end could label some variables as “unnumbered.” A variable that is unnumbered and is
not part of any iteration group would in effect be completely invisible to the run-time interface, so no
resources would be consumed storing information about that variable.

• Instead of letting C-- number the variables, the front end could number them explicitly. Variables
not explicitly numbered would be unnumbered. (Because this convention would not be backwards
compatible, we are a bit leery of this idea.)

• Some combination of the above. For example, the front end could explicitly number some variables and
label others as unnumbered. Variables not annotated by the front end would continue to be numbered
implicitly.
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Global variables Knotty questions remain about how best to save and restore global variables, especially
when multiple C-- stacks are active. A simple solution is to have front ends generate code to save and
restore globals explicitly, but if C-- has to allocate some globals into memory, there may be a more efficient
strategy.

11.2 Running C-- threads

In a single-threaded environment, C-- code runs on the system stack, just like C code. In a multi-threaded
environment, however, it may be necessary to multiplex multiple user-level threads (possibly using OS threads
into the bargain). To multiplex multiple threads requires run-time support to create a new stack and compile-
time support to check for stack overflow.

11.2.1 Creating a C-- stack and running a thread on it

The front-end run-time system can create a C-- stack using Cmm CreateStack. To transfer control to the
new stack, the front end uses cut to. The interface includes a limit cookie, which is to be used to implement
a stack-overflow check.

typedef struct cmm_stack_limit Cmm_Limit;

Cmm_Cont *Cmm_CreateStack(Cmm_CodePtr f, Cmm_DataPtr x, void *stack, unsigned n, Cmm_Limit **limitp);

Function Cmm CreateStack returns a C-- continuation that, when cut to, executes the C-- call f(x) on
the stack stack.

• The parameter f must be the address of a C-- procedure that takes exactly one argument, which is a
value of the native pointer type. To pass any other f to Cmm CreateStack is an unchecked run-time
error.

It is a checked run-time error for the procedure addressed by f to return—this procedure should instead
finish execution with a cut to.

• When queried using the C-- run-time interface, a continuation returned by Cmm CreateStack looks
like a stack with one activation. That activation makes the two parameters f and x visible through
Cmm FindLocalVar; these parameters can be changed using the run-time interface (for example, if a
garbage collection intervenes between the time the continuation is created and it is used).

• When a continuation returned by Cmm CreateStack is cut to, it is as if the stack makes a tail call
jump f(x). In particular, the activation of f now appears as the oldest activation on the stack. As
noted, it is a checked run-time error for this activation to return.

• The parameter stack is the address of the stack, which is n bytes in size. After calling Cmm CreateStack,
the stack belongs to C--, so it is an unchecked run-time error for the front end to read or write any
part of this stack except through stackdata areas in active procedures (or through pointers provided
by the C-- run-time interface).

• The parameter limitp is a pointer through which the C-- run-time system can write a stack-limit
cookie. This limit cookie is used in overflow checking as described below.

To implement threads, a front end will typically allocate a large thread-control block to represent a thread,
and the C-- stack will be part of this block. The rest of the block may contain a C-- continuation for the
thread, the stack-limit cookie, thread-local data, the priority of the thread, links to other threads, and so
on. All of this information is outside the purview of C--, however.

11.2.2 Stack overflow checking and handling

C-- code running on a finite stack is vulnerable to stack overflow. To protect C-- code from stack overflow,
the C-- programmer must insert an explicit stack-limit check in every C-- procedure.5 The details of the

5We would like to find a way to enable a front end to amortize a single stack-limit check over multiple procedures.
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stack-limit check are not yet specified, but it might take the following form:

limitcheck limit fails to k

where limitcheck is a keyword, and limit is a C-- expression that evaluates to the stack-limit cookie for
the stack on which the procedure is executing. If there is not enough room on the stack, C-- cuts to
continuation k, passing the limit cookie and a continuation that can be used to move the computation to
a larger stack, as described below. Typically k will be a stack-overflow handler set up by the front-end
run-time system and running on a stack of its own.

(The C-- client gets to decide whether to hold the limit cookie in a global register or somewhere else. It is
the client’s responsibility to make sure that the limit expression is valid. For example, if the limit cookie is
held in a global register, and cut to transfers control to a different C-- thread, the client must arrange to
change the value of the register.)

To move a C-- thread to a larger stack,6 we imagine additions to the run-time interface something like the
following:

typedef struct cmm_reloc Cmm_Reloc;

Cmm_Cont *Cmm_MoveStack(Cmm_Cont *k, Cmm_Limit *limit, void *newstack, unsigned n,

Cmm_Limit **limitp, Cmm_Reloc **relocp);

The MoveStack function takes a continuation k and limit cookie limit. It moves the computation to a new
stack. It returns the analogous continuation on the new stack, and it also writes a new stack-limit cookie
through been pointer limitp. Finally, it writes relocation information through pointer relocp. Relocation
information is used to move two kinds of items:

• Pointers to user-allocated stackdata on the old stack

• C-- continuations that refer to activations on the old stack7

MoveStack is not limited to cases of stack overflow; any stack can be moved whenever no computation is
running on that stack.

Because a run-time system might conceivably move multiple stacks at once (e.g., at a garbage collection),
relocation information is used in arrays. An array is represented by a pointer to Cmm Reloc*, together with
a count.

void Cmm_SortRelocation (Cmm_Reloc *relocs[], unsigned reloc_count);

Cmm_Cont *Cmm_RelocateCont (Cmm_Cont *k, Cmm_Reloc *relocs[], unsigned reloc_count);

void *Cmm_RelocateStackdata(void *p, Cmm_Reloc *relocs[], unsigned reloc_count);

An array must be sorted before being passed to RelocateCont or RelocateStackdata.

It is up to the front-end run-time system to call RelocateCont or RelocateStackdata on any continuation or
pointer that might refer to a stack that has moved. Using such a continuation or pointer without relocating
it is an unchecked run-time error. N.B. It is safe simply to pass every continuation and stack pointer to these
relocation functions; a continuation or pointer that does not refer to a moved stack will not be affected.

Example

typedef enum { NEW, RUNNING, SLEEPING, DEAD } state;

struct tcb {

Cmm_Cont *k;

6We would like at some point to support segmented stacks with underflow detection, but for the next revision, that isn’t in
the cards.

7A potential alternative is to require that MoveStack do a stack walk to fix up every continuation stored in the stack, but
that doesn’t help with pointers to continuations on the old stack, and it might do unnecessary work (both in walking and in
fixing up continuations that will not be used).
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state state;

Cmm_Limit *limit;

void *stack;

unsigned size;

};

struct tcb *new_thread(unsigned n) {

struct tcb *tcb = malloc(n + sizeof(*tcb));

assert(tcb);

tcb->state = new;

tcb->stack = tcb+1;

tcb->size = n;

tcb->k = Cmm_CreateStack(run_thread, tcb, tcb->stack, n, &tcb->limit);

return tcb;

}


