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1. INTRODUCTION 

I n  i ts  essence ,  t h e  un i f i c a t i on  p r o b l e m  in f i r s t - o r d e r  logic  c a n  be  e x p r e s s e d  as  
fol lows:  G i v e n  two  t e r m s  c o n t a i n i n g  s o m e  va r i ab le s ,  f ind,  i f  i t  exis ts ,  t h e  s i m p l e s t  
s u b s t i t u t i o n  (i.e., a n  a s s i g n m e n t  of  s o m e  t e r m  to  e v e r y  va r i ab l e )  w h i c h  m a k e s  t h e  
two  t e r m s  equa l .  T h e  r e s u l t i n g  s u b s t i t u t i o n  is ca l l ed  t h e  most general unifier a n d  
is u n i q u e  u p  to  v a r i a b l e  r e n a m i n g .  

U n i f i c a t i o n  was  f i rs t  i n t r o d u c e d  b y  R o b i n s o n  [17, 18] as  t h e  c e n t r a l  s t e p  of  t h e  
i n fe rence  ru l e  ca l l ed  r e so lu t ion .  T h i s  s ingle,  p o w e r f u l  ru le  c a n  r e p l a c e  a l l  t h e  
a x i o m s  a n d  in fe rence  ru les  of  t h e  f i r s t - o r d e r  p r e d i c a t e  ca l cu lus  a n d  t h u s  was  
i m m e d i a t e l y  r e cogn i zed  as  e spec i a l l y  s u i t e d  to  m e c h a n i c a l  t h e o r e m  p rove r s .  I n  
fact ,  a n u m b e r  of  s y s t e m s  b a s e d  on  r e s o l u t i o n  we re  b u i l t  a n d  t r i e d  on  a v a r i e t y  of  
d i f f e r en t  a p p l i c a t i o n s  [5]. E v e n  t h o u g h  f u r t h e r  r e s e a r c h  m a d e  i t  a p p a r e n t  t h a t  
r e s o l u t i o n  s y s t e m s  a re  d i f f icu l t  to  d i r e c t  d u r i n g  p r o o f  s e a r c h  a n d  t h u s  a r e  o f t en  
p r o n e  to  c o m b i n a t o r i a l  exp los ion  [6], new i m p e t u s  to  t h e  r e s e a r c h  in  t h i s  a r e a  
was  g iven  b y  K o w a l s k i ' s  i d e a  of  i n t e r p r e t i n g  p r e d i c a t e  logic  as  a p r o g r a m m i n g  
l a n g u a g e  [10]. H e r e  p r e d i c a t e  logic c l auses  a r e  s een  as  p r o c e d u r e  de c l a r a t i ons ,  
a n d  p r o c e d u r e  i n v o c a t i o n  r e p r e s e n t s  a r e s o l u t i o n  s tep .  F r o m  th i s  v i ewpo in t ,  
t h e o r e m  p r o v e r s  can  be  r e g a r d e d  as  i n t e r p r e t e r s  for  p r o g r a m s  w r i t t e n  in  p r e d i c a t e  
logic, a n d  th i s  a n a l o g y  sugges t s  e f f ic ien t  i m p l e m e n t a t i o n s  [3, 25]. 
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Resolution, however, is not the only application of the unification algorithm. In 
fact, its pattern matching nature can be exploited in many cases where symbolic 
expressions are dealt with, such as, for instance, in interpreters for equation 
languages [4, 11], in systems using a database organized in terms of productions 
[19], in type checkers for programming languages with a complex type structure 
[14], and in the computation of critical pairs for term rewriting systems [9]. 

The unification algorithm constitutes the heart of all the applications listed 
above, and thus its performance affects in a crucial way the global efficiency of 
each. The unification algorithm as originally proposed can be extremely ineffi- 
cient; therefore, many attempts have been made to find more efficient algorithms 
[2, 7, 13, 15, 16, 22]. Unification algorithms have also been extended to the case 
of higher order logic [8] and to deal directly with associativity and commutativity 
[20]. The problem was also tackled from a computational complexity point of 
view, and linear algorithms were proposed independently by Martelli and Mon- 
tanari [13] and Paterson and Wegman [15]. 

In the next section we give some basic definitions by representing the unifica- 
tion problem as the solution of a system of equations. A nondeterministic 
algorithm, which comprehends as special cases most known algorithms, is then 
defined and proved correct. In Section 3 we present a new version of this 
algorithm obtained by grouping together all equations with some member in 
common, and we derive from it a first version of our unification algorithm. 

In Sections 4 and 5 we present the main ideas which make the algorithm 
efficient, and the last details are described in Section 6 by means of a PASCAL 
implementation. 

Finally, in Section 7, the performance of this algorithm is compared with that 
of two well-known algorithms, Huet's [7] and Paterson and Wegman's [15]. This 
analysis shows that our algorithm has uniformly good performance for all classes 
of data considered. 

2. UNIFICATION AS THE SOLUTION OF A SET OF EQUATIONS: 
A NONDETERMINISTIC ALGORITHM 

In this section we introduce the basic definitions and give a few theorems which 
are useful in proving the correctness of the algorithms. Our ay of stating the 
unification problem is slightly more general than the classical one due to Robinson 
[18] and directly suggests a number of possible solution methods. 

Let 

A =  U Ai (Ai A A j  = O, i # j )  
i=0,1 .... 

be a ranked alphabet, where A~ contains the i-adic function symbols (the elements 
of A0 are constant symbols). Furthermore, let V be the alphabet of the variables. 
The terms are defined recursively as follows: 

(1) constant symbols and variables are terms; 
(2) if tl . . . . .  tn (n >_ 1) are terms and f E  A,, then f ( 6 ,  . . . ,  tn) is a term. 

A subst i tut ion t~ is a mapping from variables to terms, with v~(x) = x almost 
everywhere. A substitution can be represented by a finite set of ordered pairs 
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# = {(t,, xl), (t2, x 2 ) , . . . ,  (tm, Xm)} where ti are terms and xi are distinct variables, 
i = 1 , . . . ,  m. To  apply a substi tut ion # to a te rm t, we simultaneously subst i tute 
all occurrences in t of every variable xi in a pair (ti, xi) of/} with the corresponding 
te rm ti. We call the resulting t e rm to. 

For  instance, given a t e rm t = f (x l ,  g(xD, a) and a substi tut ion # = {(h(x2), 
xl), (b, x2)}, we have t~ = f(h(x2), g(b), a) and taa = f(h(b), g(b), a). 

The  s tandard unification problem can be wri t ten as an equat ion 

t' = t". 

A solution of the equation, called a unifier, is any substi tut ion #, if it exists, 
which makes  the two terms identical. For  instance, two unifiers of the equat ion 
f (x , ,  h(xl) ,  x2} = f(g(x3) ,  x4, x3) are #1 = ((g(x3),  xl),  (x3, x2), (h(g(xD),  x4)} 
and #2 -- ( (g (a ) ,  Xl), (a, x2), (a, x3), (h(g(a)),  x4)}. 

In what  follows it is convenient  also to consider sets of equations 

t j .=t j ' ,  j = l  . . . . .  k. 

Again, a unifier is any substi tut ion which makes all pairs of terms t~, t~' identical 
simultaneously. 

Now we are interested in finding t ransformations which produce equivalent 
sets of equations, namely,  t ransformations which preserve the sets of all unifiers. 
Let  us introduce the following two transformations:  

(1) Term Reduction. Let  

f(t'~, t ~ , . . . ,  t',) = f( tT,  t~' . . . . .  t~ ), f E  .4,, (1) 

be an equat ion where both  terms are not  variables and where the two root  
function symbols are equal. The  new set of equations is obtained by  replacing 
this equat ion with the following ones: 

t~ -- t~' 
t [  = t~' 

(2) 

t "  = t ' .  

If n = 0, then  f i s  a constant  symbol, and the equat ion is simply erased. 
(2) Variable Elimination.  Let  x = t be an equat ion where x is a variable and 

t is any t e rm (variable or not). The  new set of equations is obtained by applying 
the subst i tut ion # = ((t, x)} to both  terms of all o ther  equations in the set 
(without erasing x = t). 

We can prove the following theorems: 

THEOREM 2.1. Let  S be a set of  equations and let f'(t'~ . . . .  , t'n) = f"(t~' . . . .  , 
t ,")  be an equation of  S. I f  f '  ~ f" ,  then S has no unifier. Otherwise, the new set 
of  equations S', obtained by applying term reduction to the given equation, is 
equivalent to S. 

PROOF. If  f '  # f" ,  then  no substi tut ion can make the two terms identical. If  
f '  = f" ,  any substi tut ion which satisfies (2) also satisfies (1), and conversely for 
the recursive definition of term. [] 
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THEOREM 2.2. Let  S be a set o f  equations, and  let us apply variable elimina- 
tion to some equation x = t, get t ing a new set o f  equations S'. I f  variable x 
occurs in t (but t is not  x),  then S has  no unifier; otherwise, S and  S '  are 
equivalent.  

PROOF. E q u a t i o n  x = t be longs  b o t h  to  S and  to S ' ,  and  thus  any  unif ier  v ~ (if 
it exists) of  S or  o f  S '  m u s t  uni fy  x and  t; t h a t  is, xo and  to are  identical.  N o w  let 
tl = t2 be any  o the r  equa t ion  of  S, and  let t l  = t~ be the  co r respond ing  equa t ion  
in S'.  Since t l  and  t~ have  been  ob ta ined  by  subs t i tu t ing  t for eve ry  occur rence  o f  
x in tl and  t2, respect ively,  we have  tl~ = t ~  and  t2~ = t~ .  Thus ,  any  unif ier  o f  S is 
also a unif ier  o f  S '  and  vice versa.  Fu r t he rmore ,  if var iable  x occurs  in t (but  t is 
no t  x),  t h e n  no subs t i tu t ion  ~ can  m a k e  x and  t identical,  s ince xo b e c o m e s  a 
s u b t e r m  of  to, and  thus  S has  no unifier. [ ]  

A set  of  equa t ions  is said to  be in solved form iff it satisfies the  fol lowing 
condit ions:  

(1) the  equa t ions  are xj = ti, j = 1, . . . ,  k; 

(2) every  var iable  which  is the  left m e m b e r  o f  some  equa t ion  occurs  on ly  there .  

A set  of  equa t ions  in solved fo rm has  the  obvious  unif ier  

0 - {(tl, xl), (t2, x2), • . . ,  (tk, xk)}. 

I f  t he re  is any  o the r  unifier, it can  be ob ta ined  as 

0 = { ( t , ,  x~), (t2°, x2) . . . .  , ( tk ,  x k ) }  U a 

where  a is any  subs t i tu t ion  which  does  no t  rewri te  var iables  xl . . . .  , xk. T h u s  t~ 
is called a most  general  unifier (mgu ). 

T h e  following nonde te rmin i s t i c  a lgor i thm shows how a set  of  equa t ions  can  be 
t r an s fo rmed  into an  equ iva len t  set  o f  equa t ions  in solved form. 

Algorithm 1 

Given a set of equations, repeatedly perform any of the following transformations. If no 
transformation applies, stop with success. 

(a) Select any equation of the form 

t = x  

where t is not a variable and x is a variable, and rewrite it as 

(b) Select any equation of the form 

where x is variable, and erase it. 
(c) Select any equation of the form 

x = t .  

X = X  

t '  = t" 

where t '  and t" are not variables. If  the two root function symbols are different, stop with 
failure; otherwise, apply term reduction. 

(d) Select any equation of the form 

x = t  
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where x is a variable which occurs somewhere else in the set of equations and where t # 
x. If x occurs in t, then stop with failure; otherwise, apply variable elimination. 

As an example,  let us consider the  following set  of equations: 

g(x2) = xl; 

f (xl ,  h(xl), x2) = f(g(x3), x4, x3). 

By  applying t rans format ion  (c) of  Algor i thm 1 to the  second equat ion we get 

g(x2) = xl; 

xl = g(x3); 

h(x~) = x4; 

X2 = X 3 .  

By applying t rans format ion  (d) to the  second equat ion we get 

g(x2) = g(xs); 

xl = g(x3); 

h(g(x3)) = x4; 

X2 ~- X3.  

We now apply  t rans format ion  (c) to the  first equat ion and t rans format ion  (a) to 
the  third equation: 

X2 ~ X3 

xl = g(x3); 

Xa = h(g(x3)); 

X2 ----X3. 

Finally, by  applying t rans format ion  (d) to the first equat ion  and t rans format ion  
(b) to the  last  equation, we get the  set  of equat ions in solved form: 

X2 ~- X3 ; 

xl = g(x3); 

x4 = h(g(x3)). 

Therefore ,  an mgu  of the  given sys tem is 

= {(g(x~), x~), (x3, x2), (h(g(x3)), x4)}. 

T h e  following theo rem proves  the  correctness  of Algor i thm 1. 

THEOREM 2.3. Given a set of equations S, 

(i) Algorithm 1 always terminates, no matter which choices are made. 
(ii) I f  Algorithm 1 terminates with failure, S has no unifier. I f  Algorithm 1 

terminates with success, the set S has been transformed into an equivalent 
set in solved form. 
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PROOF.  

(i) Let  us define a function F mapping any set of equations S into a triple of 
natural  numbers  (nl, n2, n3). The  first number,  n~, is the number  of variables in 
S which do not occur only once as the left-hand side of some equation. The  
second number,  n2, is the total  number  of occurrences of function symbols in S. 
The  third number,  n3, is the sum of the numbers  of equations in S of type x = x 
and of type t = x, where x is a variable and t is not. Let  us define a total  ordering 
on such triples as follows: 

" n~') i fn~  > n~' (n~, n~, n~) > (n~', n 2 ,  

o r  n~ = n~ a n d  n2 > n2 
o r n ~ = n "  n -  ' " ' " 1 a {1 n 2  ---- n2  a n d  n 3  > n 3 .  

With the above ordering, N 3 becomes a well-founded set, tha t  is, a set where no 
infinite decreasing sequence exists. Thus,  if we prove tha t  any t ransformat ion of 
Algorithm 1 t ransforms a set S in a set S' such tha t  F(S')  < F(S) ,  we have 
proved the termination.  In fact, t ransformations (a) and (b) always decrease n3 
and, possibly, n~. Transformat ion (c) can possibly increase n3 and decrease nl,  
but  it surely decreases n2 (by two). Transformat ion  (d) can possibly change n3 
and increase n2, but  it surely decreases n~. 

(ii) If  Algorithm 1 terminates  with failure, the thesis immediately follows from 
Theorems  2.1 and 2.2. If  Algorithm 1 terminates  with success, the resulting set of 
equations S' is equivalent to the given set S. In fact, t ransformations (a) and (b) 
clearly do not  change the set of unifiers, while for t ransformations (c) and (d) this 
fact  is s tated in Theorems  2.1 and 2.2. Finally, S' is in solved form. In fact, if (a), 
(b), and (c) cannot  be applied, it means tha t  the equations are all in the form 
x = t, with t # x. If  (d) cannot  be applied, tha t  means tha t  every v.arialSle which 
is the left-hand side of some equation occurs only there. [] 

The  above nondeterminist ic  algorithm provides a widely general version from 
which most  unification algorithms [2, 3, 7, 13, 15, 16, 18, 22-24] can be derived by 
specifying the order in which the equations are selected and by defining suitable 
concrete data  structures. For  instance, Robinson's  algori thm [18] might  be 
obtained by considering the set of equations as a stack. 

3. AN ALGORITHM WHICH EXPLOITS A PARTIAL ORDERING AMONG SETS 
OF VARIABLES 

3.1 Basic Definitions 

In this section we present  an extension of the previous formalism to model our 
algori thm more closely. We first introduce the concept  of multiequation. A multi- 
equation is the generalization of an equation, and it allows us to group together  
many  terms which should be unified. To represent  mult iequat ions we use the 
notat ion S -- M where the left-hand side S is a nonempty  set of variables and the 
r ight-hand side M is a multiset  1 of nonvariable terms. An example is 

{xl, x2, x3} = (tl, t2). 

A multiset is a family of elements in which no ordering exists but  in which many identical elements 
may occur. 
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The  solution (unifier) of a mult iequat ion is any substi tut ion which makes all 
te rms in the left- and r ight-hand sides identical. 

A mult iequat ion can be seen as a way of grouping many  equations together.  
For  instance, the set of equations 

Xl ---- X2; 

X3 = Xl; 

tl = Xl; 

X2 ---- t2; 

tl = t2 

can be t ransformed into the above multiequation,  since every unifier of this set 
of equat ions makes the terms of all equat ions identical. To  be more  precise, given 
a set of equations SE, let us define a relat ion RSE between pairs of terms as 
follows: tl RSE t2 iff the equat ion tl = t2 belongs to SE. Le t / tSE be the reflexive, 
symmetric ,  and transitive closure of RSE. 

Now we can say tha t  a set of equations SE corresponds to a mul t iequat ion 
S = M iff all terms of SE belong to S U M and for every  tr and ts E S U M we have 
tr RSE t , .  

I t  is easy to see tha t  many  different sets of equations may  correspond to a 
given mult iequat ion and tha t  all these sets are equivalent.  Thus  the set of 
solutions (unifiers) of a mul t iequat ion coincides with the set of solutions of any 
corresponding set of equations. 

Similar definitions can be given for a set of mult iequat ions Z by introducing a 
relat ion Rz  between pairs of terms which belong to the same mult iequation.  A set 
of equations SE corresponds to a set of mult iequat ions Z iff 

ti/~SE tj ** ti Rz  tj 

for all te rms t~, tj of SE or Z. 

3.2 Transformat ions of Sets of Mul t iequat ions 

We now introduce a few transformations of sets of multiequations,  which are 
generalizations of the t ransformations presented in Sect ion 2. 

We first define the common par t  and the frontier of a mult iset  of terms 
(variables or not). The  common par t  of a mult iset  of terms M is a t e rm which, 
intuitively, is obtained by superimposing all te rms of M and by taking the par t  
which is common to all of  t hem start ing from the root. For  instance, given the 
mult iset  of terms 

( f (x l ,  g(a,  f (xs ,  b))), f (h (c ) ,  g(x2, f (b ,  xs))), f(h(x4),  g(x6, x3))), 

the  common part  is 

f ( x l ,  g(x2, x3)). 

The  frontier  is a set of multiequations,  where every mul t iequat ion is associated 
with a leaf of the common part  and consists of all subterms (one for each t e rm of 
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M) corresponding to tha t  leaf. The  frontier of the  above mult ise t  of  t e rms  is 

{{x~} = (h(c), h(x4)), 

{x2, x6} = (a), 

{x3} = (f(xs, b), f(b, xD)). 

Note  tha t  if there  is a clash of function symbols  among  some te rms  of a mul t ise t  
of t e rms  M, then  M has  no com m on  pa r t  and frontier. In this case the  t e rms  of M 
are not  unifiable. 

T h e  commo n  par t  and the frontier  can be defined more  precisely by  means  of 
a function D E C  which takes  a mul t ise t  of t e rms  M as a rgumen t  and re turns  ei ther  
"failure," in which case M has  nei ther  com mon  par t  nor  frontier, or a pair  (C(M) ,  
F(M) ) where C(M) is the com m on  par t  of M and F(M) is the frontier  of M. 

In the definition of DEC we use the following notation: 

head( t )  
Pi 

make-  
mul teq  

is the root  function symbol  of t e rm  t, for t ~ V. 
is the i th  projection, defined by  

Pi( f ( t l  . . . .  , t n ) ) = t i  for f ~ A n  and l _ < i _ n ;  

is a function which t ransforms a mul t ise t  of t e rms  M into a mul t iequa-  
t ion whose lef t -hand side is the set  of  all var iables  in M and whose 
r ight-hand side is the  mul t ise t  of  all t e rms  in M which are not  variables; 
and 
is the  union for multisets.  t~ 

D E C ( M )  = f f  3 t  ~ M, t E V 
t h e n  (t, {makemul teq(M)} ) 
e l s e  i f  3n, 3 f E A , ,  Yt E M, head( t )  = f 

t h e n  i f  n ffi 0 
t h e n  ( f, O) 
e l se  i f  Vi (1 __ i _ n),  DEC(Mi) ~ failure 

where  Mi -- OteM Pi(t) 
t h e n  (f(C(M1) . . . . .  C(M,)),  UTffil F(Mi)) 
e l se  failure 

e l se  failure. 

We can now define the following t ransformat ion:  

Multiequation Reduction. Let  Z be a set  of  mul t iequat ions  containing a 
mul t iequat ion  S -- M such tha t  M is n o n e m p t y  and has  a common  pa r t  C and a 
frontier  F. T h e  new set Z' of mul t iequat ions  is obta ined by  replacing S = M with 
the  union of the mul t iequat ion S = (C) and of all the mul t iequat ions  of F:  

Z ' f f i ( Z -  { S f f i M } ) U { S = ( C ) }  U F .  

THEOREM 3.1. Let S = M (M nonempty) be a multiequation of a set Z of 
multiequations. I f  M has no common part, or if some variable in S belongs to 
the left-hand side of some multiequation in the frontier F of M, then Z has no 
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unifier. Otherwise, by applying multiequation reduction to the multiequation 
S = M we get an equivalent set Z' ofmultiequations. 

PROOF. If the common part of M does not exist, then the multiequation S -- M 
has no unifier, since two terms should be made equal having a different function 
symbol in the corresponding subterms. Moreover, if some variable x of S occurs 
in some left-hand side of the frontier, then it also occurs in some term t of M, and 
thus the equation x = t, with x occurring in t, belongs to a set of equations 
equivalent to Z. But, according to Theorem 2.2, this set has no unifier. 

To prove that  Z and Z '  are equivalent, we show first that  a unifier of Z is also 
a unifier of Z'. In fact, if a substitution ~ makes all terms of M equal, it also 
makes equal all the corresponding subterms, in particular, all terms and variables 
which belong to left- and right-hand sides of the same multiequation in the 
frontier. The multiequation S = (C) is also satisfied by construction. Conversely, 
if ~ satisfies Z', then the multiequation S -- M is also satisfied. In fact, all terms 
in S and M are made equal--in their upper part (the common part) due to the 
multiequation S -- (C) and in their lower part (the subterms not included in the 
common part) due to the set of multiequations F. [] 

We say that  a set Z of multiequations is compact iff 

Y(S = M ) ,  (S'  =M '}  ~ Z :  S A  S '  = ~. 

We can now introduce a second transformation, which derives a compact set of 
multiequations. 

Compactification. Let Z be a noncompact set of multiequations. Let R be a 
relation between pairs of multiequations of Z such that  iS = M) R iS '  = M') iff 
S n S' # O, and l e t / t  be the transitive closure of R. The relation/~ partitions the 
set Z into equivalence classes. To obtain the final compact set Z', all multiequa- 
tions belonging to the same equivalence class are merged; that  is, they are 
transformed into single multiequations by taking the union of their left- and 
right-hand sides. 

Clearly, Z and Z' are equivalent, because the relation /~z between pairs of 
terms, defined in Section 3.1, does not change by passing from Z to Z'. 

3.3 Solving Systems of Multiequations 

For convenience, in what follows, we want to give a structure to a set of 
multiequations. Thus we introduce the concept of system of multiequations. A 
system R is a pair (T, U), where T is a sequence and U is a set of multiequations 
{either possibly empty), such that 

(1) the sets of variables which constitute the left-hand sides of all multiequations 
in both T and U contain all variables and are disjoint; 

(2) the right-hand sides of all multiequations in T consist of no more than one 
term; and 

(3) all variables belonging to the left-hand side of some multiequation in T can 
only occur in the right-hand side of any preceding multiequation in T. 

We now present an algorithm for solving a given system R of multiequations. 
When the computation starts, the T part is empty, and every step of the following 
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Algori thm 2 consists of  " t ransferr ing"  a mul t iequat ion  f rom the U part ,  t ha t  is, 
the unsolved part ,  to the  T part ,  t ha t  is, the  triangular or solved par t  of  R. When  
the  U p a r t  of R is empty ,  the  sys tem is essentially solved. In  fact, the  solution can 
be obta ined by  subst i tut ing the  var iables  backward.  Notice that ,  by  keeping a 
solved sys tem in this t r iangular  form, we can hope  to find efficient a lgor i thms for 
unification even when the mgu  has  a size which is exponential  with respect  to the  
size of the initial system. For  instance, the mgu  of the  set  of mul t iequat ions  

{{Xl} = ~, 

{x~} = ~ ,  

{x3} = 0 ,  

{x4} = (h(x3, h(x2, x2)), h(h(h (xl, xl), x2), x3))} 
is 

{(h(xl,  Xl), x2), (h(h(xl, Xl), h(Xl, Xl)), x3), 

(h(h(h(Xl, Xl), h(xl, Xl)), h(h(xl, Xl), h(Xl, Xl))), X4)}. 

However ,  we can give an equivalent  solved sys tem with e m p t y  U pa r t  and whose 
T pa r t  is 

({x,} --- (h(x3, x3)), 

{x3} = (h(x2, x2)), 

{X2) = ( h ( X l ,  xl)), 

{xl} = o ) ,  

f rom which the  mgu  can be obta ined by subst i tut ing backward.  
Given a sys tem R = (T, U) with an e m p t y  T part ,  an equivalent  sys tem with 

an e m p t y  U pa r t  can be computed  with the  following algori thm. 

Algorithm 2 
(1) r epea t  

(1.1) Select a multiequation S = M of U with M # ~5. 
(1.2) Compute the common part C and the frontier F ofM. I f M  has no common part, 

stop with failure (clash). 
(1.3) If the left-hand sides of the frontier of M contain some variable of S, stop with 

failure (cycle). 
(1.4) Transform U using multiequation reduction on the selected mnltiequation and 

compactification. 
(1.5) Let S = {xl . . . . .  Xn). Apply the substitution ~ = {(C, xl) . . . . .  (C, x,)} to all 

terms in the right-hand side of the multiequations of U. 
(1.6) Transfer the multiequation S = (C) from U to the end of T. 
u n t i l  the U part of R contains only multiequations, if any, with empty right-hand 

sides. 
(2) Transfer all the mnltiequations of U (all with M = ~D) to the end of T, and stop with 

success. 

Of course, if we want  to use this a lgor i thm for unifying two t e rms  tl and t2, we 
have  to construct  an initial sys tem with e m p t y  T pa r t  and with the  following U 
part :  

{{x) = (tl, t2), {xl} = 6 ,  {x2} = O . . . . .  {x,} = 6 }  
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where xl, x2 . . . .  , Xn are all the  variables in t~ and t2 and x is a new variable which 
does not  occur in ti and t2. For  instance, let tl = f(x~, g(x2, xs), x2, b) and 
t2 = f ( g ( h ( a ,  xs), x2), x~, h(a,  x4), x4). The  initial system is as follows: 

U: {{x} = ( f ( x l ,g (x2 ,  x3), x2, b), f ( g ( h ( a ,  x~), x2), xl,  h(a,  x4), x4)), 

{x~} = 6 ,  (x2} = 6 ,  {x3} = ;D, (x4} = 6 ,  {xs} = 6};  (3) 

T : ( ) .  

After the first i terat ion of Algori thm 2 we get 

U: {(x~} = (g (h(a ,  x~), x2), g(x2, x3)), 

{x2} = (h(a, x4)), 

(x~) = 0 ,  

(x4} = (b), 

(xs} = ~ ) ;  

T: ( {x} = (f(xl, xl,  x2, x4))). 

We now eliminate variable x2, obtaining 

U: ({Xl) = (g (h(a ,  xs), h(a,  x4)), g (h (a ,  x4), x3)), 

{x3} = 6 ,  

(x4} = (b), 

{x5 ) = O}; 

T: ( (x} = ( f ( x l ,  Xl, x2, x4)),  

{x2} = (h(a, x4))). 

By eliminating variable xl, we get 

U: {(x3} = (h(a, x4)), 

{x,, xs} = (b)); 

T: ( (x}  = ( f(xl ,  xi, x2, x4)), 

(x2} = (h(a, x4)), 

(xl} = (g(h(a ,  x4), x3))). 

Finally, by eliminating first the set {x4, xs} and then  {x3}, we get the solved 
system 

U: O; 

T: ((x} = (f(x~, Xl,  X2, X4)), 

(X2) = (h(a, x4)), 

{Xl) = (g (h(a ,  x4), xz)), 

(x4, xs} = (b), 

{x3) = (h(a, b))). 

We can now prove the correctness of Algorithm 2. 
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THEOREM 3.2. Algorithm 2 always terminates. I f  it stops with failure, then 
the given system has no unifier. I f  it stops with success, the resulting system is 
equivalent to the given system and has an empty unsolved part. 

PROOF. All transformations obtain systems equivalent to the given one. In fact, 
in step (1.4} multiequation reduction obtains a set of equations which (according 
to Theorem 3.1) is equivalent, and compactification transforms it again into a 
system. Step {1.5) applies substitution only to the terms in U, and its feasibility 
can be proved as in Theorem 2.2. Step (1.6) can be applied since the multiequation 
S = (C), introduced during multiequation reduction, has not been modified by 
compactification, due to the condition tested in step (1.3). For the same condition, 
transferring multiequation S = (C) from U to T still leaves a system. Step (2) is 
clearly feasible. 

If the algorithm stops with failure, then, by Theorem 3.1, the system presently 
denoted by R (equivalent to the given one) has no solution. Otherwise, the final 
system clearly has an empty U part. Finally, the algorithm always terminates 
since at every cycle some variable is eliminated from the U part. [] 

It is easy to see that, for a given system, the size of the final system depends 
heavily on the order of elimination of the multiequations. For instance, given the 
same system as discussed earlier, 

U: {{xl)  = ~ ,  

{x2} = (h(xl, Xl)), 

{x3} = (h(x2, x2)), 

{x,) = (h(x3, x3))}; 

T : ( ) ,  

and eliminating the variables in the order x2, xz, x4, Xx, we get the final system 

U: 0; 

T: ({x2)  - -  (h(xm,  Xl ) ) ,  

{x3} = (h(h(Xl, xl), h(Xl, xl))), 

{x4} = (h(h(h(Xl, Xl), h(xl,  xl)), h(h(xl ,  xl), h(Xl, Xl)))), 

{x~ } = 0 ) .  

If instead we eliminate the variables in the order x4, x3, x2, xl, we get 

U: O; 

T: ({x4} = (h(x3, x3)), 

(x3} = (h(x2, x2)), 

{x2} -- (h(Xl, Xx)), 

{x, } = O). 

3.4 The Unif icat ion Algor i thm 

Looking at Algorithm 2, it is clear that the main source of complexity is step 
(1.5), since it may make many copies of large terms. In the following--and this is 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982. 



270 A. Martelli and U. Montanari 

the  hear t  of  our  a lgo r i t hm- -we  show that ,  if the  sys tem has  unifiers, then  there  
always exists a mul t iequat ion  in U (if not  empty)  such t ha t  by  selecting it we do 
not  need step (1.5) of  the algori thm, since the  var iables  in its lef t -hand side do 
not  occur  elsewhere in U. We need the  following definition. 

Given a sys tem R, let us consider the  subset  Vu of var iables  obta ined  by  making  
the union of all lef t -hand sides Si of  the  mul t iequat ions  in the  U pa r t  of  R. Since 
the sets Si are disjoint, they  de te rmine  a par t i t ion of Vu. We now define a re la t ion 
on the  classes Si of this parti t ion: we say t ha t  Si < Sj iff there  exists a var iable  
of  Si occurring in some t e r m  of Mj, where Mj is the  r ight -hand side of  
the  mul t iequat ion  whose lef t -hand side is Sj. We write <* for the  t ransi t ive clo- 
sure of  <. 

Now we can prove the following theorem and corollary. 

THEOREM 3.3. I f  a system R has a unifier, then the relation <* is a partial 
ordering. 

PROOF. I f  Si < $i, then, in all unifiers of  the  system, the  t e r m  subs t i tu ted  for 
every var iable  in Si mus t  be  a str ict  s ub t e rm  of the  t e r m  subs t i tu ted  for every  
var iable  in Sj. Thus,  if the sys tem has  a unifier, the graph  of the  relat ion < cannot  
have  cycles. Therefore ,  its t ransi t ive closure mus t  be a par t ia l  ordering. []  

COROLLARY. If the system R has a unifier and its U part  is nonempty, there 
exists a multiequation S ffi M such that the variables in S do not occur elsewhere 
inU.  

PROOF. Le t  S = M be a mul t iequat ion  such t ha t  S is "on top"  of  the par t ia l  
ordering < * (i.e., ~3Si, S < Si). T h e  var iables  in S occur nei ther  in the  o ther  left- 
hand  sides of U (since they  are disjoint) nor  in any  r ight  m e m b e r  Mi of U, since 
otherwise S < Si. [] 

We can now refine the  nondeterminis t ic  Algor i thm 2 giving the  general  version 
of our  unification a lgor i thm for a sys tem of mul t iequat ions  R = (T, U). 

Algorithm 3: UNIFY, the Unification Algorithm 
(1) r epea t  

(1.1) Select a multiequation S = M of U such that the variables in S do not occur 
elsewhere in U. If a multiequation with this property does not exist, stop with 
failure (cycle). 

(1.2) i f M i s  empty 
then  transfer this multiequation from U to the end of T. 
else  begin  

(1.2.1) Compute the common part C and the frontier F of M. If M has 
no common part, stop with failure (clash). 

(1.2.2) Transform U using multiequation reduction on the selected 
multiequation and compactification. 
Transfer the multiequation S = (C) from U to the end of T. (1.2.3) 

end 
until the U part of R 

(2) stop with success. 
is empty. 

A few comme n t s  are needed.  Besides s tep (1.5) of Algor i thm 2, we have  also 
erased step (1.3) for the same reason. Fur thermore ,  in Algor i thm 2 we were forced 
to wait  to t ransfer  mul t iequat ions  wi th  e m p t y  r ight -hand sides since subst i tu t ion 
in t ha t  case would have  required a special t r ea tment .  
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By applying Algorithm UNIFY to the system which was previously solved with 
Algorithm 2, we see that we must first eliminate variable x, then variable x,, then 
variables x2 and x3 together, and, finally, variables x4 and x5 together, getting the 
following final system: 

U : ~  

T: ( { x }  = ( f ( x l ,  x l ,  x2,  x , ) ) ,  

{Xl} = (g(x2, x3)), 

{x2, x3} = (h(a, x4)), 
{x,, xs} = (b)). 

Note that the solution obtained using Algorithm UNIFY is more concise than 
the solution previously obtained using Algorithm 2, for two reasons. First, 
variables x2 and x3 have been recognized as equivalent; second, the right member 
of x~ is more factorized. This improvement is not casual but is intrinsic in the 
ordering behavior of Algorithm UNIFY. 

To summarize, Algorithm UNIFY is based mainly on the two ideas of keeping 
the solution in a factorized form and of selecting at each step a multiequation in 
such a way that no substitution ever has to be applied. Because of these two 
facts, the size of the final system cannot be larger than that of the initial one. 
Furthermore, the operation of selecting a multiequation fails if there are cycles 
among variables, and thus the so-called occur-check is built into the algorithm, 
instead of being performed at the last step as in other algorithms [2, 7]. 

4. EFFICIENT MULTIEQUATION SELECTION 

In this section we show how to implement efficiently the operation of selecting a 
multiequation "on top" of the partial ordering in step (1.1) of Algorithm 3. 

The idea is to associate with every multiequation a counter which contains the 
number of other occurrences in U of the variables in its left-hand side. This 
counter is initialized by scanning the whole U part at the beginning. Of course, a 
multiequation whose counter is set to zero is on top of the partial ordering. 

For instance, let us again consider system (3): 

U: {[0] {x} = (f(xl,g(x2, x3), x2, b), f(g(h(a, x~), xe), xl, 

h(a, x4), x4)), 

[2] {xl} = 6,  

[3] {x2} = 6, 

[1] (x3} = 6 ,  

[2] {x4} = 6,  

[1] {xa} -- 6}; 

T:().  

Here square brackets enclose the counters associated with each multiequation. 
Since only the first multiequation has its counter set to zero, it is selected to be 
transferred. Counters of the other multiequations are easily updated by decre- 
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ment ing  t hem whenever  an occurrence of the  corresponding variable  appears  in 
the  lef t -hand side of a mul t iequat ion  in the  frontier  computed  in step {1.2.1). 
When  two or more  mul t iequat ions  in U are merged in the compact i f icat ion phase, 
the counter  associated with the new mul t iequat ion  is obviously set  to a value 
which is the sum of the contents  of the  old counters.  

T h e  next  s teps are as follows: 

U: {[0] (Xl} = (g(h(a, x~), x2), g(x2, x3)), 

[2] {x2} = (h(a, x4)), 

[1] (x~) = o, 

[1] {x , }  = (b), 

[1] {x~} = ~};  

T: ( (x} = (f(xl, x~, x2, x4))). 

U: {[0] {x2, x3} = (h(a, x4), h(a, x~)), 

[1] {x4} = (b), 

[1] {x~} = o} ;  

T: ({x} = (f(x,, x,, x2, x,)) ,  

{x,} = (g(x2, x3))). 

U: {[0] {x4, xs} = (b)}; 

T: ({x} = (f(x,, xl, x2, x4)), 
{ x , }  = (g(x2, x3)), 
{x2, x3} = (h(a, x4))). 

U: ~;  

T: ({x} = (f(xl, xl, x2, x4)), 

{xl} = (g(x2, x3)), 

{x2, x3} = (h(a, x4)), 

{x4, x~} = (b)). 

5. IMPROVING THE UNIFICATION ALGORITHM FOR NONUNIFYING DATA 

In the  case of  nonunifying data,  Algor i thm 3 can stop with failure in two ways: 
e i ther  in s tep (1.1) if a cycle has  been  detected,  or in s tep (1.2.1) if a clash occurs. 
In  this section we show how to ant ic ipate  the la t ter  kind of failure wi thout  
al tering the  s t ruc ture  of  the  algori thm. 

Let  us first give the following definition. Two  t e rms  are consistent iff e i ther  a t  
least  one of t h e m  is a var iable  or they  are bo th  nonvar iable  t e rms  with the same 
root  funct ion symbol  and pairwise consis tent  arguments .  Th is  definit ion can be 
extended to the case of more  than  two t e rms  by  saying t ha t  they  are consis tent  
iff all pairs  of t e rms  are consistent.  For  instance, the three  t e rms  f(x, g(a, y)), 
f(b, x), and f(x, y) are consis tent  a l though they  are not  unifiable. 
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We now modify Algorithm UNIFY by requiring all te rms in the r ight-hand 
side of a mult iequat ion to be consistent, for every multiequation. Thus,  we stop 
with clash failure as soon as this requi rement  is not  Satisfied. This  new version of 
the algori thm is still correct  since, if there  are two inconsistent terms in the same 
multiequation,  they will never  unify. 

In this way, clashes are detected earlier. In fact, in the Algorithm 3 version of 
UNIFY a clash can be detected while computing the common par t  and the 
frontier  of the r ight-hand side of the selected multiequation, whereas in the new 
version of UNIFY the same error is detected in the compactification phase of a 
previous iteration. 

An efficient implementat ion of the consistency check when two mult iequat ions 
are merged requires a suitable representat ion for r ight-hand sides of multiequa- 
tions. Thus,  instead of choosing the obvious solution of representing every right- 
hand side as a list of terms, we represent  it as a mult i term, defined as follows. 

A mult i term can be ei ther  empty  or of the form f(P1 . . . . .  Pn) where f E A,  and 
Pi (i = 1 . . . . .  n)  is a pair (Si, Mi) consisting of a set of variables Si and a 
mul t i term ]Vii. Furthermore ,  Si and Mi cannot  bo th  be empty.  

For  instance, the multiset  of consistent terms 

(f(x, g(a,  y)),  f(b, x),  f(x,  y))  

can be represented with the mul t i term 

f ( ( (x} ,  b), ( { x , y } , g ( ( O ,  a) ,  ( (y ) ,  ~ ) ) ) ) .  

By representing r ight-hand sides in this way we have no loss of information, 
since the only operations which we have to perform on them are the operat ion of 
merging two r ight-hand sides and the operat ion of computing the common part  
and the frontier, which can be described as follows: 

M E R G E  (M', M " ) = 
c a s e  M '  o f  

O: M " ;  
f ' ( ( S i  M~), , t S '  M '  ~" 

c a s e  M" o f  
O: M';  
f " ( (S~ ' ,M~' )  . . . . .  (Sn", M~")): 

i f f '  -- f "  a n d  MERGE(M~, M[') # failure (i -- 1 . . . . .  n)  
t h e n  f ' ( ( S i  O S~', MERGE(MI ,  M; ' ) )  . . . . .  

( S ~  ~J S t'n, MERGE(M~', M,,))"~ 
e l se  failure 

e n d c a s e  
e n d c a s e  

COMMONPART(f ( (S1 ,  M1) . . . . .  (S , ,  Mn)))  = f(P1, - - . ,  Pn) 

where Pi = i f  Si = ~ t h e n  COMMONPART(Mi)  
e l se  A N Y O F ( S D  (i = 1 . . . .  , n)  

where function ANYOF(S~) returns  an e lement  of set Si. 
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F i g u r e  1 

UPart = r e c o r d  

MultEqNumber:  Integer;, 
ZeroCounterMultEq, Equations: Lis tOfMultEq 

end; 
System = TPSystem; 
PSystem = r e c o r d  

T: ListOfMultEq; 
U: UPart 

end; 
Mult iTerm = ~PMultiTerm; 
PMul t iTerm = r e c o r d  

Fsymb: FunName; 
Args: L is tOfTempMul tEq 

end; 
Mult iEquat ion = ~PMultiEquation; 
PMult iEquat ion = record 

Counter, VarNumber: Integer; 
S: ListOfVariables; 
M: Mul t i  Term 

e n d ;  

TempMultEq = ~PTempMultEq; 
PTempMul tEq = r e c o r d  

S: QueueOfVariables; 
M: MultiTerrn 

e n d ;  

Variable = TPVariable; 
P Variable = r e c o r d  

Name: VarName; 
M: Mult iEquat ion 

e n d ;  

FRONTIER(f((S, ,  M1) . . . . .  ( S n ,  M n )  )) = F1 [..J . . .  (.J Fn  

where Fi = if  Si = O t h e n  FRONTIER(M/) 
else {Si = M i }  ( i  = 1, . . . ,  n ) .  

Note that the common part and the frontier are defined only for nonempty 
multiterms and that they always exist. 

6. IMPLEMENTATION 

In order to describe the last details of our algorithm, we present here a PASCAL 
implementation. In Figure 1 we have the definitions of data types. All data 
structures used by the algorithm are dynamically created data structures con- 
nected through pointers. The UPart of a system has two lists of multiequations: 
Equations, which contains all initial multiequations, and ZeroCounterMultEq, 
which contains all multiequations with zero counter. Furthermore, the field 
MultEqNumber contains the number of multiequations in the UPart. A multi- 
equation, besides having the fields Counter, S, and M, has a field VarNumber, 
which contains the number of variables in S and is used during compactification. 
The pairs Pi = (S i, Mi), which are the arguments of a multiterm, have type 
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procedure  Unify(R: System); 
var  Mult: MultiEquation ; 

Frontier: ListOf TempMultEq ; 
b e g i n  

repeat  
SelectMultiEquation(R ~. U, Mult); 
i f  not(Mult~.M=Nil) then  
b e g i n  

Frontier := Nil; 
Reduce(Multi.M, Frontier); 
Compact(Frontier, R ~. U) 

end;  
R ~.T := NewListOfMultEq(Mult, R ~.T) 

unti l  R ~. U.MultEqNumber = 0 
end (*Unify*); 

Figure 2 

Figure 3 

procedure  SelectMultiEquation(var U: UPart; v a r  Mult: MultiEquation); 
b e g i n  

i f  U.ZeroCounterMultEq = Nil t h e n  fail('cycle'); 
Mult := U~eroCounterMultEq~. Value; 
U~eroCounterMultEq := U.ZeroCounterMultEqT.Next; 
U.MultEqNumber := U.MultEqNumber - 1 

end ( * SelectMult iEquation *); 

TempMultEq. Finally, all occurrences of a variable point to the same Variable 
object, which points to the multiequation containing it in its left-hand side. 

The types "ListOf... ," not given in Figure 1, are all implemented as records 
with two fields: Value and Next. Finally, QueueOfVariables is an abstract type 
with operations CreateListOfVars, IsEmpty, HeadOf, RemoveHead, and Ap- 
pend, which have a constant execution time. 

In Figure 2 we rephrase Algorithm UNIFY as a PASCAL procedure. Procedure 
SelectMultiEquation selects from the UPart of the system a multiequation which 
is "on top" of the partial ordering, by taking it from the ZeroCounterMultEq list. 
Its implementation is given in Figure 3. 

Procedure Reduce, given in Figure 4, computes the common part and the 
frontier of the selected multiequation. This procedure modifies the right-hand 
side of this multiequation so that it contains directly the common part. Note that 
the frontier is represented as a list of TempMultEq instead of as a l is t  of 
multiequations. 

Finally, in Figure 5 we give procedure Compact, which performs compactifi- 
cation by repeatedly merging multiequations. When two multiequations are 
merged, one of them is erased, and thus all pointers to it from its variables must 
be moved to the other multiequation. To minimize the computing cost, we always 
erase the multiequation with the smallest number of variables in its left-hand 
side. Procedure MergeMultiTerms is given in Figure 6. 

A detailed complexity analysis of a similar implementation is given in [13]. 
There it is proved that  an upper bound to execution time is the sum of two terms, 
one linear with the total number of symbols in the initial system and another one 
n log n with the number of distinct variables. 
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procedure Reduce(M: MultiTerm; var Frontier: ListOfTernpMultEq); 
var Arg" ListOfTempMultEq; 
b e g i n  

Arg := MT.Args; 
w h i l e  not(Arg = Nil) do 
begin  

i f  IsEmpty(Arg T. Value T.S) then Reduce(ArgO. Value T.M, Frontier) 
else 
b e g i n  

Frontier := NewListOfTempMultEq(Arg T. Value, Frontier); 
ArgT. Value := NewTempMultEq( CreateQueueOfVars(HeadOf(Arg~. ValueT.S) ) , Nil) 

end; 
Arg := ArgT.Next 

end 
end (*Reduce*); 

Figure 4 

Here we want only to point out that the nonlinear behavior stems from the 
operation described above of moving all pointers directed from variables to 
multiequations, whenever two multiequations are merged. To see how this can 
happen, let us consider the problem of unifying the two terms 

f ( x l ,  x3, xs, xT, xl ,  xs, x l )  

and 

f(x2, x4, x6, x8, x3, x7, x5). 

During the first iteration of Unify we get a frontier whose multiequations are 
the pairs (xl, x2), (x3, x4), (x~, x6), (xT, xs), (xl, x3), (xs, xT), and (xl, xs). By 
executing Compact  with this frontier, we see that it moves one pointer for each 
of the first four elements of the frontier, two pointers for each of the next two 
elements, and four pointers for the last element. Thus, it has an n log n complexity. 

As a final remark, we point out that we might modify the worst-case behavior 
of our algorithm with a different implementation of the operation of multiequation 
merging. In fact, we might represent sets of variables as trees instead of as lists, 
and we might use the well-known UNION-FIND algorithms [1] to add elements 
and to access them. In this case the complexity would be of the order of m. G(m), 
where G is an extremely slowly growing function (the inverse of the Ackermann 
function). However, m would be, in this case, the number of variable occurrences. 

7. COMPARISONS WITH OTHER ALGORITHMS 

In this section we compare the performance of our algorithm with that  of two 
well-known algorithms: Huet 's algorithm [7], which has an almost linear time 
complexity, and Paterson and Wegman's algorithm [15], which is theoretically 
the best having a linear complexity. 

As an example of the assertion made at the end of Section 2, let us give a 
sketchy description of the two algorithms using the terminology of this paper. 
Both algorithms deal with sets of multiequations whose left-hand sides are 
disjoint and whose right-hand sides consist of only one term of depth one, that is, 
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p r o c e d u r e  Compact(Frontier: Lis tOfTempMultEq; v a r  U: UPart); 
v a r  Vars: QueueOfVariables; 

V: Variable; 
Mult, Mul t  1: Mult iEquation ; 

p r o c e d u r e  MergeMultEq(var  Mult: Mult iEquation ; Mul t  l: Mult iEquation ); 
v a t  Multt: MultiEquation; 

V: Variable; 
Vars : L istOfVariab les ; 

b e g i n  
i f  not (Mul t  = Mul t  1) t h e n  
b e g i n  

i f  Mult  T. VarNumber < Mul t  1T. VarNumber t h e n  
b e g i n  

Mult t  := Mult; 
Mul t  := Mul t l ;  
Mul t  1 := Mult t  

end; 

MultT.Counter := MultT.Counter + Multl~.Counter; 
Mul t  T. VarNumber := Mul t  ~. VarNumber + Mul t  1 T. VarNumber; 
Vars := Mult  l T.S; 
r e p e a t  

V := Vars'~.Value; 
Vars := VarsT.Next; 
V ~.M := Mult; 
Mul t  T.S := NewListOfVariables( V, Mul t  T.S) 

un t i l  Vars = Nil; 
MergeMultiTerms(MultT.M, Mul t  l T.M); 
U.MultEqNumber := U . M u l t E q N u m b e r -  1 

end 
end (*MergeMultEq*); 

b e g i n  
whi le  not(Frontier = Nil) do 
b e g i n  

Vars := Frontier T. ValueT.S; 
V := HeadOf(Vars); 
RemoveHead( Vars); 
Mul t  := VT.M; 
MultT.Counter := MultT.Counter - 1; 
wh i l e  n o t  IsEmpty(Vars) do 
b e g i n  

V := HeadOf(Vars); 
RemoveHead( Vars); 
M u l t l  :-- VT.M; 
Mul t  l T.Counter := Mult  l ~.Counter - 1; 
MergeMultEq(Mult,  Mul t  1) 

end; 
MergeMulti  Terms(Mult T.M, Frontier T. Value~.M ) ; 
i fMultT.Counter  = 0 t h e n  

U.ZeroCounterMultEq := NewListOfMultEq(Mult ,  U.ZeroCounterMultEq); 
Frontier := FrontierT.Next 

end 
end (*Compact*); 

Figure 5 
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Figure 6 

p r o c e d u r e  MergeMultiTerms(var M: MultiTerm ; MI: MultiTerm); 
v a r  Arg, Argl: ListOfTempMultEq; 
begin 

i f M  = Nil t h e n  M := M1 
e l s e  i f  no t (M1 = Nil) t h e n  
begin 

if  not (M "f .Fsymb = M l ~.Fsymb) then fail(' clash' ) 
else 
begin 

Arg := M~.Args; 
Argl := MIT.Args; 
while not(Arg = Nil) do  
begin 

Append(Arg~. Value~.S, Argl ~. Value~.S); 
MergeMultiTerms(Arg~. Value~.M, Argl ~. Value~.M ); 
Arg := ArgT.Next; 
Argl := ArglT.Next 

e n d  
e n d  

e n d  
e n d  (*MergeMultiTerms*); 

o f  t h e  f o r m  f ( x , ,  . . . ,  x , )  w h e r e  x,  . . . . .  Xn are va r i ab l e s .  F o r  i n s t ance ,  

{x , }  = f(x~, x3, x , ) ;  

F u r t h e r m o r e ,  we  h a v e  a s e t  S 
va r i ab le s ;  for  i n s t ance ,  

{x2} --- a ;  

(xa} = g(x2);  

(x4} = a ;  

(x5} ffi f(x6, xT, xs); 

{x6} = a ;  

{x7} = g(xa) ;  

(4) 

{xs} = O. 

of  e q u a t i o n s  w h o s e  lef t -  a n d  r i g h t - h a n d  s ides  a r e  

S: {x,  = xs} .  

A s t e p  o f  b o t h  a l g o r i t h m s  cons i s t s  o f  c h o o s i n g  a n  e q u a t i o n  f r o m  S, m e r g i n g  t h e  
two  c o r r e s p o n d i n g  m u l t i e q u a t i o n s ,  a n d  a d d i n g  to  S t h e  n e w  e q u a t i o n s  o b t a i n e d  
as  t h e  o u t c o m e  o f  t h e  merg ing .  F o r  i n s t ance ,  a f t e r  t h e  f i r s t  s t e p  we  h a v e  

{x, ,  xs} = f(x2, x~, x4); 

{X2} = a ;  

{x3) = g(x2) ;  

{x4} = a ;  

{x~} = a ;  

{xv} = g(xa) ;  

{x8 } = O; 

S:  {x2 = x6, x3 ffi x7, x4 = xs ) .  
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The two algorithms differ in the way they select the equation from S. In Huet 's  
algorithm S is a list; at  every step, the first element of it is selected, and the new 
equations are added at the end of the list. The algorithm stops when S is empty, 
and up to this point it has not  yet  checked the absence of cycles. Thus, there is 
a last step which checks whether  the final multiequations are partially ordered. 

The source of the nonlinear behavior of this algorithm is the same as for our 
algorithm, tha t  is, the access to multiequations after they  have been merged. To 
avoid this, Paterson and Wegman choose to merge two multiequations only when 
their variables are no longer accessible. For instance, from (5) their algorithm 
selects x3 = x7 because x2 and xs are still accessible from the third and sixth 
multiequation, respectively, getting 

{xl, xs} = f(x2, x3, x,); 

{x2} = a; 

{x3, xT} = g(x2); 

{x4} = a; 

{x6} =- a; 

{xs} = O; 

S: {x2 = xs, x2 = x6, x4 = xs}. 

To select the multiequations to be merged, this algorithm "climbs" the partial 
ordering among multiequations until it finds a multiequation which is "on top"; 
thus the detection of cycles is intrinsic in this algorithm. 

Let  us now see how our algorithm works with the above example. The initial 
system of multiequations is 

U :  {[0] {Xl, X5} = f(( {x2, x6}, O), ({x3, xT}, gD), ({x4, xs}, ~) ) ,  

[2] {x2} -= a, 

[1] {x3} = g(({x2), O)), 

[1] (x4} = a, 

[1] {x6} = a, 

[1] {xT} = g({{xs}, O)), 

[2] {xs ) = ~}; 

T: (). 

The next step is 

U: {[1] {x2, x6} = a, 

[0] {x3, xT) = g(({x2, xs}, ~) ) ,  

[1] {x4, xs} = a}; 

T: ((x~, xs} = f(x2, x~, x4)), 

and so on. 
In this algorithm the equations containing the pairs of variables to be unified 

are kept in the multiterms, and the mergings are delayed until the corresponding 
multiequation is eliminated. 
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An important difference between our algorithm and the others is that  our 
algorithm may use terms of any depth. This fact entails a gain in efficiency, 
because it is certainly simpler to compute the common part and the frontier of 
deep terms than to merge multiequations step by step. Note, however, that this 
feature might also be added to the other algorithms. For instance, by adding the 
capability of dealing with deep terms to Paterson and Wegman's algorithm, we 
essentially obtain a linear algorithm which was independently discovered by the 
authors [13]. 

In order to compare the essential features of the three algorithms, we notice 
that they can stop either with success or with failure for the detection of a cycle 
or with failure for the detection of a clash. Let Pm, Pc, and Pt be the probabilities 
of stopping with one of these three events, respectively. We consider three 
extreme cases: 

(1) Pm >> Pc, Pt {very high probability of stopping with success). Paterson 
and Wegman's algorithm is asymptotically the best, because it has a linear 
complexity whereas the other two algorithms have a comparable nonlinear 
complexity. 

However, in a typical application, such as, for example, a theorem prover, the 
unification algorithm is not used for unifying very large terms, but instead it is 
used a great number of times for unifying rather small terms each time. In this 
case we cannot exploit the asymptotically growing difference between linear and 
nonlinear algorithms, and the computing times of the three algorithms will be 
comparable, depending on the efficiency of the implementation. 

An experimental comparison of these algorithms, together with others, was 
carried out by Trum and Winterstein [21]. The algorithms were implemented in 
the same language, PASCAL, with similar data structures, and tried on five 
different classes of unifying test data. Our algorithm had the lowest running time 
for all test data. In fact, our algorithm is more efficient than Huet's because it 
does not need a final acyclicity test, and it is more efficient than Paterson and 
Wegman's because it needs simpler data structures. 

(2) Pc >> Pt >> Pm (very high probability of detecting a cycle). Paterson and 
Wegman's algorithm is the best because it starts merging two multiequations 
only when it is sure that  there are no cycles above them. Our algorithm is also 
good because cycle detection is embedded in it. In contrast, Huet's algorithm 
must complete all mergings before being able to detect a cycle, and thus it has a 
very poor performance. 

(3) Pt >> Pc >> Pm (very high probability of detecting a clash). Huet's algo- 
rithm is the best because, if it stops with a clash, it has not paid any overhead for 
cycle detection. Our algorithm is better than Paterson and Wegman's because 
clashes are detected during multiequation merging and because our algorithm 
may merge some multiequations earlier, like {x2, x6} and {x4, Xs} in the above 
example. On the other hand, mergings which are delayed by our algorithm, by 
putting them in multiterms, cannot be done earlier by the other algorithm 
because they refer to multiequations which are still accessible. The difference in 
the performance of the two algorithms may become quite large if terms of any 
depth are allowed. 
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8. CONCLUSION 

A new unification algorithm has been presented. Its performance has been 
compared with that of other well-known algorithms in three extreme cases: high 
probability of stopping with success, high probability of detecting a cycle, and 
high probability of detecting a clash. Our algorithm was shown to have a good 
performance in all the cases, and thus presumably in all the intermediate cases, 
whereas the other algorithms had a poor performance in some cases. 

Most applications of the unification algorithm, such as, for instance, a resolution 
theorem prover or the interpreter of an equation language, require repeated use 
of the unification algorithm. The algorithm described in this paper can be very 
efficient even in this case, as the authors have shown in [12]. There they have 
proposed to merge this unification algorithm with Boyer and Moore's technique 
for storing shared structures in resolution-based theorem provers [3] and have 
shown that, by using the unification algorithm of this paper instead of the 
standard one, an exponential saving of computing time can be achieved. Further- 
more, the time spent for initializations, which might be heavy for a single 
execution of the unification algorithm, is there reduced through a close integration 
of the unification algorithm into the whole theorem prover. 
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