
Dynamic Typing and Subtype Inference

Alexander Aiken Manuel F�ahndrich

Computer Science Division

University of California, Berkeley

Berkeley, CA 94720-1776

faiken,manuelg@cs.berkeley.edu

Abstract

Dynamic typing is a program analysis targeted at removing

runtime tagging and untagging operations in dynamically

typed languages. This paper shows that dynamic typing

at least as powerful as Henglein's system [Hen92b] can be

expressed using set constraints.

1 Introduction

This paper presents a study of Henglein's dynamic typing

discipline [Hen92a, Hen92b]. Dynamic typing extends con-

ventional static types with a single new type Dynamic. Spe-

cial functions called coercions inject values into and project

values from type Dynamic. Currently, the main application

of dynamic typing is the optimization of programs written

in dynamically typed languages (such as Lisp and Scheme)

by removing runtime tests of type tags where they are prov-

ably unnecessary (so-called soft typing [CF91, WC94]). A

remarkable, and to our knowledge unique, aspect of dynamic

typing is that it not only permits the removal of dynamic

type tag tests, but also allows the elimination of type tag-

ging operations themselves.

The purpose and results of our study are two-fold. First,

while dynamic typing is a very interesting system, it cannot

remove as many type checks as other recently proposed al-

gorithms based on subtyping [AWL94, WC94]. However, as

noted above, dynamic typing has the singular ability to re-

move type tagging operations as well. Thus, the power of dy-

namic typing is incomparable to the subtyping approaches.

One of our goals is to investigate whether the strengths of

dynamic typing can be combined with the strengths of sub-

typing. Our results are positive: We present a generalization

of dynamic typing that incorporates an expressive subtyping

discipline. Type inference for the system has time complex-

ity O(n

3

) and appears amenable to a practical implementa-

tion.

Our second interest is with dynamic typing itself, irre-

spective of any applications. Many contemporary program

analysis algorithms are based on constraint resolution, in-

cluding the algorithms for dynamic typing. In constraint-

based analysis, constraints are generated from the program

text and solving the constraints yields the analysis of the

program. It is our thesis that many constraint-based anal-

yses can be expressed using a particular constraint theory

known as set constraints. Set constraints are a simple, gen-

eral, and well-studied theory that is powerful enough to ex-

press many program analyses [HJ90, AW92, Hei92, Aik94].

In testing our thesis, it became apparent that dynamic

typing is in some ways fundamentally di�erent from other

examples of constraint theories used in program analysis.

The main technical challenge, and our central result, is es-

tablishing that set constraints can encode dynamic typing.

This characterization facilitates direct comparison of dy-

namic typing with other constraint-based analyses. How-

ever, the set constraint formulation does not naturally sug-

gest the very e�cient resolution algorithms known for dy-

namic typing [Hen92b]; in this respect, dynamic typing ap-

pears to stand apart.

The rest of this section presents an overview of the paper.

Some basic de�nitions are needed. Following [Hen92a], our

results are presented using a small, paradigmatic language

called dynamically typed lambda calculus. The expressions

of the language are:

e ::= x j�x:e j e e

0

j if e e

0

e

00

j true j false jC e

The dynamically typed lambda calculus is a call-by-value

language with two important features. First, a term C e

is a coercion C applied to the value of e. Intuitively, coer-

cions model the runtime type checks implicit in dynamically

typed programs. Formally, coercions are primitive functions

that perform tagging and untagging operations. The se-

mantic domain D contains four distinct kinds of elements:

tagged functions, untagged functions, tagged booleans, and

untagged booleans:

D = ((D ! D) + Bool)� (notag + tag)

For example, the coercion FUNC! tags its (function) ar-

gument as a function; FUNC! has signature (D ! D) �

notag ! (D ! D) � tag. The coercion FUNC? checks that

its argument is a function and returns the untagged function

value or an exception; it has signature ((D ! D) +Bool)�

tag ! (D ! D) � notag. Thus, FUNC? (FUNC! �x:x) =

h�x:x;notagi, but FUNC? (BOOL! true) is an exception.

Similarly, BOOL! tags its (boolean) argument as a boolean

and BOOL? performs a check-and-untag operation. The

second important aspect of the language is that the seman-

tic domain contains both functions and booleans. The pure

lambda calculus would be uninteresting for dynamic typ-

ing because no type checking is required|no runtime errors

original term (�x:x) (�y:y)

canonical completion (FUNC? (FUNC! �x:x)) (FUNC! �y:y)

minimal d.t. completion (�x:x) (FUNC! �y:y)

original term (if true (�x:true) false) false

canonical completion (FUNC? if (BOOL? (BOOL! true))(FUNC! �x:(BOOL! true)) (BOOL! false)) (BOOL! false)

minimal d.t. completion (FUNC? if true (FUNC! �x:(BOOL! true)) (BOOL! false)) (BOOL! false)

minimal s.c. completion (FUNC? if true (FUNC! �x:(BOOL! true)) (BOOL! false)) false

Figure 1: Example completions of dynamically typed lambda terms.

can arise without a data type distinct from functions. The

results we present are easily extended to a language with

arbitrary data types.

Let erase(e) be e with all coercions deleted. We say

e is a completion of e

0

if erase(e) = e

0

. Implementations

of dynamically typed languages complete user programs by

inserting tagging operations where values are created and

inserting type checking operations where values are used.

Thus, the semantics of a dynamically typed lambda term

can be de�ned to be the meaning of the completion that

performs all possible type operations.

De�nition 1.1 Let e = erase(e). The canonical comple-

tion of e is de�ned by the following table. Each subexpres-

sion of e matching an entry on the left is modi�ed according

to the corresponding entry on the right:

Before After

x x

�x:e FUNC! �x:e

e e

0

(FUNC? e) e

0

if e e

0

e

00

if (BOOL? e) e

0

e

00

true BOOL! true

false BOOL! false

Let e be a term with no coercions. A completion e

0

of

e is correct if it is semantically equivalent to the canoni-

cal completion of e. We are free to choose among correct

completions, though completions with fewer coercions are

preferred for e�ciency reasons. Thus, the goal of dynamic

typing is to compute a correct completion with as few coer-

cions as possible.

Dynamic typing, as formulated in [Hen92a], has com-

putable minimal completions. A completion e

0

of e is mini-

mal if every derivable completion of e includes all the coer-

cions of e

0

. Two examples are given in Figure 1. The �rst

example shows two completions of the term (�x:x)(�y:y).

Note that even in the minimal completion the value �y:y is

tagged; this is necessary because �y:y is the result of evalu-

ation, which is a tagged value in the canonical completion.

The second example is contrived to illustrate several points

about the dynamic typing discipline. Consider the minimal

completion under dynamic typing (labelled d.t.). Note that

the boolean in the predicate position of the conditional is

untagged. Dynamic typing infers that a boolean is used in a

position where a boolean is expected, so no check is required

to ensure the value is a boolean and, in fact, the value need

not be tagged as a boolean at all. However, both branches

of the conditional are tagged and a FUNC? test is applied

to the result of the conditional. Dynamic typing cannot in-

fer what type results from the conditional, so all values that

can be produced have identifying tags to enable types to be

determined at runtime by FUNC?. The value true returned

by the constant function �x:true on the true branch must

be tagged because it is the result of the expression.

Finally, the argument false to the function result of

the conditional is also tagged. This is peculiar, because the

value is not even used by the constant function �x:true. In

fact, this example illustrates a weakness of dynamic typing.

The completion arises because dynamic typing assigns a sin-

gle type Dynamic to all tagged values. That is, the type of

the conditional is just Dynamic|no structural information

about what values can result from the conditional is ex-

pressed. When FUNC? is applied, nothing is known about

the type of the function that results, so it must have type

FUNC? : Dynamic ; (Dynamic ! Dynamic), which forces

the components of the function type to also be tagged and

tested at runtime. (The use of; instead of! in the type is

for consistency with notation in [Hen92b, Hen92a] and em-

phasizes the special role of coercions.) This fact is central

to dynamic typing: if a value has type Dynamic, then all of

its components must have type Dynamic.

The system we present, based on set constraints, allows

components of a type to be untagged even if the type it-

self represents a tagged value. Figure 1 shows the minimal

set constraint completion (labelled s.c.) for the second ex-

ample. Note that the function argument is untagged. The

example is admittedly contrived; it is di�cult to construct

realistic examples in the dynamically typed lambda calculus!

However, the practical e�ect is easy to understand. In dy-

namic typing, if any component of a data structure is tagged

(has type Dynamic), then all subcomponents must be tagged

(have type Dynamic), and all associated type checking op-

erations must be performed. Thus, the need to introduce

type operations on a single component of a large data type

may result in the introduction of type operations on many

other components. It is not obvious how to generalize dy-

namic typing to avoid this phenomenon, but set constraints

provide a natural solution. The cost is that computing min-

imal completions for the set constraint system requires cu-

bic time, while minimal completions for dynamic typing are

computable in nearly linear time.

The formal development proceeds as follows. Section 2

presents a type inference system for dynamic typing. This

system proves facts of the form

A `

D

e : �

Section 3 presents an alternative formulation of dynamic

typing using set constraints. It turns out that the \obvious"

encoding of dynamic typing fails in a pure subtyping system;

the explanation why highlights some interesting technical as-

pects of dynamic typing. We also state a soundness theorem

2

for our system. The set constraint system proves facts of the

form

A; S `

S

e : �

where S is a system of set constraints. The meaning of the

derivation is that under assumptions A, expression e has

type s(�) for every substitution s that is a solution of the

constraints S.

Section 4 is the heart of the paper. We prove a theorem

showing that the set constraint system is at least as powerful

as dynamic typing. More formally, we �rst de�ne a mapping

T from types � to types �. We then prove

A `

D

e : �) T (A); S `

S

e : �

where � � T (�) and S is a consistent system of constraints.

Because of the nature of the mapping T , a corollary of this

theorem is that every completion that is `

D

derivable is also

`

S

derivable. The example in Figure 1 shows that some

completions are `

S

derivable but not `

D

derivable.

Section 5 presents an algorithm for computing comple-

tions in the set constraint system. Analysis of the algorithm

shows that the set constraint system has unique minimal

completions and that the completions can be computed in

O(n

3

) time in the size of the original expression.

Section 6 briey outlines extensions and restrictions of

the main result. We show that the set constraint system

can be restricted to have exactly the same power as dynamic

typing, thereby precisely characterizing its power with re-

spect to other analyses based on set constraints. We also

consider a variation of dynamic typing where coercions may

appear at points other than value creations and uses. (We

do not consider induced coercions, another variation on dy-

namic typing in Henglein's original work [Hen92a].) Finally,

we report that the set constraint system can be incorpo-

rated into the most expressive system known for removing

type tags, although in this case there are no longer minimal

completions and constraint resolution becomes inherently

exponential.

Section 7 presents discussion of related work and a few

concluding remarks.

2 Dynamic Typing

The types of dynamic typing are generated by the following

grammar:

� ::= � j Bool j Dynamic j � ! �

0

j �x�:�

In this grammar, � is a type variable and �x�:� denotes

a regular recursive type that is the solution of the equation

� = � .

Figure 2 gives the inference rules for dynamic typing as

well as signatures for each of the primitive coercions. Each

inference rule allows for appropriate coercions at value cre-

ation and usage points. For example, the hypothesis of

[TRUE1] requires a coercion with signature Bool; � . The

coercion BOOL! : Bool; Dynamic satis�es this hypothesis.

However, we also wish to allow a value to remain untagged

if possible. We introduce a new, improper coercion NOOP

with signature � ; � . Semantically, NOOP is the identity

function. It is easy to verify that every use of coercions in

an inference rule admits NOOP and the one proper coercion

appropriate to that rule.

We briey describe the function of each rule in Figure 3.

The [ASSUME1] rule is standard. The [ABS1] rule con-

structs a lambda abstraction and possibly tags it. The

coercions NOOP and FUNC! can satisfy the hypothesis of

[ABS1].

The [APP1] rule is interesting. The coercions NOOP

and FUNC? can satisfy the rule's hypothesis. These two

possible coercions dictate the possible types for the function

expression e. If the coercion NOOP is used, then e has

a function type � ! �

0

. If the coercion FUNC? is used,

then e has type Dynamic. In other words, the system allows

the check-and-untag operation to be omitted only in the

case that e is known to be an untagged function value. As

discussed in Section 1, if the function has type Dynamic then

the argument and result must also have type Dynamic.

The coercions NOOP and BOOL? can satisfy the hy-

pothesis of the [COND1] rule. The check-and-untag oper-

ation on the predicate is only omitted in the case that the

predicate is provably an untagged boolean value. Note that

the two branches of the conditional are required to have

the same type; this restriction guarantees that the values

produced by the branches are either both tagged or both

untagged.

There is a �nal minor issue. According to our de�nition

of correctness, the �nal result of evaluation of an expression

must yield a tagged value, just as the canonical completion

does. Thus, we require that the conclusion of a complete

derivation be A `

D

e : Dynamic. Figure 3 gives a complete

derivation of one of the minimal completions in Figure 1.

3 A Subtyping System

Our goal is to explain dynamic typing using subtyping. At

�rst glance, there appears to be no di�culty. The type

Dynamic clearly plays a rule akin to a universal type. Thus,

one expects that

� � Dynamic

for all types � .

However, there is a serious di�culty. Consider a condi-

tional if e e

0

e

00

and let e

0

: Bool! Bool and e

00

: Dynamic !

Dynamic. Now, by subtyping Bool ! Bool � Dynamic and

Dynamic ! Dynamic � Dynamic, and so we can conclude

that

if e e

0

e

00

: Dynamic

assuming e has type Bool. Unfortunately, this conclusion is

unsound, because the two expressions e

0

and e

00

have di�er-

ent behavior and cannot be used in the same context (e.g.,

e

0

expects an untagged argument and e

00

expects a tagged

argument). Thus, Bool ! Bool � Dynamic and Dynamic !

Dynamic � Dynamic cannot both hold, so Dynamic is any-

thing but a universal type. In dynamic typing, Bool !

Bool � Dynamic does not hold; in this example, e must be

coerced to have type Dynamic ! Dynamic.

A di�erent approach is needed to encode dynamic typing

in a subtyping system. The intuition behind our solution

follows from the de�nition of the semantic domain D:

D = ((D! D) +Bool)� (notag + tag)

A semantic value consists of two parts: the \real" value and

a tag, which is possibly absent. Thus, we represent types as

pairs [�; �], where � is the structural part of the type and

3

A;x : � `

D

x : �

[ASSUME1]

A;x : � `

D

e : �

0

C : (� ! �

0

); �

00

A `

D

C (�x:e) : �

00

[ABS1]

A `

D

e : �

A `

D

e

0

: �

0

C : � ; (�

0

! �

00

)

A `

D

(C e) e

0

: �

00

[APP1]

A `

D

e : �

A `

D

e

0

: �

0

A `

D

e

00

: �

0

C : � ; Boolean

A `

D

(if (C e) e

0

e

00

) : �

0

[COND1]

C : Bool; �

A `

D

C true : �

[TRUE1]

C : Bool; �

A `

D

C false : �

[FALSE1]

FUNC! : (Dynamic! Dynamic); Dynamic

FUNC? : Dynamic; (Dynamic ! Dynamic)

BOOL! : Bool; Dynamic

BOOL? : Dynamic; Bool

NOOP : � ; �

Figure 2: Type rules for the dynamically typed lambda calculus.

NOOP : Bool; Bool

`

D

NOOP true : Bool

BOOL! : Bool; Dynamic

x : Dynamic `

D

BOOL! true : Dynamic

FUNC! : Dynamic ! Dynamic; Dynamic

`

D

FUNC! (�x:BOOL! true) : Dynamic

BOOL! : Bool; Dynamic

`

D

BOOL! false : Dynamic

NOOP : Bool; Bool

`

D

if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false) : Dynamic

FUNC? : Dynamic; Dynamic ! Dynamic

BOOL! : Bool; Dynamic

`

D

BOOL! false : Dynamic

`

D

(FUNC? if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false)) (BOOL! false) : Dynamic

Figure 3: `

D

derivation of an example in Figure 1

4

� represents the tag. Formally, the types of our system are

generated by the following grammar:

� ::= [�; �]

� ::= � j� ! � j Bool j � [�

0

j� \ �

0

j 0

� ::= � j tag j notag j � [�

0

Types denote sets of values. For example, � ! �

0

de-

notes the set of functions mapping arguments of type � to

results of type �

0

. The expressions � [�

0

and � \ �

0

de-

note set-theoretic union and intersection of types. The ex-

pression 0 represents non-termination (formally, it is the set

f?g) and is the least type; i.e., 0 \ � = 0 and 0 [� = � for

any �. For brevity, we skip the development of ideal models

needed to formalize types as sets of values; the construction

is well-known (e.g., see [MPS84, AW93]).

We work with systems of set constraints of the following

forms:

X � Y

Q 6= 0

Q 6= tag [notag

A 6= 0) Q � R

Here X, Y stand for any expressions drawn from the gram-

mar above. Q and R refer to tag expressions (grammar

symbol �), A refers to type expressions (grammar symbol

�). The interpretation of these constraints is conventional.

Given a set S of constraints a solution of S is a mapping of

variables to types such that all of the constraints are simul-

taneously satis�ed.

We do not include an explicit �xed point operator be-

cause recursive constraints have equivalent power. Let X =

Y denote the pair of constraints X � Y and Y � X. For

example, the set of fully tagged values can be de�ned as the

unique solution of the recursive equation:

[�; �] = [([�; �]! [�; �]) [Bool; tag]

We use � to denote the set of fully tagged values. Similarly,

the set of all values (tagged and untagged) is the unique

solution of:

[�; �] = [([�; �]! [�; �]) [Bool; tag [notag]

We use 1 to denote the set of all values.

Before presenting the inference rules, there are further

details meriting discussion. In the grammar for types, the in-

tent is that a variable � ranges over types of kind � and that

a variable � ranges over types of kind �. A standard mecha-

nism for enforcing such restrictions is to use a many-sorted

algebra. However, it is possible to avoid the extra nota-

tional burden of many-sorted algebras by using constraints.

Variables of kind � and � have the following associated con-

straints:

� � (1! 1) [Bool

� � tag [notag

� 6= 0

Thus, an � variable always denotes the structural part of a

type and a � variable always denotes tag, notag, or both.

For conciseness, these constraints are left implicit in infer-

ence rules and examples.

The inference rules and coercions for the set constraint

system are given in Figure 4. The system infers facts of

the form A; S `

S

e : �. Informally, the meaning of this

derivation is that e has the type s(�) for every mapping s

that is a solution of the constraints S. The following lemma

makes this precise.

Lemma 3.1 (Soundness) Let A; S `

S

e : �, let s be any

solution of the constraints S, and let v be the semantic value

denoted by e in some environment E. If E(x) 2 s(A(x)) for

every free variable x of e, then v 2 s(�).

We will not prove this lemma, but instead briey discuss

each rule. Note that coercions in this system a�ect the tag

component of a type. For example, the tagging coercions

FUNC! and BOOL! simply change a tag from notag to tag.

The inverse coercions FUNC? and BOOL? both change the

tag component from tag to notag (reecting the untagging

of the value) and restrict the structural component of the

type (reecting the possible values after a successful type

test).

The [ASSUME2] rule is straightforward. The [ABS2]

rule is the standard lambda abstraction rule, except that

the tag �

00

depends on the type of the coercion C. If C

is an improper coercion NOOP : [�; notag] ; [�; notag]

then �

00

= notag. If C is the proper coercion FUNC! :

[�; notag]; [�; tag] then �

00

= tag.

The rule [APP2] illustrates the crux of our system. Con-

sider an application (C e) e

0

and let e : [�; �] and e

0

: [�

0

; �

0

].

Now, there is no requirement that e be provably a function|

that is, � need not be a function type. We want to know

two things: (1) whether � is guaranteed to be a function

type and (2) what function types are in �. The constraint

� � ([�

0

; �

0

]! [�

00

; �

00

]) [(� \ Bool)

accomplishes both goals. Any solution of this constraint

divides the type � into its function values [�

0

; �

0

]! [�

00

; �

00

]

and non-function values � \ Bool. If � \ Bool = 0 in any

solution of the constraints, then the constraint simpli�es to

� � [�

0

; �

0

]! [�

00

; �

00

]

and thus � contains only functions, implying e can only

evaluate to function values by Lemma 3.1. However, if � \

(Bool) 6= 0 in all solutions of the constraints, then we cannot

guarantee statically that � is a function and it is necessary

to test at runtime. The constraint

(� \ Bool) 6= 0) � = tag

forces the value to be tagged and the coercion in the appli-

cation to be FUNC? whenever � may contain non-functions.

The constraint � 6= tag[notag guarantees that the function

will be either tagged or untagged, but not both.

The [COND2] rule works analogously to the [APP2] rule.

The constraint � � Bool [(� \ (1 ! 1)) forces any non-

boolean values to be assigned to � in any solution. Thus, if

�\(1! 1) = 0, the predicate is guaranteed to be a boolean.

However, if � \ (1 ! 1) 6= 0, then the predicate may not

be a boolean and dynamic type checking is required. The

constraint � \ (1 ! 1) 6= 0) � = tag forces the value of

the predicate to be tagged in this case.

There is another aspect of the [COND2] rule worth not-

ing. The inferred type [�

0

[�

00

; �

0

[�

00

] potentially has

both tagged and untagged values (e.g., if �

0

= tag and

5

A;x : [�; �]; S `

S

x : [�; �]

[ASSUME2]

A;x : [�; �]; S `

S

e : [�

0

; �

0

]

C : [�; notag]; [�; �

00

] where � = [�; �]! [�

0

; �

0

]

A;S `

S

C (�x:e) : [�; �

00

]

[ABS2]

A; S `

S

e : [�; �]

A; S `

S

e

0

: [�

0

; �

0

]

S

0

= S [

(

� � ([�

0

; �

0

]! [�

00

; �

00

]) [(� \ Bool)

(� \ Bool) 6= 0) � = tag

� 6= tag [notag

)

C : [� [(� \ Bool); �]; [�; notag] where � = [�

0

; �

0

]! [�

00

; �

00

]

A; S

0

`

S

(C e) e

0

: [�

00

; �

00

]

[APP2]

A; S `

S

e : [�; �]

A; S `

S

e

0

: [�

0

; �

0

]

A; S `

S

e

00

: [�

00

; �

00

]

S

0

= S [

(

� � Bool [(� \ (1! 1))

� \ (1! 1) 6= 0) � = tag

� 6= tag [notag

)

C : [Bool [(� \ (1! 1)); �]; [Bool; notag]

A;S

0

`

S

(if (C e) e

0

e

00

) : [�

0

[�

00

; �

0

[�

00

]

[COND2]

C : [Bool; notag]; [Bool; �]

A;S `

S

C true : [Bool; �]

[TRUE2]

C : [Bool; notag]; [Bool; �]

A; S `

S

C false : [Bool; �]

[FALSE2]

FUNC! : [� ! �

0

; notag]; [� ! �

0

; tag]

FUNC? : [(� ! �

0

) [Bool; tag]; [� ! �

0

; notag]

BOOL! : [Bool; notag]; [Bool; tag]

BOOL? : [Bool [(1! 1); tag]; [Bool; notag]

NOOP : � ; �

Figure 4: Type rules using set constraints.

NOOP : [Bool; notag]; [Bool; notag]

`

S

NOOP true : [Bool; notag]

BOOL! : [Bool; notag]; [Bool; tag]

x : [Bool; notag] `

S

BOOL! true : [Bool; tag]

FUNC! : [�; notag]; [�; tag]

where � = [Bool; notag]! [Bool; tag]

`

S

FUNC! (�x:BOOL! true) : [�; tag]

BOOL! : [Bool; notag]; [Bool; tag]

`

S

BOOL! false : [Bool; tag]

NOOP : [Bool; notag]; [Bool; notag]

`

S

if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false) : [� [Bool; tag]

FUNC? : [([Bool; notag]! [Bool; tag]) [Bool; tag]; [[Bool; notag]! [Bool; tag]; notag]

NOOP : [Bool; notag]; [Bool; notag]

`

S

NOOP false : [Bool; notag]

`

S

(if (NOOP(NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false)) (NOOP false) : [Bool; tag]

Figure 5: `

S

derivation of an example in Figure 1

6

�

00

= notag). In contrast to the situation with dynamic typ-

ing (see the beginning of the section), this is sound. Only

the [APP2] and [COND2] rules inspect tags and both rules

require the tag component to be exactly tag. Values of type

[�; tag [notag] can never satisfy the constraints. Thus, a

value of type [�; tag[notag] can be created, but never used.

A remaining detail is guaranteeing that the result of eval-

uation produces a value in which all components of the type

are tagged. Recall that the type of fully tagged values is

�. If the �nal type of a program is �, then adding the con-

straint � � � forces the result to be completely tagged. We

can now state that the system infers correct completions.

Lemma 3.2 Let ;; S `

S

e : � where the system of con-

straints S = S

0

[f� � �g is consistent. Let e

0

= erase(e).

Then e is a correct completion of e

0

.

Proof: [sketch] The previous discussion presents the proof

informally. The formal argument uses soundness (Lemma 3.1)

and the form of the constraints to show that the completion

has the same meaning as the canonical completion. 2

Figure 5 gives an example of a derivation in the set con-

straint system of a term from Figure 1. The constraints

are elided for readability. The most interesting step in the

derivation is at the function abstraction, which creates a

tagged function taking an untagged argument.

4 Comparison

This section presents our main result: every completion

derivable in the dynamic typing system is derivable in the

set constraint system. The converse does not hold (see Fig-

ure 1), although we show in Section 6 that the set constraint

system can be restricted to have exactly the same power as

dynamic typing.

Because the two systems use di�erent domains of types,

we require a translation function. The function T maps

types � to types �:

T (� ! �

0

) = [T (�)! T (�

0

); notag]

T (Bool) = [Bool; notag]

T (Dynamic) = �

T (�x�:�) = solution of � = T (�)

T (�) = �

We extend T to type environments in the obvious way:

T (A;x : �) = T (A);x : T (�)

T (;) = ;

Note that T preserves tags; that is, T maps tagged types

to tagged types and untagged types to untagged types.

Theorem 4.1 Let e be an expression of the dynamically

typed lambda calculus and let A be a type environment.

Then

A `

D

e : �) T (A); S `

S

e : �

for some � � T (�) and consistent system S of constraints.

Proof: The proof is by induction on the structure of the

derivation showing A `

D

e : � . We present this proof in

detail.

1. Assume A;x : � `

D

x : � . Using rule [ASSUME2], it

follows immediately that

T (A);x : T (�); S `

S

x : T (�)

By the de�nition of T , we have

T (A;x : �); S `

D

x : T (�)

for any consistent system S of constraints.

2. Assume A `

D

C (�x:e) : �

00

. Then A;x : � `

D

e : �

0

and C : (� ! �

0

) ; �

00

. By induction, we know

T (A;x : �); S `

S

e : � where � � T (�

0

), from which it

follows that

T (A);x : T (�); S `

S

e : �

To prove the result, we must show that

T (A); S `

S

C �x:e : [T (�)! �; �

00

]

for some choice of �

00

where the coercion C has an

appropriate type and [T (�) ! �; �

00

] � T (�

00

). There

are two subcases.

The �rst subcase is C = FUNC!, in which case � =

�

0

= �

00

= Dynamic. The tag �

00

in the [ABS2] infer-

ence rule is not constrained to be either tag or notag.

Therefore, letting �

00

= tag we have

FUNC! : [T (�)! �; notag]; [T (�)! �; tag]

Since all premises of the [ABS2] rule are satis�ed, we

conclude

T (A); S `

S

FUNC! �x:e : [T (�)! �; tag]

To complete this case, note that

[T (�)! �; tag]

� [T (�)! T (�

0

); tag] since � � T (�

0

)

= [�! �; tag] de�nition of T

� � de�nition of �

= T (Dynamic) de�nition of T

= T (�

00

)

The second subcase is C = NOOP, where �

00

= � !

�

0

. Letting �

00

= notag we have

NOOP : [T (�)! �; notag]; [T (�)! �; notag]

and, since the premises of [ABS2] are satis�ed,

T (A); S `

S

NOOP �x:e : [T (�)! �; notag]

To complete this subcase, note that

[T (�)! �; notag]

� [T (�)! T (�

0

); notag] since � � T (�

0

)

= T (� ! �

0

) de�nition of T

= T (�

00

)

3. Assume that A `

D

(C e) e

0

: �

00

. By the premises of

the [APP1] rule, we know

A `

D

e : �

A `

D

e

0

: �

0

C : � ; (�

0

! �

00

)

7

By induction, it follows that

T (A); S `

S

e : [�; �] where [�; �] � T (�)

T (A); S `

S

e

0

: [�

0

; �

0

] where [�

0

; �

0

] � T (�

0

)

To prove the theorem, we must show that

T (A); S

0

`

S

(C e) e

0

: [�

00

; �

00

]

where [�

00

; �

00

] � T (�

00

), the coercion C has an appro-

priate type, and

S

0

= S [

�

� � ([�

0

; �

0

]! [�

00

; �

00

]) [(� \ Bool)

(� \ Bool) 6= 0) � = tag

�

for some �

00

; �

00

; and � where the constraints are sat-

is�ed. As before, there are two subcases.

The �rst subcase is C = FUNC?. Therefore � = �

0

=

�

00

= Dynamic. Let [�

00

; �

00

] = T (�

00

) = � and let � =

Bool. Furthermore, � = tag since [�; �] � T (�) = �.

Since � \ Bool = Bool we have

FUNC? : [� [(� \ Bool); tag]; [�; notag]

where � = [�

0

; �

0

]! [�

00

; �

00

]

In addition, because � = tag the second constraint is

satis�ed. To �nish the subcase, we show that the �rst

constraint is satis�ed. The following argument uses

the fact that function types are anti-monotonic in the

argument position; that is, x � y implies y ! z �

x! z.

� � ([�

0

; �

0

]! [�

00

; �

00

]) [(� \ Bool)

, � � ([�

0

; �

0

]! �) [(Bool \ Bool) substitution

, � � ([�

0

; �

0

]! �) [Bool simpli�cation

((�! �) [Bool� ([�

0

; �

0

]! �)[Bool since [�; �] � �

((�! �) [Bool � (�! �) [Bool since [�

0

; �

0

] � �

It follows that A; S

0

`

S

(FUNC? e) e

0

: [�

00

; �

00

].

The second subcase is C = NOOP. Therefore � =

�

0

! �

00

. Let [�

00

; �

00

] = T (�

00

) and let � = 0. Since

[�; �] � T (�

0

! �

00

) it follows that � = notag. Because

� \ Bool = 0, we have

NOOP : [�; notag]; [�; notag]

where � = [�

0

; �

0

]! [�

00

; �

00

]

The second constraint is satis�ed, also because � \

Bool = 0. To see that the �rst constraint is satis�ed,

note that

� � ([�

0

; �

0

]! [�

00

; �

00

]) [(� \ Bool)

, � � ([�

0

; �

0

]! T (�

00

)) [(0 \ Bool) substitution

, � � [�

0

; �

0

]! T (�

00

) simpli�cation

(� � T (�

0

)! T (�

00

) [�

0

; �

0

] � T (�

0

)

, [�; �] � [T (�

0

)! T (�

00

); notag] � = notag

, [�; �] � T (�

0

! �

00

) de�nition of T

, [�; �] � T (�) assumption

, true by induction

It follows that A; S

0

`

S

(NOOP e) e

0

: [�

00

; �

00

].

4. Assume A `

D

(if (C e) e

0

e

00

) : �

0

. From the premises

of the [COND1] rule, we know

A `

D

e : �

A `

D

e

0

: �

0

A `

D

e

00

: �

0

C : � ; Bool

By induction, it follows that

T (A); S `

S

e : [�; �] � T (�)

T (A); S `

S

e

0

: [�

0

; �

0

] � T (�

0

)

T (A); S `

S

e

00

: [�

00

; �

00

] � T (�

0

)

Thus, to prove the result it su�ces to show that

T (A); S

0

`

S

if (C e) e

0

e

00

: [�

0

[�

00

; �

0

[�

00

]

where [�

0

[�

00

; �

0

[�

00

] � T (�

0

), the coercion C has an

appropriate type, and

S

0

= S [

�

� � Bool [(� \ 1! 1)

(� \ (1! 1)) 6= 0) � = tag

�

for some � that satis�es the constraints.

First note that �

0

= �

00

, because [�

0

; �

0

] � T (�

0

) and

[�

00

; �

00

] � T (�

0

) and T (�

0

) has the form [x; tag] or

[x; notag]. Therefore,

[�

0

[�

00

; �

0

[�

00

] = [�

0

; �

0

] [[�

00

; �

00

] � T (�

0

)

The rest of the argument breaks into the usual two

cases. Assume C = BOOL?. Then � = Dynamic. Let

� = 1 ! 1. Because [�; �] � T (�), it follows that

[�; �] � �, so � = tag. Since � \ (1! 1) = 1! 1, we

have

BOOL? : [Bool [(1! 1); tag]; [Bool; notag]

Showing the constraints are satis�ed is very similar to

the corresponding subcase for application.

Now assume C = NOOP. Then � = Bool. Let � = 0.

Because [�; �] � T (�), it follows that � � Bool and

� = notag. Since � \ (1! 1) = 0, we have

NOOP : [Bool; notag]; [Bool; notag]

Again, showing the constraints are satis�ed is very sim-

ilar to the corresponding subcase for application.

5. Assume A `

D

C true : � . If C = BOOL!, then

T (A); S `

S

true : [Bool; tag]

satis�es the theorem for any consistent system of con-

straints S. If C = NOOP, then

T (A); S `

S

true : [Bool; notag]

satis�es the theorem.

6. Assume A `

D

C false : � . This case is the same as

the case for true.

2

From the theorem, we immediately have the following

corollary.

Corollary 4.2 Let e be any closed term without coercions.

If e

0

is a completion of e derivable in `

D

, then e

0

is also

derivable in `

S

.

Proof: Follows from Theorem 4.1 and the fact that T

preserves tags. 2

8

S [f0 � �g) S (1)

S [f[�; �] � [�

0

; �

0

]g) S [f� � �

0

; � � �

0

g (2)

S [f�

1

! �

2

� �

0

1

! �

0

2

g) S[f�

0

1

� �

1

; �

2

� �

0

2

g (3)

S [f� [�

0

� �

00

g) S [f� � �

00

; �

0

� �

00

g (4)

S [f� � �

0

\ �

00

g) S [f� � �

0

; � � �

00

g (5)

S [f� ! �

0

� � [(� \ Bool)g) S [f� ! �

0

� �g (6)

S [fBool � � [(� \ 1! 1)g) S [fBool � �g (7)

S [f� � �g) S (8)

S [f� � ; � �

0

g) S [f� � ; � �

0

; � � �

0

g (9)

S [f� 6= 0) � � �

0

g and S) � 6= 0) S [f� � �

0

g (10)

S [f� 6= 0) � � �

0

g and S 6) � 6= 0) S (11)

S [f� 6= 0; � � tagg) S [ftag � �; � � tagg (12)

S [f� 6= tag [notag; tag � �g) S [ftag � �; � � tagg (13)

Figure 6: Rules for simplifying constraints.

5 Computing Minimal Completions

Type inference for the system in Figure 4 can be imple-

mented in time O(n

3

) in the size of the expression. The

bound is the worst case and, in fact, we expect the algo-

rithm performs signi�cantly better in practice, although it

cannot be as e�cient as the algorithms for dynamic typing.

The algorithm is divided into four phases:

1. Constraint generation.

2. Constraint resolution.

3. Tag variable instantiation.

4. Program completion.

The �rst phase is very straightforward. The proof system

in Figure 4 is run, but the coercions are left as unknowns.

For the result of each potential coercion, fresh variables (un-

knowns) are inserted. The constraints are generated using

fresh variables in every rule. The solutions of the resulting

system S of constraints for the entire expression character-

ize all possible completions. This phase is linear in the size

of the expression.

To discover which completions are possible, it is neces-

sary to solve the constraints. Figure 6 gives a set of rewrite

rules that, when applied until closure (until no new con-

straints can be generated), reduce a system of constraints

to solved form. These constraint resolution rules are essen-

tially those of [MR85, Hei92, AW93] specialized to our ap-

plication. The soundness of these rules can be proven using

standard techniques (e.g., see [AW92, AW93]). In Figure 6,

� stands for an arbitrary type expression and stands for

an arbitrary variable.

Rules 10 and 11 of Figure 6 appear non-constructive, but

are actually easy to implement. For Rule 10, in the process

of rewriting the constraint system it may be discovered that

� 6= 0|due to non-zero lower bounds on variables in �|

in which case the rule can be applied. Once no constraints

can be added, any remaining implication constraints can be

deleted using Rule 11. A detailed justi�cation is presented

in [Hei92].

Constraint resolution is the most expensive phase. The

rewrite rules work only with pairs of subexpressions of the

original constraint system. Thus, the rules can produce at

mostO(n

2

) constraints, where original system has sizeO(n).

Each rule requires constant time to apply, with the excep-

tion of Rule 9, which may require O(n) time to examine all

the upper and lower bounds of a variable. Thus, the entire

resolution process requires at most O(n

3

) time.

Constraint resolution does not necessarily yield a unique

completion, as some tag variables may be unconstrained.

However, all upper and lower bounds on variables in the

resolved system are explicit, so it is easy to discern the pos-

sible solutions by inspection of the constraints. Let S be the

system of resolved constraints. The third phase adds con-

straints to tag variables to produce a minimal completion

using the following rule:

� If � � tag is not in S, then add notag � � to S

This rule adds a lower-bound of notag to all tag variables

that are not constrained to be equal to tag. It is easy to see

that if notag � � in any completion permitted by the con-

straints, then notag � � according to this rule. This proves

the existence of minimal completions for the set constraint

system.

The tag instantiation phase requires inspection of the

upper bound of all tag variables, which takes time O(n).

6 Variations

Set constraints are a very expressive and exible framework

for specifying program analyses, making it quite easy to ex-

tend analyses in various ways. This section discusses a num-

ber of variations on the basic system we have presented. For

space reasons, each modi�cation is described only briey.

9

6.1 Dynamic Typing Revisited

As discussed in Section 4, the set constraint system is strictly

more powerful than dynamic typing. To achieve exactly

dynamic typing, we must guarantee that whenever a tagged

type arises, all components of the type are also tagged. This

condition is easy to express with additional constraints. For

each type [�; �] used in a derivation, add a constraint:

(� \ tag) 6= 0) [�; �] � �

When applied to the type in the conclusion of [COND2], this

constraint also guarantees that the branches of a conditional

are consistently tagged. We state without proof that under

these additional constraints, a completion is `

S

derivable if

and only if it is `

D

derivable.

While this observation gives an alternative characteri-

zation of dynamic typing, it appears no more e�cient to

implement than the more accurate version. Thus, while set

constraints are expressive enough to encode dynamic typing,

one apparently cannot derive the most e�cient algorithms

known for dynamic typing directly from this encoding.

6.2 Coercions at Arbitrary Points

So far we have considered only coercions at value creation

and use points. Allowing coercions at arbitrary program

points can sometimes result in better completions. To per-

mit coercions to appear anywhere, the inference systemmust

be altered to allow any of the four proper coercions to be

applied to any expression. That is, the possible completions

of each subexpression e are expressed by

C

FUNC!

(C

BOOL!

(C

FUNC?

(C

BOOL?

e)))

where C

x

is potentially either the coercion named x or NOOP.

Rewriting the inference rules in this way is straightforward.

The analysis of constraint resolution is una�ected by this

change, so this system also has minimal completions.

6.3 Polymorphism

The semantics of polymorphic types based on set constraints

has been developed in [AWL94]. A polymorphic type has

the form 8

1

; : : : ;

n

:(� where S). Intuitively, this type ex-

presses bounded quanti�cation, with the set of constraints S

acting as bounds on the quanti�ed variables. More formally,

the meaning is the intersection of all types s(�) where s is

a solution of the constraints S for some choice of

1

; : : : ;

n

.

Polymorphism in the style of [AWL94] can be added to

our system without modifying any other aspect. When tag

variables are quanti�ed, the meaning of coercions is parame-

terized in the type. In other words, types with quanti�ed tag

variables denote functions polymorphic in their coercions.

6.4 A More Powerful System

The simple idea of modelling a type as a pair consisting of a

value part and a tag part leads to a system where tag infer-

ence is largely orthogonal to the inference of the structural

part of the type. Thus, the same technique should integrate

easily into other systems for analyzing dynamically typed

programs. The system in [AWL94] is probably the most

expressive and accurate such inference system known. We

can report that it is in fact straightforward to adapt the

techniques reported in this paper to the system of [AWL94],

although we must unfortunately omit all details for lack of

space. In this case, however, the system no longer has mini-

mal completions and constraint resolution requires exponen-

tial time in the worst case.

7 Conclusions and Related Work

This work is part of a longer-term e�ort to investigate the

principles underlying constraint-based program analyses. We

believe that set constraints are a particularly useful formal-

ism for expressing program analyses, but our interest was

�rst aroused because it appeared that dynamic typing could

not be expressed using set constraints or any other subtyp-

ing discipline.

We have shown, however, that set constraints can encode

dynamic typing, and in fact a substantial generalization of

dynamic typing is naturally expressed using set constraints.

Our system also has an e�cient inference procedure. The

exibility and generality of set constraints allows our system

to be extended in a variety of ways outlined in Section 6.

Based on our previous experience with constraint-based

program analysis, we believe the algorithm we have pre-

sented could serve as the core of a practical analysis system

for dynamically typed programs. However, the prime candi-

dates for this kind of analysis are programs written in Lisp

and Scheme. Analyzing such programs requires proper han-

dling of side e�ects, an issue we have not yet considered.

Besides previous work on program analysis using set con-

straints, Henglein's work on dynamic typing is the most

closely related to our own. Henglein's work is based, in turn,

on earlier works of Thatte and Gomard [Gom90] . Thatte

originally worked with a system called partial types [Tha88],

in which types could be coerced to a universal type, but not

vice versa|a pure subtyping system. Coercions from type

Dynamic were introduced in a subsequent paper [Tha90]; as

discussed in Section 3, this is not subtyping.

A large number of analysis algorithms for dynamically

typed languages have been proposed in recent years [Gom90,

AM91, CF91, Hen92b, WH92, WC94]. With the exception

of the works of Henglein, Thatte, and Gomard, it is fair

to characterize all of these systems as based on subtyping;

none treat tag inference. In this paper, we have shown how

to combine expressive subtyping with the ability to infer

minimal completions of tagging and untagging operations.

References

[Aik94] A. Aiken. Set constraints: Results, applications,

and future directions. In Second Workshop on the

Principles and Practice of Constraint Program-

ming, pages 171{179, Orcas Island, Washingtion,

May 1994. Springer-Verlag LNCS no. 874.

[AM91] A. Aiken and B. Murphy. Static type inference in

a dynamically typed language. In Eighteenth An-

nual ACM Symposium on Principles of Program-

ming Languages, pages 279{290, January 1991.

[AW92] A. Aiken and E. Wimmers. Solving systems of set

constraints. In Symposium on Logic in Computer

Science, pages 329{340, June 1992.

[AW93] A. Aiken and E. Wimmers. Type inclusion con-

straints and type inference. In Proceedings of

the 1993 Conference on Functional Programming

10

Languages and Computer Architecture, pages 31{

41, Copenhagen, Denmark, June 1993.

[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft

typing with conditional types. In Twenty-First

Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 163{173, Portland,

Oregon, January 1994.

[CF91] R. Cartwright and M. Fagan. Soft typing. In Pro-

ceedings of the ACM SIGPLAN '91 Conference on

Programming Language Design and Implementa-

tion, pages 278{292, June 1991.

[Gom90] C. Gomard. Partial type inference for untyped

functional programs (extended abstract). In Pro-

ceedings of the 1990 ACM Conference on Lisp and

Functional Programming, pages 282{287, 1990.

[Hei92] N. Heintze. Set Based Program Analysis. PhD

thesis, Carnegie Mellon University, 1992.

[Hen92a] F. Henglein. Dynamic typing. In Proceedings of

the Eurpean Symposium on Programming, Febru-

ary 1992.

[Hen92b] F. Henglein. Global tagging optimization by

type inference. In Proceedings of the 1992 ACM

Conference on Lisp and Functional Programming,

pages 205{215, July 1992.

[HJ90] N. Heintze and J. Ja�ar. A decision procedure for

a class of Herbrand set constraints. In Symposium

on Logic in Computer Science, pages 42{51, June

1990.

[MPS84] D. MacQueen, G. Plotkin, and R. Sethi. An

ideal model for recursive polymophic types. In

Eleventh Annual ACM Symposium on Principles

of Programming Languages, pages 165{174, Jan-

uary 1984.

[MR85] P. Mishra and U. Reddy. Declaration-free type

checking. In Proceedings of the Twelfth Annual

ACM Symposium on the Principles of Program-

ming Languages, pages 7{21, 1985.

[Tha88] S. Thatte. Type inference with partial types. In

Automata, Languages and Programming: 15th In-

ternational Colloquium, pages 615{629. Springer-

Verlag Lecture Notes in Computer Science, vol.

317, July 1988.

[Tha90] S. Thatte. Quasi-static typing. In Seventeenth An-

nual ACM Symposium on Principles of Program-

ming Languages, pages 367{381, January 1990.

[WC94] A. Wright and R. Cartwright. A practical soft

typing system for scheme. In Proceedings of the

1994 ACM Conference on Lisp and Functional

Programming, June 1994. To appear.

[WH92] E. Wang and P. N. Hil�nger. Analysis of recur-

sive types in Lisp-like languages. In Proceedings of

the 1992 ACM Conference on Lisp and Functional

Programming, pages 216{225, June 1992.

11

