
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-059 October 22, 2007

Report on the Probabilistic Language Scheme
Alexey Radul



Report on the Probabilistic Language Scheme

Alexey Radul
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambrdige, MA 02139

axch@mit.edu

Abstract
Reasoning with probabilistic models is a widespread and
successful technique in areas ranging from computer vi-
sion, to natural language processing, to bioinformatics.
Currently, these reasoning systems are either coded from
scratch in general-purpose languages or use formalisms such
as Bayesian networks that have limited expressive power.
In both cases, the resulting systems are difficult to mod-
ify, maintain, compose, and interoperate with. This work
presents Probabilistic Scheme, an embedding of probabilis-
tic computation into Scheme. This gives programmers an
expressive language for implementing modular probabilistic
models that integrate naturally with the rest of Scheme.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Algorithms, Design, Languages

Keywords Scheme, embedding, probability

1. Introduction
Some of the most challenging tasks faced by computers
today involve drawing conclusions from noisy or ambiguous
data. These tasks range from deciding whether an email
message is spam based on the words it contains [11], to
predicting whether a piece of ground is safe to drive on
based on camera and laser range-finder readings [15], to
discovering patterns of gene expression based on microarray
data [12]. Probabilistic modeling has become the technique
of choice for tackling many of these tasks (as illustrated by
the papers just cited). Probability theory provides a well-
understood mathematical framework for combining multiple
sources of evidence, but the computational tools available to
programmers wishing to avail themselves of it are limited.
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Probabilistic Scheme is a library for implementing prob-
ability models in Scheme. Probabilistic Scheme deals with
models of phenomena in arbitrarily structured but discrete
and countable possibility spaces. The main contributions of
Probabilistic Scheme are that it is an embedding of prob-
abilistic computation into a general-purpose programming
language; that it offers anytime approximation with prov-
able upper and lower bounds via restartable partial search;
and that it can be implemented with continuations, without
using a meta-circular evaluator, so that it can interoperate
seamlessly with much of the rest of the language.

The central concept in Probabilistic Scheme is that of a
probability distribution. A probability distribution, in this
context, is a belief about the value that an expression could
have when evaluated in some environment. Suppose, for ex-
ample, that I were about to roll a mathematically perfect six-
sided die. Then you should believe that each of the six faces
is equally likely to come up as the final result, and no other
results are possible. This belief is a probability distribution,
which assigns probability one-sixth to each of the faces of
the die. Suppose, then, that you asked me the parity of the
result and I informed you that the number rolled on the die
were odd. Then, assuming you had no doubts about my per-
ceptiveness or veracity, your belief about the result of the
roll would change to one that assigned probability one-third
to each of the faces with odd numbers, and zero to the others.

Probabilistic Scheme permits one to represent such be-
liefs, from the simple to the complex; to compute their trans-
formations; and to extract definite, quantitative information
from them. As a preview, the beliefs in the preceding para-
graph can be represented as follows

(define die-roll-distribution

(make-discrete-distribution

’(1 1/6) ’(2 1/6) ’(3 1/6)

’(4 1/6) ’(5 1/6) ’(6 1/6)))

(define odd-die-roll-distribution

(conditional-distribution

die-roll-distribution odd?))

(distribution/determine!



odd-die-roll-distribution)

(distribution/datum-probability

odd-die-roll-distribution 1)

;Value: 1/3

Conceptually, distributions in Probabilistic Scheme are
lists of the possibilities, and the probabilities assigned to
them. If some object does not appear in the list, its probabil-
ity is zero. To permit large (or infinite) distributions which
are not needed in their entirety at any one time, this is actu-
ally a stream1 of possibilities. The representation of proba-
bility distributions will be further detailed in Section 5 and
Section 6.

Probabilistic Scheme offers two “languages” for creat-
ing and transforming distributions. There is a language for
constructing probability distributions by writing nondeter-
ministic Scheme programs, described in Section 3. There
is also a language for explicitly creating and manipulating
objects that represent probability distributions, described in
Section 4. The explicit language is easier to think about, be-
cause there are no weird control structures or strange non-
deterministic programs, but the nondeterministic language
is better suited to defining complex distributions, because it
makes the structure of the distribution much clearer and its
expression much more natural.

Probabilistic Scheme also offers a language for querying
distributions to extract definite information from them. This
turns out to be somewhat nontrivial, and is discussed in Sec-
tion 5. We discuss our implementation of these languages in
Section 6, with a detailed walkthrough in Section 6.3, ex-
emplify some unusual distributions definable in Probabilis-
tic Scheme in Section 7, and summarize in Section 8. First,
though, some background, in Section 2.

2. Background
Bayesian networks have been a mainstay of probabilistic
modeling since the late 1980s, e.g. [10]. They are a won-
derful basic tool, and well implemented by off-the-shelf in-
ference packages such as BUGS [13], but they are not very
good at capturing the structure present in a domain. Recent
work has moved in the direction of increased structure, for
instance capturing relational structure as in [5] and [3], or
first-order logical structure as in [7].

Probabilistic Scheme goes beyond this work, in the sense
that programs in a general-purpose programming language
are as structured as it is possible to be. The modeler is
not constrained to expressing the model as a finite list of
individual variables, as in a standard Bayes net; nor as a fixed
object graph with known interobject links, as in standard
relational models; nor as a fixed set of formulas that are
only first order. Any construct expressible in Scheme, be it

1 A stream is a (possibly infinite) list whose actual construction has been
delayed so that it is only ever computed as far as any client requests [1].

objects, functions, recursion, higher-order routines, etc can
be subject to uncertainty and reasoned about.

The closest modern relative to Probabilistic Scheme is a
stochastic programming language based on OCaml, called
IBAL [8]. Probabilistic Scheme differs from IBAL in being
an embedding of inference into an existing programming
language, rather than a new programming language in its
own right, permitting Probabilistic Scheme to benefit from
all of the extant Scheme constructs. Another piece of related
work is by Ramsey and Pfeffer [9], who explore denotational
semantics for a form of stochastic lambda calculus similar
to the stochastic sublanguage of Probabilistic Scheme. We
take a more operational approach to semantics in the present
work. The stochastic sublanguage of Probabilistic Scheme
owes a great intellectual debt to McCarthy’s amb operator
(see, e.g. [6], [1]).

3. Stochastic Language
Probabilistic Scheme embeds probabilistic computation by
allowing Scheme expressions to have uncertain values, and
maintaining an implicit probability distribution over what
those values might be. The primitives for handling implicit
distributions are

• discrete-select introduces uncertainty
• observe! constrains the implicit distribution
• stochastic-thunk->distribution encloses a non-

deterministic computation and returns the implicit distri-
bution explicitly.

We now discuss each of these primitives in detail.

(discrete-select possibility ...)

Takes any number of literal two-element lists represent-
ing object-probability pairs. Returns one of the objects,
implicitly distributed according to the distribution spec-
ified by the probabilities, which are expected to sum
to 1. The evaluation of each object is deferred until it
needs to be returned.

As expressions combine, their implicit distributions trans-
form according to the rules of probability theory. For exam-
ple, we can

(define (roll-die)

(discrete-select (1 1/6) (2 1/6) (3 1/6)

(4 1/6) (5 1/6) (6 1/6)))

Then every call to the (roll-die) function will indepen-
dently return one of the numbers from 1 through 6, implic-
itly uniformly distributed. In that case, the expression (cons
(roll-die) (roll-die)) returns one of the 36 cons cells
that have one of those numbers in the car slot and one in the
cdr slot, also implicitly uniformly distributed. The expres-
sion (+ (roll-die) (roll-die)) will return one of the
numbers from 2 through 12, implictly distributed according
to the probability of getting that sum when rolling two fair



six sided dice. These rules of combination allow one to de-
fine arbitrarily complex distributions over arbitrarily struc-
tured objects.

(observe! boolean)

Modifies the current implicit distribution by condition-
ing it on the argument being true. Returns an unspeci-
fied value.

Consider, for example, the expression

(let ((face (roll-die))) ;; Line 1

(observe! (> face 2)) ;; Line 2

face) ;; Line 3

In line 1, the expression (roll-die) returns one of the
numbers from 1 through 6, implicitly unformly distributed.
Let then binds it to the name face, whose value is then
implicitly uniformly distributed over 1 through 6. The ex-
pression (> face 2) on line 2 has one of the values #t,
#f, implicitly distributed as 2/3 for #t and 1/3 for #f.
Observe! modifies this implicit distribution to require #t.
This modifies the implicit distribution for face to be con-
sistent with (> face 2) returning #t, that is it conditions
p(face) on (> face 2). The distribution of return values
from this whole let form is then p(face|(> face 2)), in
other words uniform over the numbers from 3 through 6.

(stochastic-thunk->distribution thunk)

Returns, as an explicit probability distribution, the im-
plicit distribution over the possible return values of the
given thunk (nullary procedure).

For example, (stochastic-thunk->distribution

roll-die) would return an explicit distribution object that
represented the distribution that assigns equal mass to the
numbers 1, 2, . . . , 6. Stochastic-thunk->distribution
captures and contains the nondeterminism occurring inside
its argument thunk and perfectly deterministically returns an
object representing a probability distribution.2

One way to think of the semantics of the stochastic lan-
guage is to imagine a possible implementation by rejection
sampling. One could implement rejection sampling for this
stochastic language by having discrete-select just use
a random number generator, having observe! raise a dis-

2 Nondeterministic computations can be nested:

(stochastic-thunk->distribution

(lambda ()

(discrete-select

((stochastic-thunk->distribution

(lambda ()

(discrete-select (’heads 1/2)

(’tails 1/2)))) 1/5)

((stochastic-thunk->distribution

(lambda ()

(discrete-select

(1 1/3) (2 1/3) (3 1/3)))) 4/5))))

will return an explicit probability distribution weighted 1/5 to 4/5, whose
two data are two different explicit probability distributions.

tinguished exception if its argument is false, and having
stochastic-thunk->distribution run its thunk many
times, recording every successful return as a sample, and
throwing away runs that raised the exception. In the limit
of running the thunk an infinite number of times, the sam-
ples thus produced would constitute the distribution defined
by such a program.

The actual implementation systematically searches the
space of possibilities instead. The choice points introduced
by discrete-select define a tree of possible computa-
tions. Computations that successfully return from the thunk
given to stochastic-thunk->distribution result in ac-
ceptable possibilities, whereas computations that lead to
(observe! #f) result in impossibilities. The details of the
implementation are discussed in Section 6, but they have one
important effect on the specification: Since searching the
space of possibilities may entail calls to discrete-select

returning fewer or more times than once, the results of inter-
mixing discrete-select with side effects are unspecified.

4. Explicit Distribution Language
As well as specifying distributions with nondeterministic
thunks given to stochastic-thunk->distribution, one
can create and operate on explicit probability distributions
directly. The primitives3 for handling explicit distributions
are

• make-discrete-distribution creates an explicit prob-
ability distribution from a list of possibilities

• dependent-product combines two distributions
• conditional-distribution transforms a distribution

by conditioning it on a predicate
• distribution-select makes an explicit distribution

implicit

(make-discrete-distribution possibility ...)

Interprets each possibility argument as a two-element
list of an object and its probability. Returns the prob-
ability distribution that assigns those probabilities to
those objects, and zero to all others. Expects the set of
possibilities to be normalized, i.e. for the given proba-
bilities to sum to 1.

(dependent-product

distribution function combiner)

A distribution p(y|X) that depends on the value of
some variable X can be represented as a function of
X that, when given any particular value x, returns
the distribution p(y|X = x). Given a distribution

3 Actually, distribution-select is enough for everything, because
these operations are readily implementable by falling through to the
stochastic language. This list is primitive in the sense that these operations
are a sufficient base even without reference to the stochastic language.



p(x) and such a function (lambda (x) p(y|X=x)),
dependent-product returns the distribution p(x, y) =
p(x)p(y|X = x). Instead of trying to represent a dis-
tribution over multiple values, dependent-product
takes a combiner to apply to the values x and y, to re-
turn p((combiner x y)). An oft-useful combiner is
cons, though the right summation will happen if the
combiner maps multiple pairs to the same combined
value.

(conditional-distribution

distribution predicate)

Given a distribution p(x) and a predicate A(x), re-
turns the distribution over x’es that satisfy the predi-
cate, which is given by

p(x|A(x)) =

{

p(x)/p(A) if A(x) is true
0 if A(x) is false

where p(A) is the probability that A is true. Since the
x’es are mutually exclusive and exhaustive, we know
that

p(A) =
∑

x:A(x)

p(x).

The behavior of the system is unspecified if the predicate
A(x) is impossible to satisfy. The present implementation
will either enter an infinite loop if the underlying stream is
infinite, or fail with an error if it is finite.

(distribution-select distribution)

Returns one of the possible values from the given
explicit distribution, implicitly distributed according
thereto.

For example, roll-die, above, could have been defined
as

(define (roll-die)

(distribution-select

(make-discrete-distribution

’(1 1/6) ’(2 1/6) ’(3 1/6)

’(4 1/6) ’(5 1/6) ’(6 1/6))))

5. Querying Distributions
Probability distributions are occasionally infinite, as for in-
stance a Poisson distribution over the integers, and often
technically finite but large enough that we do not wish to
compute them fully, as for instance a distribution over the
possible parses of some sentence. Exact answers to questions
about the probabilities of things in such distributions are
therefore unobtainable in general, and we must turn to ap-
proximations. Probabilistic Scheme offers an API that leads
to an anytime approximation4 strategy, and has the advan-

4 Anytime approximation is a buzzword meaning that the client can choose
how much time to invest in a computation and receive the best answer the
system can give in the allotted time.

tage of giving exact upper and lower bounds on its approxi-
mate answers.

Probabilistic Scheme achieves anytime approximation
with a lazy representation of distributions. On initial cre-
ation, a distribution is a completely unforced stream of pos-
sibilities, each of which names a value and some amount of
probability that the distribution assigns to it. On user request,
this internal stream can be (partially) forced, whereupon the
distribution object caches the assignments that came out of
it. Therefore, at any one time, a distribution will have some
cache of the possibilities that came out of the stream so far,
which it can use to answer questions, and an upper bound on
the amount of probability remaining in the rest of the stream.

It is convenient to permit the internal stream of a distri-
bution to emit impossibilities as well as possibilities. An im-
possibility has the meaning that some amount of probability
“vanishes,” in which case the distribution object implicitly
renormalizes. This happens, for instance, if some observe!
statement forces some condition that otherwise had some
probability of being false. In the sequel, we use the word
’density’ to refer to the actual numbers in the possibilities
and impossibilities, and the word ’mass’ to refer to probabil-
ities derived from them by normalization. It is an invariant of
Probabilistic Scheme that the total density in the possibilities
and impossibilities in any stream from which a distribution
is made is 1.

5.1 Questions
The following queries can be applied to explicit probability
distributions without further forcing:

(distribution? thing)

Returns #t if the given thing is an object explicitly rep-
resenting a probability distribution, and #f otherwise.

(distribution/determined? distribution)

Returns whether the given distribution object has al-
ready been fully determined, as opposed to having more
computation it could do to further refine its internal rep-
resentation of the distribution it represents.

(distribution/undetermined-mass distribution)

Returns the amount of probability mass that remains in
the unforced segment of the internal possibility stream
in this distribution.

(distribution/datum-min-probability

distribution datum)

(distribution/datum-max-probability

distribution datum)

(distribution/datum-probability

distribution datum)

Return bounds on the probability that the given datum
could have in this distribution. The minimum value



will be realized if all the remaining undetermined mass
goes to other data. The maximum value will be realized
if all the remaining undetermined mass goes to this
datum. The unqualified function will signal an error
if any undetermined mass remains, because then the
probability of the datum is as yet unknown.

5.2 Forcing
The following functions cause explicit probability distribu-
tion objects to perform more of their computations:

(distribution/refine! distribution)

Runs the computation in the given distribution for
the smallest detectable increment, which is either un-
til a possibility is discovered or until some undeter-
mined mass is lost to an impossibility. If the for-
mer comes to pass, the min-probability of the da-
tum of the discovered possibility increases, and the
max-probability of every other datum decreases. In
the latter case, the min-probability of every thus far
discovered datum increases and the max-probability
of every datum decreases, unless there could be only
one datum. The undetermined-mass decreases unless
no data have yet been found, in which case it remains
1.
If the computation has been finished, i.e. no undeter-
mined mass remains, distribution/refine! does
nothing and returns #f. If distribution/refine!

did anything, it returns #t. Higher-level forcing func-
tions can be built by iterating distribution/refine!
for some desired amount of time or until some desired
condition has been met.

(distribution/determine! distribution)

Runs the computation in the given distribution all the
way to the end. This is useful primarily for testing.

(distribution->density-stream distribution)

Returns a stream of the possibilities in the given distri-
bution. The stream is permitted to contain impossibili-
ties and repeated data at the discretion of the underlying
implementation. This is an effective way to iterate over
all the possibilities of a distribution, without requiring
it to compute any beyond those that the client deems
interesting. The returned stream starts with values from
the distribution’s cache, but will begin to force the dis-
tribution’s internal stream when necessary (which forc-
ing will be correctly cached for future access).

6. Implementation
We first discuss our implementation of the explicit probabil-
ity distribution objects, and then proceed to the implemen-
tation of the stochastic language. We present a detailed ex-

ample of the workings of the present implementation Proba-
bilistic Scheme in Section 6.3.

6.1 Distributions
As mentioned in Section 5, a probability distribution is fun-
damentally a stream of possibilities and impossibilities. A
possibility assigns some density to some particular datum,
and an impossibility asserts that some density “disappears”,
and the rest should be renormalized to account for that.5 Our
distribution objects do not perform the renormalization ea-
gerly, but instead track the total density of the impossibil-
ities, and perform the renormalization on the fly as clients
ask for the probabilities of various data.

A distribution is then a record containing four compo-
nents:

• a lazy stream of the possibilities and impossibilities that
form the distribution;

• a hash table mapping the data that we have encountered
so far to their respective densities;

• a measure of how much density remains in the stream,
the undetermined density; and

• the total density of the impossibilities we have encoun-
tered, the discarded density.

The probability of some datum in a given distribution is
its normalized density — density divided by the distribu-
tion’s normalization constant, which is one minus the den-
sity that has been discarded due to impossibilities. If a dis-
tribution has not been completely determined, i.e. the possi-
bility stream has not been exhausted, the probability of any
datum is not completely certain. It can, however, be bounded
from above by assuming that all the undetermined density
will go to this datum, and from below by assuming it will
all go to other data. Consequently, a distribution object can
compute the bounds on the probability of a given datum in
constant time.

The lazy stream allows us to incrementally refine the dis-
tribution. As the stream is forced, the elements are recorded
in the distribution; possibilities are stored in the hash table,
summing the densities of multiple occurrences of the same
datum as needed, and densities of impossibilities are added
to the discarded density field.

The distribution object described above is effective for
answering questions about distributions. To implement dis-
tribution transformations, such as dependent-product and
conditional-distribution, we only need the raw rep-
resentation as streams of possibilities and impossibilities.
Conditional-distribution is particularly simple, as all
it needs to do is check each datum against the predicate, and
replace it with an impossibility of the same density if the
predicate rejects it.

5 We use the word density here instead of probability to emphasize the need
for normalization.



6.2 Stochastic Language
A program written with discrete-select defines a search
tree of possible values that calls to discrete-select could
return. Probabilistic Scheme systematically searches this
tree to produce a stream of possible result values and their
probabilities.

This search is actually implemented by discrete-select
capturing its return continuation using one invocation of
call-with-current-continuation6 and saving it in a
schedule of unexplored branch points. Discrete-select
likewise saves the possible options and their given probabil-
ities in this schedule. Exploring an edge in the search tree
consists of asking the schedule to pick a saved branch point
and option, and escape into that continuation with that value.
The computation then proceeds normally until it reaches an-
other discrete-select or until it returns a value to the
enclosing stochastic-thunk->distribution. Said en-
closing stochastic-thunk->distribution can then re-
turn that value to the client, and suspend the search until
another value is requested.

During the progress of the search, Probabilistic Scheme
maintains the density (since observations in other branches
do not eagerly renormalize it) of reaching the current point
in the program. Discrete-select saves this density along
with its continuation, and when returning an option, updates
it to be the density for getting to that choice point times the
probability of choosing that option once there. This is the
bookkeeping necessary to allow the search to yield possibil-
ities and impossibilities with associated densities.

Calls to observe! either do nothing if the observed con-
dition happens to be true in the current branch, or abort
consideration of the current branch if the observed condi-
tion proves false, supplying an impossibility to the enclosing
stochastic-thunk->distribution.

Stochastic-thunk->distribution sets up the back-
ground state necessary to execute a search through such a
tree (such as the escape continuation for detecting an impos-
sibility) and lazily launches the search, returning a stream of
the possibilities and impossibilities the search will discover.

Distribution-select is just like discrete-select,
except that it derives its list of options from the given distri-
bution instead of from an explicit list in its arguments.

6.3 Detailed Example
Suppose one were playing some strange game of chance, and
interested in the distribution of possible total outcomes of
two (mathematically ideal) dice, given that the total exceeds
nine. One might implement this in Probabilistic Scheme with
the code in Figure 1. Let us trace through what the current
implementation of Probabilistic Scheme will do with this
definition.

6 This is a wonderful but mindbending Scheme control construct, which this
footnote lacks the space to explain. It is defined, for instance, in the Scheme
Report [4], and explanations and tutorials abound on the Web.

(define (roll-die)

(discrete-select (1 1/6) (2 1/6) (3 1/6)

(4 1/6) (5 1/6) (6 1/6)))

(define distribution-of-interest

(stohastic-thunk->distribution

(lambda ()

(let ((num (+ (roll-die) ; A

(roll-die)))) ; B

(observe! (> num 9)) ; C

num))))

Figure 1. A distribution defined by a stochastic program

When the code in Figure 1 is evaluated, the thunk is not
run at all at first, and stochastic-thunk->distribution
immediately returns a distribution object with a completely
unforced stream of possibilities. As far as the object knows,
the min-probability of any datum in the distribution is 0,
and the max-probability of any datum is 1.

Refining the distribution in Figure 1 causes Probabilis-
tic Scheme to carry out a search through the tree in Fig-
ure 2. When the (roll-die) marked A is first encoun-
tered,7 it will save its continuation and remaining options
on a search schedule, set the current density to 1/6 and re-
turn 1. When the (roll-die) marked B is subsequently en-
countered, it will save its continuation, current density, and
remaining options on the schedule, set the current density
to 1/6 ∗ 1/6 = 1/36, and return 1. From there, the evalua-
tion will proceed according to the standard rules of Scheme:
+ will compute (+ 1 1), let will bind num to 2, and the
observe! marked C will be evaluated. Since 2 is not greater
than 9, (> num 9) will return false, and observe! will
abort this branch of the computation.

A failed observation translates into an impossibility in the
distribution’s stream. Since the density at the point of entry
into observe! was 1/36, the stream emits an impossibility
that says that 1/36 of the density is gone. The cache records
this, and if one were to stop refining now, one would have a
probability distribution object that had a min-probability
of 0 for every datum, a max-probability of 1 for every
datum, and a discarded density of 1/36.

If one refined the distribution further, the search would
resume at the last saved point. This means that the scheduler
would remove 2 from the list of options available at B, set
the current density to 1/6 ∗ 1/6 = 1/36, and escape into
the continuation captured at B. In effect, the (roll-die)

marked B would now return 2. Then the computation would
proceed as normal: + would compute (+ 1 2), num would
get bound to 3, (> 3 9) would return #f, and observe!

7 Actually, which (roll-die) is encountered first depends on the order
in which one’s Scheme implementation evaluates function arguments. For
the sake of the exposition, I assume that function arguments are evaluated
left-to-right.
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Figure 2. The search tree for the program in Figure 1, with the corresponding possibility and impossibility stream, and contents
of cache at selected points

would fail again. This would cause the stream to emit an-
other impossibility, again for density 1/36, which would get
cached, and would leave one with a probability distribution
object that had a min-probability of 0 for every datum,
a max-probability of 1 for every datum, and a discarded
density of 2/36.

With further refinement, this would continue to happen
until B ran out of saved options. If refined beyond that point,
Probabilistic Scheme will backtrack to A. The scheduler will
remove B from the schedule, remove 2 from the list of op-
tions remaining at A, set the current density to 1∗1/6 = 1/6
(1 for the density of reaching A and 1/6 for the density
of 2 given A), and escape into the continuation associated
with A. In other words, the (roll-die) marked A will re-
turn 2. Then execution proceeds normally, so we invoke the
(roll-die) marked B again. It will save its continuation,
place its options on the schedule, set the current density to
1/6 ∗ 1/6 = 1/36, and return 1. + will compute (+ 2 1),
the > at C will decide that 3 is still not more than 9, and the
observe! at C will fail again. This will cause the stream
to emit another impossibility of density 1/36, and leave the
distribution with a discarded density of 7/36.

With yet further refinement, Probabilistic Scheme will
search through all six return values of B for A having re-
turned 2, will backtrack to A and have A return 3, and
look through all six of B’s options again. The first inter-
esting event will occur when A returns 4 and B returns
6. Since 4 plus 6 is 10, (> 10 9) will return #t, and
the observe! will let the computation proceed. There
isn’t much computation left, so the thunk will return, and
stochastic-thunk->distribution will record a poss-
bility whose value is 10 and whose density is 1/36. At
this point, a total of 24/36 of the density is accounted

for, leaving 12/36 unexplored. If all 12/36 of that density
went to data other than 10, then the distribution would
have 13/36 density in all, 1/36 of it allocated to 10, so the
min-probability of 10 is at this point (1/36)/(13/36) =
1/13. The min-probability of all other data is still 0, as
we have not encountered them, and the max-probability

of 10 is 1, whereas the max-probability of data besides
10 is 12/13.

If we refine the distribution again, it will backtrack to
A since B is done, A will return 5, B will return 1, and
C will fail. The stream will emit another impossibility.
The undiscovered density will decrease to 11/36, so the
min-probability of 10 will rise to (1/36)/(12/36) =
1/12, and the max-probability of data other than 10
will drop to 11/12. If we keep refining until B returns
5, then C will pass again, and the thunk will return 10
again. The distribution will record the total density of 10
as 1/18. Since at that point 7/36 of the density is still
not accounted for, the min-probability of 10 is now
2/36/(2/36+7/36) = 2/9, whereas its max-probability
is still 1. The min-probability of other data is still 0, but
their max-probability now decreases to 7/9.

If we refine the distribution again, B will next return 6,
let will bing num to 11, and the observe! at C will pass
again, allowing the stream to emit a possibility signalling
density 1/36 for the datum 11. The min-probability of
10 remains 2/9, the min-probability of 11 becomes 1/9,
but the max-probability of 10 is now less than 1, because
the distribution knows that some density went to 11. Specifi-
cally, if all 6/36 of the remaining density went to 10, its den-
sity would be 8/36 out of 9/36, so the max-probability of
10 is now 8/9 (whereas the max-probability of 11 is 7/9,
and the max-probability of other data is 6/9).



If we refine the distribution again, Probabilistic Scheme
will backtrack to A again, A will now return 6, B will return
1, C will note that 7 is less than 9, and the stream will
emit another impossibility of density 1/36. Less density now
remains unaccounted for, so the min-probability of each
of 10 and 11 rise (to 2/8 and 1/8, respectively) and their
max-probability fall (to 7/8 and 6/8, respectively). The
max-probability of unseen data falls to 5/8.

Further refining will yield two more impossibilities, and
then three possibilities, for 10, 11, and 12. The answer, in the
end, is that the probability of 10 is (3/36)/(6/36) = 1/2,
of 11 is 1/3, of 12 is 1/6, and of all other data is 0. If we
try to refine the distribution beyond that, the scheduler will
try to backtrack past A and note that nothing remains on the
schedule. The stream will therefore emit the empty stream,
and nothing will change.

7. Examples
For our second example, consider the definitions in Figure 3.
The geometric-select function will return some integer
greater than or equal to start, implicitly distributed accord-
ing to a geometrically receding distribution parametrized by
alpha. Limitations of time and computer memory aside, this
distribution is infinite, but the lazy nature of the implemen-
tation permits stochastic-thunk->distribution to re-
turn a perfectly good distribution object. One could then
call distribution/refine! on it until satisfaction, and
distribution/min-probability would tell one that 0
has probability at least 1/4 in this distribution. The upper
bound, returned by distribution/max-probability,
would decrease as one refined the distribution further and
further, tending to 1/4 in the limit.

(define (geometric-select alpha start)

(discrete-select

(start alpha)

((geometric-select alpha (+ start 1))

(- 1 alpha))))

(define receding-distribution

(stochastic-thunk->distribution

(lambda () (geometric-select 1/4 0))))

Figure 3. A recursive definition of an infinite distribution

The infinite nature of the distribution does no harm to
compositional operations either. For instance, one could re-
quire that the integers be odd either explicitly with

(conditional-distribution

receding-distribution odd?)

or implicitly with

(let ((number (geometric-select 1/4 0)))

(observe! (odd? number))

...)

In this situation, the min-probability of 0 would remain
0 forever, because it is ruled out by the predicate odd?, and
both the min and max probabilities of 1 would tend, as they
should, to 7/16, from below and above, respectively, as one
refined the resulting distribution further.

The fun doesn’t end there! Figures 4, 5 and 6 exemplify
definitions of distributions over arbitrary, structured objects.

(stochastic-thunk->distribution

(lambda ()

(make-list (geometric-select 1/4 0) ’a)))

Figure 4. A distribution over lists whose elements are ref-
erences to the symbol a, and whose lengths are distributed
according to the geometric distribution.

(stochastic-thunk->distribution

(lambda ()

(map (lambda (ignore)

(let ((size (geometric-select 1/4 0)))

(observe! (odd? size))

(make-list size ’a)))

(make-list (geometric-select 1/2 0)))))

Figure 5. A distribution over lists of lists, all of unbounded
lengths, with the inner lists constrained to have an odd num-
ber of elements.

8. Discussion and Future Work
This work has shown how to offer an interface for embed-
ding probabilistic modeling into a full, practical program-
ming language. Probabilistic Scheme is a proof-of-concept
implementation demonstrating that this interface is reason-
able, and does not require the creation of new programming
languages from scratch.

There remain plenty of questions whose answers will help
make this system more practically useful:

• How useful is searching possibilities best-first, and how
could the language empower the user to supply search
heuristics?

• Numerical roundoff error8 is important since extremely
small numbers are known to arise in the practice of prob-
abilistic modeling. What are the right techniques for deal-
ing with it?

• Is it possible to discover no-good sets of discrete selec-
tions and avoid them in some dependency directed man-
ner, e.g. [2], [14]?

• What are the right decision-theoretic constructs that nat-
urally refine distributions only as far as is useful?

8 Which is probably preferable to the denominator explosion that plagues
exact rational arithmetic



(define (tree-structure alpha)

(discrete-select

(’() alpha)

((cons (tree-structure alpha) (tree-structure alpha)) (- 1 alpha))))

(stochastic-thunk->distribution (lambda () (tree-structure 1/3)))

Figure 6. A recursive distribution over tree structures.

• Can Probabilistic Scheme be extended to continuous
probability distributions?

• Can Probabilistic Scheme be extended to reasoning over
first-order and other more general propositions, rather
than just distributions?
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