
Operating Systems
Anita K. Jones

Editor

Performing Remote
Operations Efficiently on a
Local Computer Network
Alfred Z. Spector
Stanford University

A communication model is described that can serve
as a basis for a highly efficient communication subsystem
for local networks. The model contains a taxonomy of
communication instructions that can be implemented
efficiently and can be a good basis for interprocessor
communication. These communication instructions,
called remote references, cause an operation to be per-
formed by a remote process and, optionally, cause a value
to be returned. This paper also presents implementation
considerations for a communication system based upon
the model and describes an experimental communication
subsystem that provides one class of remote references.
These remote references take about 150 microseconds
or 50 average instruction times to perform on Xerox Alto
computers connected by a 2.94 megabit Ethernet.

CR Categories and Subject Descriptors: C.2.2 [Com-
puter Communication Networks]: Networks Protocol- -
protocol architecture; C.2.4 [Computer Communication
Networks]: Distributed Systems--network operating sys-
tems; C.2.5 [Computer Communication Networks]: Local
Networks--buses , rings; D.4.4 [Operating Systems]:
Communicat ion Management--message sending, net-
work communication; D.4.5 [Operating Systems]: Orga-
nization and Design--distributed systems.

General Terms: Performance, Reliability

Additional Key Words and Phrases: efficient com-
munication, transactions, communication models

1. Introduction

This paper discusses efficient communication tech-
niques for very high speed local networks. A major

This work was supported by a Fannie and John Hertz Foundation
Graduate Fellowship. Some of this work came about as a result of the
author's work at IBM's San Jose Research Laboratory. Firmware and
software were developed on equipment given to Stanford University
by the Xerox Corporation.

Author's present address: Alfred Z. Spector, Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA 15213,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0400-0246 $00.75.

246

question that this paper attempts to answer is how to
reduce the traditionally high processing overhead of
network communication. This overhead, characterized
by the time to send a null message and receive a null
answer, was reported by Peterson to be about 20 milli-
seconds on a variety of systems [21]. I f communication
processing overhead can be reduced and processors are
interconnected with high bandwidth, low latency net-
works, distributed programs having a relatively fine
granularity of parallelism can be executed. Networks
operating at up to 100 megabits/second, developed at
TRW, Mitsubishi, and Xerox, exemplify the technology
that will permit small data transmission times to be
achieved [2], [13], [23].

Ultimately, studies of efficient communication must
be concerned with the specification and implementation
of language-level primitives. For example, Cook, Hoare,
Liskov, and Nelson have written about remote procedure
calls and message passing primitives [4], [10], [17], [19].
However, we concentrate on a communication subsystem
on which to base these language-level primitives. To
provide overall efficiency, this intermediate communi-
cation subsystem must be a good foundation on which
to implement the desired high level primitives. Also, it
must be specialized enough to be implemented efficiently
using the semi-reliable packet transmission facility that
most local networks provide. Efficient implementations
may require the use of microcode or specialized hard-
ware.

The particular communication subsystem that we
propose differs from typical network communication
subsystems in two ways. First, we advocate an integrated
implementation approach rather than the layered ap-
proach discussed by Z immerman [31]. Though layered
approaches facilitate the use of similar communicat ion
subsystems on heterogeneous networks and permit sim-
plified design and maintenance of network software, the
crossing of layer boundaries results in decreased effi-
ciency. Second, we place more emphasis on ensuring
that the functions provided by the communication sub-
system are suitable for implementing high level primi-
tives. Rather than providing, for example, only a trans-
mission function for asynchronous byte streams, we pro-
pose that the communication subsystem provide func-
tions that can be used more easily in implementing high
level communication primitives. These functions must
not be too complex (e.g., guaranteeing reliability when
it is not necessary) nor must they be so simple that
implementations of high level primitives using them are
difficult or inefficient. In some instances, we hope for
almost a trivial mapping from language-level functions
to those provided by the communication subsystem. In
related work, Nelson and Popek have discussed the
benefits of streamlined implementations of communica-
tion primitives in the context of programming language
constructs and operating systems, respectively, [19], [22].

The initial sections of this paper discuss functions
that should be provided by a communicat ion subsystem

Communications April 1982
of Volume 25
the ACM Number 4

and techniques for implementing these functions. More
specifically, Sec. 2 presents a communication model
called the remote reference~remote operation model in
which a taxonomy of communication primitives is de-
fined. We argue that a communication subsystem sug-
gested by this model can provide powerful primitives yet
be implemented efficiently. Section 3 presents implemen-
tation considerations for such a subsystem, and Sec. 4
exemplifies a highly reliable communication primitive
that it could provide.

Section 5 adds substance to the discussion of the
remote reference/remote operation model by describing
an experiment in which a simple type of communication
instruction was microcoded on Xerox Alto computers
using the 2.94 megabit experimental Ethernet. (Infor-
mation on the Alto and the Ethernet can be found in
[18] and [30].) We show that these instructions execute
quickly: they typically take about 150 microseconds or
about 50 macroinstruction times on this hardware. This
time is about two orders of magnitude faster than could
be expected if they were implemented in a conventional
way. This improvement in performance is due to three
factors: the specialization of the communication inter-
face, the use of simplified protocols, and the direct
implementation in microcode.

remote subroutine calls, and message passing operations.
Specific examples include the SIGP operation on the
IBM 370 [11], "requests" in the Tandem Guardian sys-
tem [1], and certain Cm* operating system functions
[141, [20].

2. Support for Reliability. In the case of a transmission
medium with high reliability such as a local network,
Saltzer [24] suggests that providing "end-to-end" relia-
bility is often more important than providing reliable
message transmission. Because references initiate remote
operations, such "end-to-end" reliability can be sup-
ported by remote references; references can have an
attribute that ensures that an operation is performed, not
merely that a message is delivered. (As will be discussed
in Sec. 3.3, the communication system can only assist in
providing high reliability; the remote operation must also
be specially implemented.)

3. Potential for Protocol Simplification. Many types of
remote references can be implemented using simpler
protocols than are required for more general and com-
mon communication mechanisms such as byte stream
primitives.

4. Potential for Efficient Implementation. Remote ref-
erences are specific enough that they can be specially
implemented, perhaps in microcode or hardware.

2. The Remote Reference/Remote Operation Model

In the remote reference/remote operation model, a
process executes communication instructions called re-
mote references; each remote reference causes a single
remote operation to be performed by a remotely located
process. The remote operation may return a value to the
caller. A remote reference is analogous to a subroutine
call instruction that specifies certain properties concern-
ing the execution of the subroutine. During the execution
of any remote reference, the process that issues the
reference is called the master and the process that exe-
cutes the operation is called the slave.

Remote operations can vary greatly in complexity,
from the simplicity of a memory access to the complexity
of an asynchronously executing subroutine. For example,
the message passing "send" operation causes a data
block to be placed on the receiver's message queue and
provides an indication of the success of that operation.
In this case, the sender is the master, and the queue
manager (at the remote site) is the slave.

There are four reasons why this model includes prim-
itives that not only transmit data but also initiate oper-
ations and return their results.

1. Utility of Primitives. An implementation of high
level primitives based upon remote references can be
efficient because remote references are relatively pow-
erful and reduce the need for costly software (and pro-
tocol) layering on top of them. Examples of communi-
cation primitives that can be naturally implemented
using remote references are remote memory references,

2.1 Definitions and Assumptions
The remote reference/remote operation model pro-

vides a basis for communication on a system comprised
of processors connected by a local network, as shown in
Fig. 1. To discuss the model fully, we must first specify
some aspects of the underlying system architecture.

Data is exchanged between machines by the trans-
mission of packets over a local ne twork--a high band-
width, low latency communication medium having high
reliability and low cost. With respect to reliability, the
local network provides four transmission properties:
First, if a packet is transmitted enough times, it will
reach its destination. Second, packets corrupted during
transmission are automatically discarded. Third, packets
are not duplicated by the network. Finally, packets arrive
in the order in which they are sent. Thus, local network
failures result only in lost packets. The reader should
note that this paper does not discuss internetworks.

Fig. 1. Underlying Architecture.

Processor

High Speed

Local Network

Communication Process Ordinary Processes

Stabte Storage

247 Communications
of
the ACM

April 1982
Volume 25
Number 4

As will become clear in Sec. 2.3, some remote refer-
ences are intended to provide very fine grain communi-
cation. Such remote references are practical only if trans-
mission latencies are very small for short packets. I f
many (e.g., 100) processors must also be supported, a
high capacity (e.g., 100 megabits/second) network may
be necessary.

In the model, processors occasionally fail in a detect-
able fashion and are then restarted. In addition, proces-
sors contain processes with names unique to that proc-
essor. There are two classes of processes: regularprocesses
that disappear after a processor failure and recoverable
processes that are automatically reincarnated after a
processor crash and are reset to one of several predeter-
mined states. Recoverable processes require the availa-
bility of stable storage--storage that survives failures
[16]. Processors are sufficiently reliable to allow recover-
able processes to make progress.

We assume that the regular and recoverable processes
are used to provide one or more ordinary processes that
are used by applications. We also assume the existence
of a distinguished process called the communication proc-
ess. This process is recoverable and is specially imple-
m e n t e d - o f f - l o a d e d or at interrupt level--so that it can
be activated rapidly. Though its implementation must
permit the execution of simple functions quickly, it must
also be able to do more complex operations requiring
stable storage. (The need for this is described in Sec. 2.3.)
The communication process does not have the full ca-

pabilities of other processes, but it can perform the
following functions efficiently.

1. The transmission and reception of packets on the
local network. Only the communication process accesses
the network-specific hardware directly.

2. The manipulation of specialized communication
state information. The communication process can
quickly access the state tables described in Sec. 3.1. Some
table entries need to be saved in stable storage.

3. The execution of communication primitives issued
by other processes on the same processor. This process
implements the communication interface seen by other
processes.

4. The execution of simple operations initiated by a
remote communication process; i.e., simple requests can"
be directed to a remote communication process for effi-
cient processing.

2.2 Model Description
Figure 2 illustrates the remote reference/remote op-

eration model in the absence of communication or proc-
essor failures. A reference is initiated by an action labeled
Reference-Commit . At a later time, a request is received
on the slave processor, and the communication process
initiates the appropriate remote operation by issuing an
action called Op-Begin-Commit . The remote operation
is complete only when the action labeled Op-End-Com-
mit has been executed. I f the remote operation produces

Fig. 2. Normal Operation of Remote References.

Master Processor Slave Processor

Master Communication
Process Process

I I
Initiate-Session

Local Network

I I
r Remote reference conveyed from communications process on master

to communications process on slave over systems-session.
k

I I
Remote References Issued

i i I Terminate-Session I
r Remote reference conveyed from communications process on master

to communications process on slave over systems-session.
k

i I

Communication Slave
Process Process

I I
Register-Process-Name I

I
Remote Operations Performed

I Dereg ister- Process- Name !

248 Communicat ions
o f
the ACM

April 1982
Volume 25
Number 4

a value, the communication process on the slave issues
a response to the master, which causes the action labeled
Result-Commit to be executed. For remote reference
types having certain reliability semantics, some of these
four actions must be atomic (i.e., execute indivisibly) and
either correctly write a record on stable storage, or fail
completely and do nothing. (See [9] for a discussion of
atomic actions.)

There are many possible protocols for implementing
remote references. In simple cases, upon executing a
remote reference, a master issues a request packet to a
slave and possibly awaits a subsequent response packet
from that slave. In other cases, the protocol is much more
complex. Section 3.4 contains a more detailed discussion
of this.

2.3 Reference Taxonomy
Remote references have associated with them five

attribute classes. These are based on the following: vary-
ing reliability semantics, whether a value is returned,
how the remote operation occurs temporally with respect
to the reference, the need for flow control, and the kind
of process by which the operation will be performed.
These attribute classes have been selected to span the
space of possible implementation strategies--and costs--
as well as to provide a rich set of primitives with which
to communicate. Sections 2.3.1 through 2.3.5 describe
these five different attributes in more detail.

2.3.1 Reliability
Careful specification of the performance of remote

references under different failure conditions is important
in distributed systems, because we often desire the system
to tolerate failures. The attributes discussed in this sec-
tion provide for various degrees of robustness under
conditions of communication and processor failures.

They are summarized in Table I and described below.
The four reliability attributes, listed in increasing

order of function complexity and implementation cost,
are as follows: maybe, at-least-once, only-once-type-l,
and only-once-type-2. Their names arise from the se-
mantics that these attributes provide under conditions of
communication failures.

In the absence of communication or processor fail-
ures, all references initiate one Op-End-Commi t and, if
required, one Result-Commit. The effect of the four
attributes under conditions of communication failure
(i.e., lost packets) is summarized below.

The maybe attribute: An Op-End-Commit to be per-
formed zero or one times. I f the Op-End-Commi t is
performed, the Resul t -Commit will occur zero or one
times.

The a t - leas t -once attribute: An Op-End-Commit
will be performed one or more times. The Result-Com-
mit will also occur one or more times.

The only-once- type- 1 or only-once- type-2 attribute:
Exactly one Op-End-Commit and one Result-Commit
will occur regardless of communication failures.

A slave processor failure may cause maybe, at-least-
once, and only-once-type-I references to fail: that is, in
addition to their normal semantics under communication
failures, we must add the possibility that no O p - E n d -
Commit and Result-Commit will occur. A failed master
processor causes problems similar to those of a failed
slave processor except that the Resul t -Commit is guar-
anteed not to occur. Table I summarizes these points.

The only-once- type-2 attribute applies to references
issued to recoverable slaves from both recoverable and
nonrecoverable master processes. Only-once- type-2 ref-
erences cause exactly one Op-End-Commit to be exe-
cuted, regardless of failures. The Resul t -Commit always
occurs if the master process is recoverable.

Table 1. Reliability Semantics Survey.

Reference Semantics Under Different Failure Conditions

Lost Packets & Lost Packets & Lost Packets, Master
Protocol Class No Failures Lost Packets Slave Failure Master Failure & Slave Failure

Maybe op performed: 1 op performed: 0,1 op performed: 0,1 op performed: 0,1 op performed: 0,1
resuh-commit: 1 result-commit: 0,1 result-commit: 0,1 result-commit: 0 result-commit: 0

At-Least-Once op performed: 1 op performed: => 1 op performed: _-> 0 op performed: _--> 0 op performed: _-> 0
result-commit: 1 result-commit: _--__ 1 result-commit: _-> 0 result-commit: 0 result-commit: 0

Only-Once-Type- 1

Only-Once-Type-2

op performed: 1 op performed: 1 op performed: 0,1 op performed: 0,1 op performed: 0,1
result-commit: 1 result-commit: 1 result-commit: 0,1 result-commit: 0 result-commit: 0

op performed: 1 op performed: 1 op performed: 1 "[
result-commit: 1 result-commit: I result commit: 1 J

regular master regular master
process process

op performed: 1 op performed: 1
result commit: 0 result-commit: 0

recoverable master recoverable master
process process

op performed: 1 op performed: 1
result-commit: 1 result-commit: 1

249 Communications
of
the ACM

April 1982
Volume 25
Number 4

These attributes have a major effect on the protocol
that is needed to implement remote references. Protocol
considerations are discussed in Sec. 3.4.

2.3.2 Value and Novalue References
All references, except those with maybe semantics,

explicitly return a value to the master process. These are
called value references. In Fig. 2, Result-Commit labels
the time at which a value is returned. This value is either
provided by the remote operation or by the communi-
cation system; in the latter case, it provides an indication
that the remote operation has been performed. For
only-once-type-2 references, which guarantee that a
remote operation will be performed, this response allows
the master process to know when the remote operation
has occurred.

To permit greater efficiency, we allow maybe refer-
ences to not return a value. These are called novalue
references. Maybe references do not require a response
to achieve their reliability semantics; hence, it would be
inefficient to require a response for operations that pro-
duce no value.

2.3.3 Synchrony
Remote operations that execute synchronously with

respect to a calling processor are called processor-
synchronous. Operations that execute synchronously
with respect to the calling process only are called proc-
ess-synchronous: in this case, the processor may execute
another process while the remote operation is being
performed. Operations that execute asynchronously with
respect to only the calling process are called asynchro-
nous. The order in which remote operations complete
(i.e., execute Op-End-Commit) is independent of the
order of the asynchronous references that initiate them.
In summary, a master process can issue processor-
synchronous, process-synchronous, or asynchronous ref-
erences.

References have been divided into these three syn-
chrony classes because of the different implementation
efficiency that is possible for each. For example, proc-
essor-synchronous references can be implemented very
efficiently and permit fine grained communication; proc-
ess-synchronous references require task switching on the
master; and asynchronous references usually require
more complex protocols due to the existence of multiple
outstanding requests. These considerations are presented
in more detail in Sec. 3.2.

2.3.4 Inter-Reference Flow Control
Flow control has many meanings, but we consider

flow control as a resource reservation system that guar-
antees a resource is available on the slave. Usually, this
is buffering space for requests. Thus, flow control ensures
that a master issues requests to a slave below a predeter-
mined rate. Flow control is not useful for process-syn-
chronous or processor-synchronous references, because
with these a process cannot issue a new reference until
the last reference has been acted upon. However, asyn-
chronous references can be either flow-controlled or not-
flow-controlled. When required, flow control adds to the
cost of executing remote references.

2.3.5 Operation Types: Primary and Secondary
Operations are primary if they are performed by a

remote communication process and secondary if they are
performed by an ordinary process. Primary operations
can be executed rapidly on the remote processor, because
the communication process can be activated without
substantial overhead. Furthermore, requests do not cause
scheduling or require additional queueing, because there
is only one communication process per processor, and
we assume that it can be run with low overhead. Finally,
the caveat that primary operations must be simple (to
avoid overloading the communication process) is a factor
contributing to the high speed at which they run. Ex-
amples of primary references are causing data to be
enqueued in a process' mailbox and initiating remote
memory operations.

In comparison, secondary operations require request
demultiplexing, request queueing, and more costly proc-
ess switching on the remote side. Remote subroutine
calls are typical examples of secondary references.

2.4 Discussion
This communication model provides a large number

of well-specified communication primitives. Table II
summarizes the feasible reference types. Because many
types of references are available, and because they differ
greatly in implementation costs, distributed systems need
only pay for what they use. Because each reference type
provides only highly specific functions, implementations
can be specialized thereby supporting highly efficient
operation.

Though a communication system based upon the
model need not provide all of these reference types,

Table 11. Reference Type Summary.

Op-Type
Synchrony Class Class Flow-Control Class Reliability Class Value Returning Class

Processor-Synchronous (See 3) Primary Flow-Controlled (See 2) Maybe Value

Process-Synchronous At-Least-Once
Secondary Not-Flow-Controlled Only-Once-Type- 1 No-Value (See 1)

Asynchronous Only-Once-Type-2 (See 4)

250

1) Only Maybe references can have No-Value.
2) Only Asynchronous references may be Flow-Controlled.
3) Processor-Synchronous references should be Primary.
4) Only-Once-Type-2 references must be directed to recoverable slaves.

Communications
of
th~ AC/UI

April 1982
Volume 25
N n m h e r 4

many have direct uses in distributed systems. Primary,
processor-synchronous references are useful for sharing
memory, enqueueing small blocks of data, signalling
remote processors, etc. Primary, process-synchronous
and primary, asynchronous references are useful for im-
plementing message passing primitives. Secondary, proc-
ess-synchronous references are useful for implementing
remote subroutine calls and cross-network paging. Fi-
nally, secondary, asynchronous references have their
place in the parallel execution of remote subroutine calls.
Even the maybe reliability attribute is useful; an example
is the transmission of packetized speech.

3. Implementation Considerations

The preceding section described a communication
model and introduced a taxonomy of primitives.
Whereas Sec. 2 concentrated on defining the semantics
of remote references, this section presents implementa-
tion considerations for a communication subsystem
based upon the model. We envision that such a system
would predefine some remote references and provide
mechanisms for the definition of others. Predefined re-
mote references would include primary remote references
and remote references that are used in the definition of
others. The predefined primary references would be
highly optimized and provide low overhead fine granu-
larity communication.

First, this section describes sessions; these are con-
nections between processes over which references are
conveyed. Then, general implementation issues regard-
ing the reliability and synchrony attributes are presented.
This section concludes with a discussion of protocols and
the circumstances under which they can be used.

3.1 Sessions and Sockets
A session, as defined in this paper, is a logical con-

nection over which a single master process can issue
requests and a single slave process can issue responses.
Associated with a session are the semantic attributes of
the references which are conveyed over it. For some
attributes, considerable state information (for such pur-
poses as flow control or duplicate detection) must be
maintained. In this work processes are assumed to be
located on fixed processor nodes for the life of the
session.

When a session is established, one socket is created
on each of the master and slave processors. These sockets
serve three main functions: First, packets associated with
that session are addressed using references to these sock-
ets. Second, sockets contain information that permits
requests and responses to be mapped to individual proc-
esses. Third and most importantly, they contain state
information that enables sessions to provide specific
semantic attributes for references conveyed during that
session. Sockets for active sessions are contained in a
per-processor socket table that is accessed by the com-
munication process and implemented using both volatile
and stable storage.

There are two types of sockets: regular sockets, which
do not survive processor crashes and recoverable sockets,
which use stable storage and do survive crashes. Recover-
able sockets can be used by recoverable processes to
ensure that their communication capabilities are not lost
after processor failures. After a failed processor has been
restarted, a recoverable process associated with recover-
able sockets can continue executing references if it is a
master or receiving requests if it is a slave. No regular
sockets survive a processor restart.

A session can be considered to be a distributed
abstract data object that is manipulated by two cooper-
ating communication processes via the two sockets.
There are four major operations allowed during sessions.

Issue-Reference permits a master process to initiate
a remote operation on the slave and causes a Reference-
Commit to occur locally.

Receive-Response permits a master process to receive
a response from a slave and causes a Result-Commit. In
some instances, a master may have a Receive-Response
outstanding and receive an interrupt when a response
arrives. Sometimes, Receive-Response is issued in com-
bination with Issue-Reference.

Receive-Request permits a slave to receive a request
from its master. In some instances, a slave may have a
Receive-Request outstanding and may receive an inter-
rupt when a request arrives.

Return-Response allows a slave to return a result to
its master and causes an Op-End-Commit to be executed
locally.

Issue-Reference, Receive-Response, Receive-Re-
quest, and Return-Response are generic names for prim-
itives whose implementations are application dependent;
in fact, their call syntax will often be modified to reduce
overhead. For example, a normal memory reference may
result in an Issue-Reference if a segmentation table
specifies that the memory reference should be issued
over a session.

Two sessions are maintained between each pair of
communication processes to permit each communication
process to act as both a master and a slave to each other's
communication process. These sessions, called systems-
sessions, allow other sessions between noncommunica-
tion processes to be created and destroyed. Communic-
tion processes provide the following primitives.

Register-Process-Name is processed locally on the
slave processor and registers a slave process name with
the local communication process, and it specifies how
requests for that process will be conveyed to it; for
example, via interrupt or queueing. It also specifies the
type of session in which the slave will participate. This
permits the communication process to respond to re-
quests asking for sessions with this slave.

Deregister-Process-Name is processed locally on the
slave processor and expunges a slave process name from
the socket table of the local communication process. It
cannot be issued if a session is established. (The session
must first be terminated with Terminate-Session.)

251 Communications April 1982
of Volume 25
the ACM Number 4

Initiate-Session is executed by a master and estab-
lishes a session with a previously registered slave. It
requires as arguments the remote slave process name and
address, the desired type of session (see Sec. 2.3), and an
indication of the disposition for responses received from
the slave. It returns a session number. Initiate-Session
initiates a remote reference to the communication process
on the slave. This predefined remote reference serves the
purpose of an initial connection protocol such as PUP's
rendezvous protocol [3]. Additionally, it allows the pre-
setting of defaults for that session.

Terminate-Session eliminates a session. This prede-
fined remote reference requires the session number as an
argument and initiates a remote reference to the remote
communication process. It can be executed by either a
master or slave.

Figure 3 illustrates the initiation and termination of a
session.

In summary, the communication process performs
four main functions: it maintains systems-sessions; it
supervises the initiation and closing of the other sessions;
it accepts references from a master process, initiates their
remote execution and possibly performs certain actions
to inform the master of the result; and it accepts remote
requests from the network, awakens the slave process, if
necessary, and possibly sends responses to the master.

The concepts of sessions and sockets are not unique
to this work. For example, sockets are called half-sessions
in SNA [5] and TCB's in TCP [12], and sessions are

implemented in Level 5 in the OSI protocol hierarchy
[8]. However, in this work, there are many types of
sessions, each fulfilling particular needs; the diversity of
session types, in many instances, permits simpler proto-
cols to be used. Additionally, the sessions in this model
subsume the function of a few layers in general network
hierarchies; this reduces the need for inefficient protocol
layering.

3.2 The Synchrony Attributes
Processor-synchronous references can be performed

efficiently if requests and responses are short, and if the
specified remote operation can be executed quickly. They
are useful when the cost of doing the remote operation
is lower than the additional overhead that would be
incurred with process-synchronous or asynchronous ref-
erences. When errors occur that would unduly slow the
operation of processor-synchronous references, the ref-
erence can time-out and be re-executed in a process-
synchronous fashion. In this way, the master processor
will not be halted for too long.

Process-synchronous references are the next most
efficient references, because they do not require a master
process to account explicitly for multiple outstanding
requests. Asynchronous, only-once references of both
types require a more complex protocol than processor-
synchronous or process-synchronous references, because
a master can issue new references before previous refer-
ences have completed. Because of this, slaves cannot

Fig. 3. Session Initiation and Termination.

~ e

Master Processor
Master Communication
Process Process

I I
Reference-Commit I

I
I

I <
I

Result-Commit

Local Network

Slave Processor
Commu nication Slave

Process Process

Request Conveyed >

I
/ " 1 Op-Begin-Comr~it

Uneder S°ed ect nd it i°e~;i t h e s e ~ IL_.._. ~ Operation
the communication process " ~ . - ~ I Processing

" 1 Op-End-Commil
I

Response Conveyed

These may not be performed for
references with the "maybe" attribute

252 Communicat ions
of
the ACM

April 1982
Volume 25
Number 4

automatically discard saved state information concerning
a previous request when a new request arrives.

With process-synchronous and asynchronous refer-
ences, each response must be demultiplexed and queued
to an individual process, and request-response correla-
tion is more complicated. Additionally, potentially costly
process switches often occur.

Asynchronous references may require flow control.
When needed, flow control requires that the master save
information that reflects the amount of storage space
reserved for buffering additional requests on the slave.
Maintaining this information requires additional infor-
mation to be transferred between the slave and the
master.

3.3 The Reliability Attributes
Maybe references do not require any retransmission

mechanism. However, to achieve at-least-once seman-
tics, the master must transmit a request to the slave until
either a valid response is returned, or it can be deter-
mined that a processor failure has occurred. Only-once-
type-1 semantics additionally require that information
must be saved by the communication process on the
slave to permit the suppression of duplicate requests and
allow response retransmissions.

Implementations of only-once-type-2 references are
similar to those of only-once-type-l, except that the
session state must be maintained in recoverable sockets
on both master and slave. The slave process must be
recoverable, and the remote operations that it executes
must be transactions; for example, once a remote oper-
ation executes Op-Begin-Commit, it will either execute
Op-End-Commit or fail and leave no trace. In addition,
both Reference-Commit and Op-End-Commit must be
atomic, and both must commit state to stable storage.
Result-Commit and Op-Begin-Commit may be atomic
and may commit state to stable storage in some instances.

We should also note that for all only-once-type-2
references, Result-Commit cannot occur until a valid
response is received from the slave. I f the duration of
only-once-type-2 references is always to be small, a back-
up processor (that can reference stable storage) must be
available for the slave to minimize the duration of fail-
ures. Also, only-once-type-2 references require heavy use
of stable storage. Traditional implementations such as
mirrored disks are probably not suitable for reasons of
efficiency.

3.4 Protocol
The reference attributes, the amount of time required

for the remote operation to be performed, and the
amount of data that must be conveyed between master
and slave affect the communication protocols that can
be used to implement remote references. The first pro-
tocol issue concerns requests and responses that do not
fit in a single packet. This issue is important because
local networks may enforce small maximum packet sizes
to lower the transmission latency for small packets or to

decrease the size of the packet buffers that run at the
speed of the network.

Requests and responses that do not fit within a single
packet can be transmitted as multipackets, or sequences
of packets. Multipackets are an extension of the basic
transmission facilities of the network to permit the effi-
cient transmission of larger amounts of data. Multipack-
ets take advantage of the underlying reliability of the
network; hence, packets in a multipacket are neither
acknowledged nor retransmitted. Many schemes are pos-
sible for multipackets; we describe a scheme based upon
the use of a checksum over all packets in the multipacket
in [26]. Aside from the checksum, this scheme requires
only one byte of overhead per packet and permits single
packet requests and responses to be interleaved with the
receipt or transmission of multipackets.

Once arbitrarily long requests and responses can be
issued, three protocols, the request (R) protocol, the
request~response (RR) protocol, the request~response~ac-
knowledge-response (RRA) protocol, are satisfactory for
implementing the various types of remote references.
(Occasionally, other protocols provide higher perform-
ance; these are discussed in [26].) Flow-control can be
added to the RR and RRA protocol by providing allo-
cation fields in responses that indicate the amount of
space reserved on the slave for additional requests.

The R protocol is useful for maybe, novalue, not-flow-
controlled references. Data is encapsulated into a request
and transmitted to the slave.

The RR protocol is useful for many types of refer-
ences. With it, the master initiates a remote operation by
issuing a request, and the slave returns a result (either an
explicit value or an acknowledgment) by issuing a re-
sponse. In the RR protocol, requests and responses must
contain a unique identifier that permits them to be
matched to each other. The RR protocol is efficient to
implement and can be used when the following two
conditions are satisfied.

1. The master does not have to buffer too much data
while it is awaiting a response from the slave. I f the
requests are very long and the remote operation requires
a long time, buffer space may be wasted.

2. The slave does not have to buffer too much data.
For example, consider using this protocol to implement
asynchronous, only-once references of both types. The
only-once property requires that the slave retain suffi-
cient information so it can issue duplicates until the
master has reliably received a response. Because this
protocol does not inform the slave when a response has
been received, the slave can never reclaim storage used
for storing duplicate responses.

With processor-synchronous and process-synchro-
nous references, the issuance of a new reference implies
the receipt of the previous response. Because of this fact,
the RR protocol is potentially useful for all process-
synchronous and processor-synchronous references. It is
also useful for asynchronous, maybe, value references,

253 Communications April 1982
of Volume 25
the ACM Number 4

asynchronous, maybe, novalue, flow-controlled refer-
ences, and asynchronous, at-least-once references be-
cause these do not require any inter-reference state to be
maintained on the slave. The RR protocol will always be
the protocol of choice for synchronous references because
requests and responses are necessarily short. Whether or
not the RR protocol is used for process-synchronous
references depends upon the length of requests and
responses.

The RRA protocol can be used to lower the amount
of storage that must be buffered on the slave. In this
protocol, the slave's response is acknowledged, allowing
the slave to reclaim space devoted to storing that re-
sponse. It is similar to the RR protocol except that the
master additionally issues an acknowledge-response to
indicate that it has received certain responses, and the
unique identifiers contained in requests and responses
must be sequence numbers (i.e., ordered.) The acknowl-
edge-response is interpreted as acknowledging the re-
ceipt of all responses that have a sequence number _< M,
for some M. This interpretation ensures that the loss of
an acknowledge-response is harmless. When a slave
receives an acknowledge-response, M, it is free to delete
all saved state asssociated with responses that have se-
quence numbers _< M.

With the RRA protocol, the master may not be able
to acknowledge all responses immediately. This is be-
cause the master may receive responses for asynchronous
references out of order. The master will be able to
acknowledge a newly received response immediately
only if all responses with lower sequence numbers have
arrived. (If this causes an important delay in deleting
state on the slave, a separate sequence number for re-
sponses can be added by the slave, and acknowledge-
responses can acknowledge this sequence number.)

The RRA protocol may be useful for only-once,
process-synchronous references, but more usually would
be used for only-once, asynchronous references. The
acknowledge-response packet is required for asynchro-
nous references because a new request does not ensure
that the last response has been received.

In all protocols using regular sockets, the slave must
be able to eliminate sockets associated with crashed
masters. Many techniques are available: for example,
upon recovery, the master communication process could
issue references--over the systems session--to commu-
nication processes on processors with which it may have
communicated, requesting that regular sockets be elimi-
nated. Alternatively, regular sockets could timeout.

4. An Example: Only-Once-Type-2, Asynchronous
References

This section contains a brief discussion of one rather
complex reference type: an only-once-type-2, asynchro-
nous, value reference. (In this description, we consciously
ignore flow-control and addressing considerations due to
space limitations.) The purpose is not to fully specify an

254

implementation but to demonstrate that this model in-
cludes rather complex primitives and to exemplify the
only-once-type-2 attribute. An example of such a refer-
ence type is a remote reference that reliably causes a
slave process to write a page onto remote secondary
storage, unlock that page, and return a version number.

In an implementation using the RRA protocol, if
Reference-Commit is successfully executed, a stable entry
(containing the request, with sequence number N, that
is to be sent to the slave) is made atomically in the
master 's socket. (Sequence numbers are ordered, and
new remote references initiate transmission of requests
with higher sequence numbers.) The request is then
repeatedly transmitted by the master to the slave until
Result-Commit occurs.

After the requested operation is performed and Op-
End-Commit is executed, the slave issues a response,
containing the result and the sequence number N, to the
master. Normally, the master receives this response, and
it executes Result-Commit. Result-Commit attempts to
commit atomically to stable storage both the reference's
result and an indication that the reference has completed.

After Result-Commit has occurred, the master sends
an acknowledge-response to the slave. The acknowl-
edge-response contains a sequence number M, M _< N,
and indicates that the master has received all responses
through sequence number M. The acknowledge-re-
sponse does not need to be sent reliably to the slave
because each future acknowledge-response will ac-
knowledge at least as many responses as did the previous
one. After the master has issued the acknowledge-re-
sponse, the communication process can reclaim
all storage except for the indication that the reference
has completed. This protocol is illustrated in
Fig. 4.

On the slave, Op-End-Commit must be an atomic
action that first checks the operation that is about to be
committed to see that it is not a duplicate. I f the operation
is not a duplicate, it then commits the reference result,
sequence number, and any operation-dependent data to
stable storage. The slave then sends a response to the
master, containing either the previous or the new result.

Fig. 4. Illustration of RRA Protocol for only-once-type-2, Asynchro-
nous References. Illustrated case is where there are no lost packets.

Master
[Reference-Commit]

Slave

Request(N) >

l Op-Begin-Commit I

I Op-End-Commit I
Response(N)

Result-Commit I
AC knowledge-Response(M, M ___ N) >

Communications April 1982
of Volume 25
the ACM Number 4

In fact, the code sequence on the slave from Op-
Begin-Commit to Op-End-Commit corresponds to a
transaction where the begin-transaction takes a unique
identifier as an argument and the commit-transaction
commits the transaction only if the invocation associated
with that unique identifier has not already committed.

5. A Case Study: Only-Once-Type-l, Primary,
Processor-synchronous References

In the previous sections, many types of remote ref-
erences were described. The references vary substan-
tially, both in their intended use, and in their implemen-
tation. In this section, however, we turn away from the
generality of the model in order to study in detail one
class of primitives. Our three goals are as follows: to
show how the remote reference model terminology ap-
plies to a specific example; to illustrate the direct imple-
mentation approach that we advocate and show that
specialized implementations are feasible; and to show
some performance statistics that are indicative of the
communication efficiency possible on local networks.

Below, we describe two implementations (one in
software, the other in microcode) of only-once-type-l,
value, not-flow-controlled, primary, processor-synchro-
nous references using a request/response protocol. The
software version is a layered implementation with which
the performance of the microcoded version can be com-
pared.

The implemented references are called RLDA,
RSTA, R E N Q U E U E , R D E Q U E U E , and RCS, and
initiate remote load, remote store, remote enqueue, re-
mote dequeue, and remote compare and swap opera-
tions, respectively, on a remote machine. The latter
operation is similar to the IBM 370 CS instruction [11].
The exact semantics of these references are summarized
in the appendix. Both implementations use an RR pro-
tocol which is called "ESP" for Efficient Synchronous
Protocol. (See Fig. 5 for the packet format.)

The work was done on Xerox Alto computers, a
microcoded 16-bit machine with an internal cycle time
of 180 nanoseconds, a writeable control store, and a
memory bandwidth of 29 megabits/second. The Altos
[28], [31] are interconnected with a 2.94 megabit Eth-
ernet. Though the Ethernet is somewhat slower than the
networks with which we are primarily concerned and
cannot be extended to work at high speeds with the short
packets that are used, it is a satisfactory experimental
vehicle.

The Alto's macroinstruction set as well as its periph-
eral device controllers are implemented on the micro-
machine through the operation of up to 16 microcoded
tasks, each executing 32-bit microinstructions. Mecha-
nisms exist to switch between tasks in one microcycle.
Because I / O device controllers--including the task that
controls the Ethernet - -are implemented as microcoded
tasks, they can use the full processing capability and

Fig. 5. ESP Packet Format.

Destination Source

Ethernet Packet type

Esp Packet Type word 2

Sequence number
word 3

Remote Address word 4

Value 1 word 5

Value 2 word 6

Checksum word 7

> Standard Ethernet
Header

~" small integer

~'from Alto clock

Field Interpretation
> Depends Upon

ESP Packet Type

Hardware Generated

temporary storage of the micromachine, and can access
main memory easily.

The emulator task microcode that was used provides
a macroinstruction set similar to a Data General Nova
[7] and executes macroinstructions at about 330 KIPS.
No protection or virtual memory facilities are imple-
mented on the Alto.

5.1. Implementation--Software Version
We first implemented a software package that pro-

vides five subroutines that implement the RLDA, RSTA,
RCS, R E N Q U E U E , and R D E Q U E U E references.
These subroutines cause a request packet to be transmit-
ted to a remote Alto and return control when a proper
response packet is received or when an error condition
is detected. On the remote site, a slave process executes
the desired operations and returns an appropriate re-
sponse.

The software is written entirely in BCPL [6] and uses
the raw datagram facilities of PUP Level 0 for packet
transport [3]. Sessions are maintained between each pair
of communicating processors. Duplicate elimination is
handled by the sequence number field of the ESP packet.

5.2. lmplementation--Microcode Version
For the purposes of this study, it was sufficient to

implement two separate sets of microcode: one allows an
Alto to act as a slave that executes and responds to ESP
request packets; the other allows an Alto to act as a
master and issue RLDA, RSTA, RCS, R E N Q U E U E
and R D E Q U E U E instructions, formatting request pack-
ets, and awaiting responses. The two sets of microcode
could be combined to provide exactly the same function
as that provided by the software version, including com-
patibility with standard PUP communication. However,
this would require time-consuming modifications to the
Ethernet control task and is not necessary to prove the
efficiency that can be achieved for only-once-type-l,
primary, processor-synchronous references.

255 Communicat ions April 1982
of Volume 25
the ACM Number 4

Though the microcode is quite similar to the software,
it does differ in some respects. First, incoming requests
are not queued, because queueing a request would re-
quire almost as much work as processing it. Second, the
processing time of a request is small in comparison to
the amount of time that the Ethernet hardware is busy.
Third, microcoded instruction decoding is performed to
make the references more efficient. Finally, substantial
performance benefits are realized by overlapping mem-
ory accesses with processing.

The microcode is simple due to more convenient
handling of errors, multitasking, and timeouts in the
micromachine. It comprises about 280 instructions
though this number could be reduced by more clever
microcoding. A total of 7 hardware registers are used in
processing. The microcode executing on the slave uses
an additional 728 (256 × 3) words of main memory to
store the last sequence number and response values for
all possible machines connected on the Ethernet. This
corresponds to the socket table in Sec. 3.1.

Use of the new instructions is illustrated by the
description of RCS in Fig. 6. Instructions take arguments
in two general registers as well as in the two words
following the operation code. They skip return on success
and return results in one or two registers.

On error returns, the sequence number of the request
is returned, allowing for additional software retransmis-
sion of the request. In our model, this would be done by
re-executing the reference as a process-synchronous op-
eration and instructing the communication system to use
the previous sequence number. To provide the proper
error semantics in light of remote processor failure, a
flag can be maintained on the slave that is set to 0 when
a machine has been restarted after a failure. I f a request
arrives and finds this flag set to 0, a response can indicate
that a machine failure has occurred prior to this request.
Requests always set this flag to 1.

Upon receipt of control following a remote instruc-
tion, the microcode first collects information from var-
ious places and assembles it in a 7-word block of mem-
ory. This includes the machine number of both source
and destination, the system time (which is used as a
sequence number), various data values from the general
registers and the words following the instruction, etc.
Before the packet is transmitted, one internal register is
set with the number of retransmissions and another with
a counter that is continuously counted down to allow for

Fig. 6. Instruction Call Sequence for RCS.

ERROR-RETURN:

NORMAL-RETURN:

<store to-be-checked value in acc. O>

<store to-be-stored value in ace. 1>

<store remote address:)
<store remote machine number: >

RCS (opcode 63003)

1 word for remote machine number

1 word for remote address

<2 instructions to handle error case>

256

timeouts. A transmission count of 2 and a timeout inter-
val of 3 milliseconds is currently u sed - - a time long
enough to permit a long packet on the Ethernet to pass.
The small transmission count ensures that the processor
does not suspend its operation for too long. With these
parameters, the m a x i m u m time a remote reference can
halt processing is 6 milliseconds.

When a response packet is received, its source and
sequence number are checked to ensure that it is a
response for the last request. I f these numbers match,
values are placed in one or two general registers and the
instruction returns. I f they do not match, either the
machine waits for another packet, retransmission is at-
tempted, or the instruction returns and indicates an error.

At the remote site, the microcode continually checks
the Ethernet to see if a new packet has arrived. I f an
ESP packet arrives, the source byte is used to index into
the socket table.If the sequence number of the received
packet is the same as that in the corresponding table
entry, the request is a duplicate and a response is gen-
erated using the state information saved after the first
request. I f the sequence number differs, the operation
specified by the ESP packet type is performed using the
remote address and value fields as arguments. Up to two
values resulting from this operation as well as the new
sequence number are placed in the table. Finally, a
response packet is generated using these values.

5.3. Performance
In the software version, approximately 210 remote

references can be executed per second on an unloaded
Ethernet; this corresponds to 4.8 milliseconds/reference
or about 1500 macro instruction times. Running at max-
imum speed, two machines communicating using this
software package can impose a 1.8 percent load on the
Ethernet. Using RSTA instructions, this corresponds to
a 3.4 kilobit effective transfer rate. This software imple-
mentation is likely to be at least three times faster than
any implementation using the PUP byte system proto-
co l - - a protocol that provides a full duplex, reliable byte
stream protocol from one machine to another. This
difference is due to the more complex protocol used by
the reliable byte stream protocol and the more general
interfaces that it provides.

The microcode version is capable of supporting 6450
references per second corresponding to a time of 155
microseconds/reference. As another characterization,
each remote reference takes about 50 macro instruction
times. Figure 7 shows a breakdown of the time spent
when an R L D A instruction is executed, assuming no
contention on the Ethernet. This time is representative
of the times of the other instructions as well. Of the 155
microseconds required, transmission time accounts for
more than half: 85 microseconds. Local processing lead-
ing up to the request requires 28 microseconds, process-
ing at the remote site requires 31 microseconds, and local
processing after the response is received requires 1 l
microseconds.

Communications April 1982
of Volume 25
the ACM Number 4

Fig. 7. Breakdown of Time Spent in RLDA Instruction, Microcoded Version.

Time
160 -

150 -

1 4 0 -

1 3 0 -

120 -

110 -

100 -

90

80 -

70

60 -

50 -

40 -

30 -

20 -

10 -

0

m

response c h e c k i n g / i n s t r u c t i o n re turn

Ethernet Task rece ive process ing _

t ransmiss ion t ime

Ethernet Task send processing

request p r o c e s s i n g / r e s p o n s e creat ion

Ethernet Task rece ive process ing

t ransmiss ion t ime

Ethernet Task send process ing

request packet c reat ion
ins t ruct ion decodin~l

m ic rosecs

The slave's Ethernet transceiver or processor is busy
for 116 microseconds per request. Thus, a shared mem-
ory could support a maximum of 8600 references per
second. A processor could initiate 6450 remote instruc-
tions per second, placing a load on the Ethernet of about
55 percent. In practice, neither the shared memory nor
a processor issuing references would operate at their
maximum rates.

We have measured a single processor issuing RLDA's
to a remote memory at the rate of 5000 per second. The
difference between 5000 and the theoretical maximum
of 6450 can be accounted for by the time necessary to
execute the instruction loop iterating over the RLDA's .
The Ethernet load generated by this test was 42 percent
or 1.28 megabits. As one would expect, practically no
retransmissions or timeouts occurred during this test.
Though one would not use R L D A instructions to provide
high data throughput, the effective transmission data
rate in this test was 80 kilobits. Table III summarizes
these yardsticks.

I f a processor executed an instruction stream that
contained 1 percent remote references, a processor would
slow from executing about 330,000 instructions/second
to about 220,000 instructions/second, a 33 percent speed
degradation. This slowing has implications with respect
to the types of distributed programs that could be sup-
ported.

In a more complex test, where two machines at-
tempted to generate 5000 requests per second to a slave,

local proc.
10.8

t ransmiss ion

t ime 42.5

remote proc.

30.9

t ransmiss ion

t ime 42.5

local prec.
28.4

remote

busy
115.9

severe contention problems on the shared memory oc-
curred. The high load on the memory coupled with the
fact that a slave does not listen to the Ethernet while it
is processing a request results in many request retrans-
miss ions--a type of thrashing. The occurrence of this
problem demonstrates that overuse of a resource in this
environment is quite harmful.

Finally, in a test to determine if the Ethernet is a
limiting factor with two outstanding sessions, two ma-
chines made requests to two separate shared memories
and collectively put a load on the network of about 64
percent of 1.92 megabits. There were very few collisions
or retransmissions but transmission times were longer
due to the possibility of having to wait for a packet to
pass. The longer transmission times reduced the number
of references each machine could generate to about 3750
per second or about 1250 per second less than when only
a single session was in use.

Table I11. Performance Summary. The parenthesized measurements
were achieved in a BCPL program and include iteration overhead.

Description Software Microcode

RSTA's/second (achieved) 210 6450 (5000)
microseconds/RSTA 4800 155
Ethernet load (achieved) 1.8% 55% (43%)

1 master = > 1 slave
Real Data Rate (achieved) 3.4 Kbits 103 (80) Kbits

257 Communications April 1982
of Volume 25
the ACM Number 4

5.4 Case Study Results
The case study demonstrated that relatively simple

only-once- type- l , primary, processor-synchronous ref-
erences can be implemented efficiently. The performance
results show that the microcoded implementation exe-
cutes about 30 times faster than the software implemen-
tation, and probably an additional 3 times faster than a
software version built upon a general purpose byte
stream protocol. The performance improvement is not
surprising given the task switching, queueing, and sub-
routine calls in the software implementation. What is
more surprising and important is the ease with which the
direct microcoded implementation could be done.

The timings of the microcoded version show that
processor-synchronous references are sometimes useful.
Some remote references (particularly those that require
the transmission of only a few data words) can be
performed faster than the time to do a few task switches.

Excep t in rare cases where errors or transmission delays
are encountered, the simplification resulting from the
processor-synchronous attribute can be beneficial.

The good performance of the microcoded version
depends heavily upon the rapid decoding of the remote
reference and the low process switch time to the com-
munication process. The microtask organization of the
Alto hardware facilitated both of these. The performance
of the microcoded version would be much improved by
the substitution of a 10 megabit Ethernet and slightly
different hardware. Certainly, remote reference times
could be well under 100 microseconds with these
changes.

One point that the case study was no t trying to make
concerns the utility of unprotected shared memory in
distributed systems. Where reliability is desired, direct
memory reads and writes are potentially dangerous. The
enqueue and dequeue instructions are more likely to
foster reliability. Additional work on references like
those described above must include consideration of
protection and virtual memory.

6. Architectural Considerations

Two questions arise from the earlier sections of this
work. The first concerns the proper hardware configu-
ration for supporting very efficient implementations of
remote references. Particularly, the network controller
and underlying type of network are affected. The second
involves the class of distributed programs that might be
supported on such systems.

With respect to the local network controller, it must
be closely integrated with the processor if fine granularity
communication is to be supported. The communication
process, as defined in the model, can be multiplexed on
the processor or implemented on the network controller.
However, in either case, process switches to the com-
munication process must be inexpensive and primary
operations must be executed rapidly. These restrictions

require that the communication process must have fast
access to main processor memory. In addition, low la-
tency, high bandwidth stable storage is necessary for
efficient implementations of only-once-type-2 refer-
ences. To lower contention problems on a slave, the
network controller should allow reception of back-to-
back packets.

The Cm* Kmap [27] is similar in function to a local
network controller that can support the communication
process. In fact, the Kmap has all the necessary proper-
ties (e.g., fast access to processor memory and small
process switch times) except the ability to use stable
storage. Both Cm* operating systems, StarOS [14] and
Medusa [20], use the horizontal microcode executed by
the Kmap in much the way that we would have the
communication subsystem use the facilities of the local
network controller.

With respect to the local network, the reduction in
communication processing overhead may lead to in-
creased bandwidth requirements. In addition, if fine
granularity communication is important, the network
must support the use of small packet lengths to ensure
that fine granularity communication does not incur long
delays. This combination of small packet sizes and high
bandwidth requirements (say, 100 megabits) would prob-
ably not allow contention networks like the Ethernet to
be used. Ring networks like those of Cambridge [29],
TRW [2], or MIT [25] are better suited to high speed,
small packet size requirements. We discuss these net-
work-related issues in more detail in [26].

Turning to the implications of more efficient com-
munication, typical applications for local network-based
systems such as mail servers and replicated file systems
could be more efficiently implemented. It is also possible
to consider using such a local network-based architecture
for supporting distributed programs of the type that
might be executed on shared memory multiprocessors.
However, assuming a matched technology (e.g., fifty
cached, 1 MIPS, 32-bit processing nodes, two 100 me-
gabit/second ring networks) and about 50 percent net-
work utilization, shared memory access would probably
be about two orders of magnitude more costly than local
memory accesses. While this is much better than the four
orders of magnitude that might be found in traditional
communication systems, the few hundred nanoseconds
required for a cached reference is difficult to approach
with a bit-serial communication link crossing a few
hundred meters. Hence, unless multiprocessor algo-
rithms make less than 1 percent of their memory accesses
globally, this architecture could not support them.

On the other hand, this architecture would be suitable
for multiprocessor algorithms that use somewhat less
finely granular communication. If the communication
mix were to include some larger block transfers, high
data communication rates between processors could be
sustained. Thus, an architecture based upon efficient
communication on a high speed local network seems to
fit somewhere between a shared memory multiprocessor

258 Communications April 1982
of Volume 25
the ACM Number 4

and a conventional network-based system. In some ways,
the resulting architecture is similar to the Tandem
NonStop System [15].

One other issue affecting distributed programs con-
cerns the utility of only-once-type-2 references. Though
the availability of low latency stable storage could make
implementations of only-once-type-2 references and
their corresponding remote operations quite efficient, the
fact that the references contain the transaction commit
might result in decreased flexibility. A transaction com-
mit that covers the work performed by multiple refer-
ences is an alternative approach. More work on trans-
action-based distributed systems will be necessary to
resolve this point.

7. Summary

We presented a communication model that includes
a taxonomy of communication instructions, called re-
mote references. The specialization of the references
permits efficient implementations, and the semantic at-
tributes of the references make them a good basis for the
construction of distributed programs. Though relatively
complete, the taxonomy could be extended to include
more complex types of sessions, such as those with
multiple slaves, and to include other semantic attributes
such as intra-reference flow control for references having
very variable size requests and responses.

Following the discussion of the model, we presented
issues that arise when implementing a communication
subsystem based upon the model. The experimental
communication subsystem for the Altos shows that a
streamlined system based upon the model can be imple-
mented with great efficiency.

To demonstrate further the utility of the remote
reference/remote operation model, a reasonable subset
of communication primitives must be selected and a
complete communication subsystem designed. Not all
references can be implemented as efficiently as those in
the example. But without doubt, they could be imple-
mented much more efficiently than the normal commu-
nication mechanisms that are currently used on local
networks.

Acknowledgments. I am indebted to Jim Gray and
Richard Pattis for their many readings of this document.
I would also like to thank Forest Baskett, David Gifford,
John Hennessy, Cynthia Hibbard, Bruce Lindsay, Patri-
cia Selinger, and the referees for valuable suggestions
and comments.

Appendix

Reference Semantics

DEFINE RLDA(MACHINE-NUMBER, ADDRESS) =
IF NO RESPONSE

RETURN]ERROR-CONDITION. INTERNAL-SEQ-NUMBER]
RETURN MACHINE-NUMBER]ADDRESS]

DEFINE RSTA(MACHINE-NUMBER, ADDRESS, VALUE) =
IF NO RESPONSE

RETURN [ERROR-CONDITION. INTERNAL-SEQ-NUMBER]
MACHINE-NUMBER[ADDRESS] := VALUE

DEFINE RCS(MACHINE-NUMBER. ADDRESS. VALUE-I. VALUE-2) =
IF NO RESPONSE

RETURN [ERROR-CONDITION, INTERNAL-SEQ-NUMBER]
IF MACHINE-NUMBER[ADDRESSI EQ VALUE-I
THEN BEGIN

MACHINE-NUMBER[ADDRESS1 := VALUE-2
RETURN IS-EQUAL

END ELSE BEGIN
VALUE-I := MACHINE-NUMBER[ADDRESS[
RETURN IS-NOT-EQUAL

END
DEFINE RENQUEUE(MACHINE-NUMBER, ADDRESS, VALUE) =

IF NO RESPONSE
RETURN]ERROR-CONDITION. INTERNAL-SEQ-NUMBER]

IF FULL-QUEUE(MACHIN E-NUMBER]ADDRESS])
THEN RETURN IS-FULL

ELSE ENQUEUE(MACHINE-NUMBER[ADDRESS]. VALUE)

DEFINE RDEQUEUE(MACHINE-NUMBER. ADDRESS) =
IF NO RESPONSE

RETURN]ERROR-CONDITION, INTERNAL-SEQ-NUMBER]
IF EM PTY-QU EUE(MACHINE-NUM BERIADDRESS])

THEN RETURN IS-EMPTY
ELSE RETURN DEQUEUE(MACHINE-NUMBER[ADDRESS])

Notes: All remote references are done atomically. The expression
referred to as MACHINE-NUMBER[ADDRESS] refers to absolute
memory address ADDRESS on the processor referred to by MA-
CHINE-NUMBER.

Received 9/81; revised 11/81; accepted 12/81

References
I. Barlett, Joel F. A nonStop T M kernel. Proc. 8th Symp. on
Operating System Principles, Dec. 1981, 22-29.
2. Blauman, Sheldon. Labeled slot multiplexing: a technique for a
high speed fiber optic based loop network. Proc. 4th Berkeley
Conference on Distributed Data Manipulation and Computer Networks,
(Aug 1979), 309-321.
3. Boggs, David R., Shoch, John F., Taft, Edward A. and Metcalfe,
Robert M. Pup: an internetwork architecture. Report CSL-79-10,
Xerox Palo Alto Research Center, 1979.
4. Cook, R.P. * M O D - - a language for distributed programming.
IEEE Trans. on Software Engineering SE6, 6 (Nov. 1980), 563-571.
5. Cypser, R.J. Communications Architectures for Distributed
Systems. Addison-Wesley, Reading, MA, 1978.
6. Curry, James E. et al. BCPL Reference Manual. Xerox Palo Alto
Research Center, 1979.
7. Introduction to Programming The Nova Computers. 093-000067,
Data General Corp., Southboro, MA, 1972.
8. Folts, Harold C. Coming of age: a long-awaited standard for
heterogeneous networks. Data Communications. (Jan. 1981).
9. Gray, J., McJones, P., Blasgen M., Lindsay, B., Lorie, R., Price
T., Potzulo, F., and Traiger, I. The recovery manager of a database
management system. Computing Surveys 13, 2 (June 1981), 223-242.
10. Hoare, C.A.R. Communicating sequential processes. Comm.
ACM 12, 8 (Aug. 1978), 666-677.
11. IBM System 370 Principles of Operation. GA22-7000-5, IBM
Corporation, Poughkeepsie, 1976.
12. DOD Standard Transmission Control Protocol Report RFC-761,
Information Sciences Institute, Marina del Ray, 1980.
13. Ikeda, K., Ebihara, Y., Ishizaka, M., Fujima, T., Nakamura, T.,
and Kazuhiko, N. Computer network coupled by 100 MBPS optical
fiber ring bus--system planning and ring bus subsystem description.
Proc. Compcon, Nov. 1980, 159-165.
14. Jones, A.K., Chansler, R.J., Durham, I., Schwans, K., and
Vegdahl, S.R. Staros, a multiprocessor operating system for the
support of task forces. Proc. 7th Symp. on Operating System
Principles. Dec. 1979, 117-127.
15. Katzman, J.A. A fault tolerant computing system, llth Hawaii
Int. Conf. on System Sciences. (Jan. 1978); Also appears in Siewiorek,
O., Bell, G., and Newell, A.: Computer Structures: Principles and
Examples. McGraw-Hill, New York, 1981.

259 Communications April 1982
of Volume 25
the ACM Number 4

Anita K. Jones
Editor

16. Lampson, B, and Sturgis, H.K. Crash Recovery in a Distributed
System. (unpublished), Xerox Palo Alto Research Center, 1979.
17. Liskov, Barbara. Linguistic support for distributed programs: a
status report. Laboratory for Computer Science Computation
Structures Group Memo 201, MIT, Cambridge, 1980.
18. Metcalfe, R.M., and Boggs, D.R. Ethernet: distributed packet
switching for local computer networks. Comm. A CM 19, 7 (July
1976) 395-404.
19. Nelson, Bruce Jay. Remote Procedure Call. Ph.D. Dissertation,
Report CM U-CS-81-119, Carnegie-Mellon University, Pittsburgh,
PA, 1981.
20. Ousterhout, John K., Scelza, Donald, A., and Sindhu, Pradeep.
Medusa: an experiment in distributed operating system structure.
Comm. ACM 23, 2 (Feb. 1980), 92-105.
21. Peterson, James L. Notes on a workshop on distributed
computing. Operating Systems Review 13, 3 (July 1979), 18-27.
22. Popek, G., et al. Locus: A network transparent, high reliability
distributed system. Proc. 8th Syrup. on Operating System Principles,
Dec. 1981, 169-177.
23. Rawson, E.G., and Metcalfe R.M. Fibernet: muhimode optical
fibers for local computer networks. IEEE Trans. on Computer
Communication COM-26, 7 (July 1978), 983-990.
24. Sahzer, J.H. End-to-end arguments in system design. Proc. 2nd
Int. Conf. on Operating Systems. Paris (April 1981).
25. Saltzer, J.H., Clark, D., and Reed, D. Version Two Ring
Network. Laboratory for Computer Science Report, MIT,
Cambridge, 1981.
26. Spector, Alfred Z. Multiprocessing Architectures for Local
Computer Networks. Ph.D. Dissertation, Report STAN-CS-81-874,
Stanford University, 1981.
27. Swan, R.J., Fuller, S.H., and Siewiorek, D.P. Cm* A modular
multi-microprocessor. Proc. of the National Computer Conference.
June 1977, 636-644.
28. Thacker, C.P., McCreight, E.M., Lampson B.W., Sproull, R.F.,
and Boggs, D.R. Alto: A personal computer. In Siewiorek, O., Bell,
G., and Newell, A. Computer Structures: Readings and Examples.
Second ed. McGraw Hill, New York, 1981.
29. Wilkes, M.V., and Wheeler, D.J. The Cambridge digital
communication ring. Proc. Local Area Communication Network
Symposium. Boston, May 1979.
30. ALTO: A Personal Computer System Hardware Manual. Xerox
Palo Alto Research Center, 1979.
31. Zimmerman, H. OSI reference model--the ISO model of
architecture for open systems interconnection. IEEE Trans. on
Communication COM-28, 4 (Apr. 1980), 425-432.

Operating Systems

Grapevine: An Exercise in
Distributed Computing

A n d r e w D. Birrell, Roy Levin,
Roge r M. N e e d h a m , and Michae l D. Schroeder

Xerox Palo Alto Research Cente r

Grapevine is a multicomputer system on the Xerox
research internet. It provides facilities for the delivery of
digital messages such as computer mail; for naming
people, machines, and services; for authenticating people
and machines; and for locating services on the internet.
This paper has two goals: to describe the system itself
and to serve as a case study of a real application of
distributed computing. Part I describes the set of services
provided by Grapevine and how its data and function are
divided among computers on the internet. Part II pre-
sents in more detail selected aspects of Grapevine that
illustrate novel facilities or implementation techniques,
or that provide insight into the structure of a distributed
system. Part III summarizes the current state of the
system and the lessons learned from it so far.

CR Categories and Subject Descriptors: C.2.4 [Com-
puter-Communication Networks]: Distributed Systems--
distributed applications, distributed databases; C.4 [Per-
formance of Systems]--reliability, availability and ser-
viceabifity; D.4.7 [Operating Systems]: Organization and
Design--distributed systems; H.2.4 [Database Manage-
ment]: Systems--distributed systems; H.2.7 [Database
Management]: Database Administration; H.4.3 [Infor-
mation Systems Applications]: Communications Appli-
cations-electronic mail

General Terms: Design, Experimentation, Reliability

Part I. Description of Grapevine

260

1. Introduction

Grapevine is a system that provides message delivery,
resource location, authentication, and access control ser-

Authors' Present Addresses: Andrew D. Birrell, Roy Levin, and
Michael D. Schroeder, Xerox Palo Alto Research Center, Computer
Science Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304;
Roger M. Needham, University of Cambridge Computer Laboratory,
Corn Exchange Street, Cambridge, CB2 3QG, United Kingdom.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0400-0260 $00.75.

Communications April 1982
of Volume 25
the ACM Number 4

