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A communication model is described that can serve 
as a basis for a highly efficient communication subsystem 
for local networks. The model contains a taxonomy of 
communication instructions that can be implemented 
efficiently and can be a good basis for interprocessor 
communication. These communication instructions, 
called remote references, cause an operation to be per- 
formed by a remote process and, optionally, cause a value 
to be returned. This paper also presents implementation 
considerations for a communication system based upon 
the model and describes an experimental communication 
subsystem that provides one class of remote references. 
These remote references take about 150 microseconds 
or 50 average instruction times to perform on Xerox Alto 
computers connected by a 2.94 megabit Ethernet. 
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1. Introduction 

This paper  discusses efficient communication tech- 
niques for very high speed local networks. A major  
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question that this paper attempts to answer is how to 
reduce the traditionally high processing overhead of 
network communication. This overhead, characterized 
by the time to send a null message and receive a null 
answer, was reported by Peterson to be about 20 milli- 
seconds on a variety of  systems [21]. I f  communication 
processing overhead can be reduced and processors are 
interconnected with high bandwidth, low latency net- 
works, distributed programs having a relatively fine 
granularity of  parallelism can be executed. Networks 
operating at up to 100 megabits/second, developed at 
TRW, Mitsubishi, and Xerox, exemplify the technology 
that will permit small data transmission times to be 
achieved [2], [13], [23]. 

Ultimately, studies of  efficient communication must 
be concerned with the specification and implementation 
of language-level primitives. For example, Cook, Hoare, 
Liskov, and Nelson have written about remote procedure 
calls and message passing primitives [4], [10], [17], [19]. 
However, we concentrate on a communication subsystem 
on which to base these language-level primitives. To 
provide overall efficiency, this intermediate communi-  
cation subsystem must be a good foundation on which 
to implement the desired high level primitives. Also, it 
must be specialized enough to be implemented efficiently 
using the semi-reliable packet transmission facility that 
most local networks provide. Efficient implementations 
may require the use of  microcode or specialized hard- 
ware. 

The particular communication subsystem that we 
propose differs from typical network communication 
subsystems in two ways. First, we advocate an integrated 
implementation approach rather than the layered ap- 
proach discussed by Z immerman  [31]. Though layered 
approaches facilitate the use of  similar communicat ion 
subsystems on heterogeneous networks and permit sim- 
plified design and maintenance of  network software, the 
crossing of  layer boundaries results in decreased effi- 
ciency. Second, we place more emphasis on ensuring 
that the functions provided by the communication sub- 
system are suitable for implementing high level primi- 
tives. Rather  than providing, for example, only a trans- 
mission function for asynchronous byte streams, we pro- 
pose that the communication subsystem provide func- 
tions that can be used more easily in implementing high 
level communication primitives. These functions must 
not be too complex (e.g., guaranteeing reliability when 
it is not necessary) nor must they be so simple that 
implementations of  high level primitives using them are 
difficult or inefficient. In some instances, we hope for 
almost a trivial mapping from language-level functions 
to those provided by the communication subsystem. In 
related work, Nelson and Popek have discussed the 
benefits of  streamlined implementations of  communica-  
tion primitives in the context of  programming language 
constructs and operating systems, respectively, [19], [22]. 

The initial sections of  this paper  discuss functions 
that should be provided by a communicat ion subsystem 
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and techniques for implementing these functions. More 
specifically, Sec. 2 presents a communication model 
called the remote reference~remote operation model in 
which a taxonomy of  communication primitives is de- 
fined. We argue that a communication subsystem sug- 
gested by this model can provide powerful primitives yet 
be implemented efficiently. Section 3 presents implemen- 
tation considerations for such a subsystem, and Sec. 4 
exemplifies a highly reliable communication primitive 
that it could provide. 

Section 5 adds substance to the discussion of the 
remote reference/remote operation model by describing 
an experiment in which a simple type of  communication 
instruction was microcoded on Xerox Alto computers 
using the 2.94 megabit experimental Ethernet. (Infor- 
mation on the Alto and the Ethernet can be found in 
[18] and [30].) We show that these instructions execute 
quickly: they typically take about 150 microseconds or 
about 50 macroinstruction times on this hardware. This 
time is about two orders of magnitude faster than could 
be expected if they were implemented in a conventional 
way. This improvement in performance is due to three 
factors: the specialization of  the communication inter- 
face, the use of  simplified protocols, and the direct 
implementation in microcode. 

remote subroutine calls, and message passing operations. 
Specific examples include the SIGP operation on the 
IBM 370 [11], "requests" in the Tandem Guardian sys- 
tem [1], and certain Cm* operating system functions 
[ 141, [20]. 

2. Support for Reliability. In the case of  a transmission 
medium with high reliability such as a local network, 
Saltzer [24] suggests that providing "end-to-end" relia- 
bility is often more important than providing reliable 
message transmission. Because references initiate remote 
operations, such "end-to-end" reliability can be sup- 
ported by remote references; references can have an 
attribute that ensures that an operation is performed, not 
merely that a message is delivered. (As will be discussed 
in Sec. 3.3, the communication system can only assist in 
providing high reliability; the remote operation must also 
be specially implemented.) 

3. Potential for Protocol Simplification. Many types of 
remote references can be implemented using simpler 
protocols than are required for more general and com- 
mon communication mechanisms such as byte stream 
primitives. 

4. Potential for Efficient Implementation. Remote ref- 
erences are specific enough that they can be specially 
implemented, perhaps in microcode or hardware. 

2. The Remote Reference/Remote Operation Model 

In the remote reference/remote operation model, a 
process executes communication instructions called re- 
mote references; each remote reference causes a single 
remote operation to be performed by a remotely located 
process. The remote operation may return a value to the 
caller. A remote reference is analogous to a subroutine 
call instruction that specifies certain properties concern- 
ing the execution of the subroutine. During the execution 
of any remote reference, the process that issues the 
reference is called the master and the process that exe- 
cutes the operation is called the slave. 

Remote operations can vary greatly in complexity, 
from the simplicity of a memory access to the complexity 
of an asynchronously executing subroutine. For example, 
the message passing "send" operation causes a data 
block to be placed on the receiver's message queue and 
provides an indication of  the success of  that operation. 
In this case, the sender is the master, and the queue 
manager (at the remote site) is the slave. 

There are four reasons why this model includes prim- 
itives that not only transmit data but also initiate oper- 
ations and return their results. 

1. Utility of Primitives. An implementation of  high 
level primitives based upon remote references can be 
efficient because remote references are relatively pow- 
erful and reduce the need for costly software (and pro- 
tocol) layering on top of  them. Examples of communi- 
cation primitives that can be naturally implemented 
using remote references are remote memory references, 

2.1 Definitions and Assumptions 
The remote reference/remote operation model pro- 

vides a basis for communication on a system comprised 
of processors connected by a local network, as shown in 
Fig. 1. To discuss the model fully, we must first specify 
some aspects of  the underlying system architecture. 

Data is exchanged between machines by the trans- 
mission of packets over a local ne twork--a  high band- 
width, low latency communication medium having high 
reliability and low cost. With respect to reliability, the 
local network provides four transmission properties: 
First, if a packet is transmitted enough times, it will 
reach its destination. Second, packets corrupted during 
transmission are automatically discarded. Third, packets 
are not duplicated by the network. Finally, packets arrive 
in the order in which they are sent. Thus, local network 
failures result only in lost packets. The reader should 
note that this paper does not discuss internetworks. 

Fig. 1. Underlying Architecture. 
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As will become clear in Sec. 2.3, some remote refer- 
ences are intended to provide very fine grain communi-  
cation. Such remote references are practical only if trans- 
mission latencies are very small for short packets. I f  
many (e.g., 100) processors must also be supported, a 
high capacity (e.g., 100 megabits/second) network may 
be necessary. 

In the model, processors occasionally fail in a detect- 
able fashion and are then restarted. In addition, proces- 
sors contain processes with names unique to that proc- 
essor. There are two classes of  processes: regularprocesses 
that disappear after a processor failure and recoverable 
processes that are automatically reincarnated after a 
processor crash and are reset to one of  several predeter- 
mined states. Recoverable processes require the availa- 
bility of  stable storage--storage that survives failures 
[16]. Processors are sufficiently reliable to allow recover- 
able processes to make progress. 

We assume that the regular and recoverable processes 
are used to provide one or more ordinary processes that 
are used by applications. We also assume the existence 
of  a distinguished process called the communication proc- 
ess. This process is recoverable and is specially imple- 
m e n t e d - o f f - l o a d e d  or at interrupt level--so that it can 
be activated rapidly. Though its implementation must 
permit the execution of  simple functions quickly, it must 
also be able to do more complex operations requiring 
stable storage. (The need for this is described in Sec. 2.3.) 
The communication process does not have the full ca- 

pabilities of  other processes, but it can perform the 
following functions efficiently. 

1. The transmission and reception of  packets on the 
local network. Only the communication process accesses 
the network-specific hardware directly. 

2. The manipulation of specialized communication 
state information. The communication process can 
quickly access the state tables described in Sec. 3.1. Some 
table entries need to be saved in stable storage. 

3. The execution of communication primitives issued 
by other processes on the same processor. This process 
implements the communication interface seen by other 
processes. 

4. The execution of simple operations initiated by a 
remote communication process; i.e., simple requests can" 
be directed to a remote communication process for effi- 
cient processing. 

2.2 Model Description 
Figure 2 illustrates the remote reference/remote op- 

eration model in the absence of communication or proc- 
essor failures. A reference is initiated by an action labeled 
Reference-Commit .  At a later time, a request is received 
on the slave processor, and the communication process 
initiates the appropriate remote operation by issuing an 
action called Op-Begin-Commit .  The remote operation 
is complete only when the action labeled Op-End-Com-  
mit has been executed. I f  the remote operation produces 

Fig. 2. Normal  Operation of  Remote References. 
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a value, the communication process on the slave issues 
a response to the master, which causes the action labeled 
Result-Commit to be executed. For remote reference 
types having certain reliability semantics, some of these 
four actions must be atomic (i.e., execute indivisibly) and 
either correctly write a record on stable storage, or fail 
completely and do nothing. (See [9] for a discussion of  
atomic actions.) 

There are many  possible protocols for implementing 
remote references. In simple cases, upon executing a 
remote reference, a master issues a request packet to a 
slave and possibly awaits a subsequent response packet 
from that slave. In other cases, the protocol is much more 
complex. Section 3.4 contains a more detailed discussion 
of this. 

2.3 Reference Taxonomy 
Remote references have associated with them five 

attribute classes. These are based on the following: vary- 
ing reliability semantics, whether a value is returned, 
how the remote operation occurs temporally with respect 
to the reference, the need for flow control, and the kind 
of process by which the operation will be performed. 
These attribute classes have been selected to span the 
space of  possible implementation strategies--and costs--  
as well as to provide a rich set of  primitives with which 
to communicate.  Sections 2.3.1 through 2.3.5 describe 
these five different attributes in more detail. 

2.3.1 Reliability 
Careful specification of the performance of  remote 

references under different failure conditions is important 
in distributed systems, because we often desire the system 
to tolerate failures. The attributes discussed in this sec- 
tion provide for various degrees of  robustness under 
conditions of  communication and processor failures. 

They are summarized in Table I and described below. 
The four reliability attributes, listed in increasing 

order of  function complexity and implementation cost, 
are as follows: maybe, at-least-once, only-once-type-l, 
and only-once-type-2.  Their names arise from the se- 
mantics that these attributes provide under conditions of  
communication failures. 

In the absence of  communication or processor fail- 
ures, all references initiate one Op-End-Commi t  and, if 
required, one Result-Commit. The effect of  the four 
attributes under conditions of  communication failure 
(i.e., lost packets) is summarized below. 

The maybe attribute: An Op-End-Commit  to be per- 
formed zero or one times. I f  the Op-End-Commi t  is 
performed, the Resul t -Commit  will occur zero or one 
times. 

The a t - leas t -once  attribute: An Op-End-Commit 
will be performed one or more times. The Result-Com- 
mit will also occur one or more times. 

The only-once- type-  1 or only-once- type-2 attribute: 
Exactly one Op-End-Commit  and one Result-Commit 
will occur regardless of  communication failures. 

A slave processor failure may cause maybe, at-least- 
once, and only-once-type-I references to fail: that is, in 
addition to their normal semantics under communication 
failures, we must add the possibility that no O p - E n d -  
Commit and Result-Commit will occur. A failed master 
processor causes problems similar to those of  a failed 
slave processor except that the Resul t -Commit  is guar- 
anteed not to occur. Table I summarizes these points. 

The only-once- type-2 attribute applies to references 
issued to recoverable slaves from both recoverable and 
nonrecoverable master processes. Only-once- type-2  ref- 
erences cause exactly one Op-End-Commit  to be exe- 
cuted, regardless of  failures. The Resul t -Commit  always 
occurs if the master process is recoverable. 

Table 1. Reliability Semantics Survey. 

Reference Semantics Under Different Failure Conditions 

Lost Packets & Lost Packets & Lost Packets, Master 
Protocol Class No Failures Lost Packets Slave Failure Master Failure & Slave Failure 

Maybe op performed: 1 op performed: 0,1 op performed: 0,1 op performed: 0,1 op performed: 0,1 
resuh-commit: 1 result-commit: 0,1 result-commit: 0,1 result-commit: 0 result-commit: 0 

At-Least-Once op performed: 1 op performed: => 1 op performed: _-> 0 op performed: _--> 0 op performed: _-> 0 
result-commit: 1 result-commit: _--__ 1 result-commit: _-> 0 result-commit: 0 result-commit: 0 

Only-Once-Type- 1 

Only-Once-Type-2 

op performed: 1 op performed: 1 op performed: 0,1 op performed: 0,1 op performed: 0,1 
result-commit: 1 result-commit: 1 result-commit: 0,1 result-commit: 0 result-commit: 0 

op performed: 1 op performed: 1 op performed: 1 "[ 
result-commit: 1 result-commit: I result commit: 1 J 

regular master regular master 
process process 

op performed: 1 op performed: 1 
result commit: 0 result-commit: 0 

recoverable master recoverable master 
process process 

op performed: 1 op performed: 1 
result-commit: 1 result-commit: 1 
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These attributes have a major effect on the protocol 
that is needed to implement remote references. Protocol 
considerations are discussed in Sec. 3.4. 

2.3.2 Value and Novalue References 
All references, except those with maybe semantics, 

explicitly return a value to the master process. These are 
called value references. In Fig. 2, Result-Commit labels 
the time at which a value is returned. This value is either 
provided by the remote operation or by the communi- 
cation system; in the latter case, it provides an indication 
that the remote operation has been performed. For 
only-once-type-2 references, which guarantee that a 
remote operation will be performed, this response allows 
the master process to know when the remote operation 
has occurred. 

To permit greater efficiency, we allow maybe refer- 
ences to not return a value. These are called novalue 
references. Maybe references do not require a response 
to achieve their reliability semantics; hence, it would be 
inefficient to require a response for operations that pro- 
duce no value. 

2.3.3 Synchrony 
Remote operations that execute synchronously with 

respect to a calling processor are called processor- 
synchronous. Operations that execute synchronously 
with respect to the calling process only are called proc- 
ess-synchronous: in this case, the processor may execute 
another process while the remote operation is being 
performed. Operations that execute asynchronously with 
respect to only the calling process are called asynchro- 
nous. The order in which remote operations complete 
(i.e., execute Op-End-Commit)  is independent of the 
order of  the asynchronous references that initiate them. 
In summary, a master process can issue processor- 
synchronous, process-synchronous, or asynchronous ref- 
erences. 

References have been divided into these three syn- 
chrony classes because of  the different implementation 
efficiency that is possible for each. For example, proc- 
essor-synchronous references can be implemented very 
efficiently and permit fine grained communication; proc- 
ess-synchronous references require task switching on the 
master; and asynchronous references usually require 
more complex protocols due to the existence of multiple 
outstanding requests. These considerations are presented 
in more detail in Sec. 3.2. 

2.3.4 Inter-Reference Flow Control 
Flow control has many meanings, but we consider 

flow control as a resource reservation system that guar- 
antees a resource is available on the slave. Usually, this 
is buffering space for requests. Thus, flow control ensures 
that a master issues requests to a slave below a predeter- 
mined rate. Flow control is not useful for process-syn- 
chronous or processor-synchronous references, because 
with these a process cannot issue a new reference until 
the last reference has been acted upon. However, asyn- 
chronous references can be either flow-controlled or not- 
flow-controlled. When required, flow control adds to the 
cost of  executing remote references. 

2.3.5 Operation Types: Primary and Secondary 
Operations are primary if they are performed by a 

remote communication process and secondary if they are 
performed by an ordinary process. Primary operations 
can be executed rapidly on the remote processor, because 
the communication process can be activated without 
substantial overhead. Furthermore, requests do not cause 
scheduling or require additional queueing, because there 
is only one communication process per processor, and 
we assume that it can be run with low overhead. Finally, 
the caveat that primary operations must be simple (to 
avoid overloading the communication process) is a factor 
contributing to the high speed at which they run. Ex- 
amples of primary references are causing data to be 
enqueued in a process' mailbox and initiating remote 
memory operations. 

In comparison, secondary operations require request 
demultiplexing, request queueing, and more costly proc- 
ess switching on the remote side. Remote subroutine 
calls are typical examples of secondary references. 

2.4 Discussion 
This communication model provides a large number 

of  well-specified communication primitives. Table II 
summarizes the feasible reference types. Because many 
types of  references are available, and because they differ 
greatly in implementation costs, distributed systems need 
only pay for what they use. Because each reference type 
provides only highly specific functions, implementations 
can be specialized thereby supporting highly efficient 
operation. 

Though a communication system based upon the 
model need not provide all of these reference types, 

Table 11. Reference Type Summary. 

Op-Type 
Synchrony Class Class Flow-Control Class Reliability Class Value Returning Class 

Processor-Synchronous (See 3) Primary Flow-Controlled (See 2) Maybe Value 

Process-Synchronous At-Least-Once 
Secondary Not-Flow-Controlled Only-Once-Type- 1 No-Value (See 1) 

Asynchronous Only-Once-Type-2 (See 4) 
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many have direct uses in distributed systems. Primary, 
processor-synchronous references are useful for sharing 
memory, enqueueing small blocks of data, signalling 
remote processors, etc. Primary, process-synchronous 
and primary, asynchronous references are useful for im- 
plementing message passing primitives. Secondary, proc- 
ess-synchronous references are useful for implementing 
remote subroutine calls and cross-network paging. Fi- 
nally, secondary, asynchronous references have their 
place in the parallel execution of remote subroutine calls. 
Even the maybe reliability attribute is useful; an example 
is the transmission of packetized speech. 

3. Implementation Considerations 

The preceding section described a communication 
model and introduced a taxonomy of primitives. 
Whereas Sec. 2 concentrated on defining the semantics 
of remote references, this section presents implementa- 
tion considerations for a communication subsystem 
based upon the model. We envision that such a system 
would predefine some remote references and provide 
mechanisms for the definition of  others. Predefined re- 
mote references would include primary remote references 
and remote references that are used in the definition of 
others. The predefined primary references would be 
highly optimized and provide low overhead fine granu- 
larity communication. 

First, this section describes sessions; these are con- 
nections between processes over which references are 
conveyed. Then, general implementation issues regard- 
ing the reliability and synchrony attributes are presented. 
This section concludes with a discussion of  protocols and 
the circumstances under which they can be used. 

3.1 Sessions and Sockets 
A session, as defined in this paper, is a logical con- 

nection over which a single master process can issue 
requests and a single slave process can issue responses. 
Associated with a session are the semantic attributes of 
the references which are conveyed over it. For some 
attributes, considerable state information (for such pur- 
poses as flow control or duplicate detection) must be 
maintained. In this work processes are assumed to be 
located on fixed processor nodes for the life of the 
session. 

When a session is established, one socket is created 
on each of the master and slave processors. These sockets 
serve three main functions: First, packets associated with 
that session are addressed using references to these sock- 
ets. Second, sockets contain information that permits 
requests and responses to be mapped to individual proc- 
esses. Third and most importantly, they contain state 
information that enables sessions to provide specific 
semantic attributes for references conveyed during that 
session. Sockets for active sessions are contained in a 
per-processor socket table that is accessed by the com- 
munication process and implemented using both volatile 
and stable storage. 

There are two types of  sockets: regular sockets, which 
do not survive processor crashes and recoverable sockets, 
which use stable storage and do survive crashes. Recover- 
able sockets can be used by recoverable processes to 
ensure that their communication capabilities are not lost 
after processor failures. After a failed processor has been 
restarted, a recoverable process associated with recover- 
able sockets can continue executing references if it is a 
master or receiving requests if it is a slave. No regular 
sockets survive a processor restart. 

A session can be considered to be a distributed 
abstract data object that is manipulated by two cooper- 
ating communication processes via the two sockets. 
There are four major operations allowed during sessions. 

Issue-Reference permits a master process to initiate 
a remote operation on the slave and causes a Reference- 
Commit to occur locally. 

Receive-Response permits a master process to receive 
a response from a slave and causes a Result-Commit. In 
some instances, a master may have a Receive-Response 
outstanding and receive an interrupt when a response 
arrives. Sometimes, Receive-Response is issued in com- 
bination with Issue-Reference. 

Receive-Request permits a slave to receive a request 
from its master. In some instances, a slave may have a 
Receive-Request outstanding and may receive an inter- 
rupt when a request arrives. 

Return-Response allows a slave to return a result to 
its master and causes an Op-End-Commit to be executed 
locally. 

Issue-Reference, Receive-Response, Receive-Re- 
quest, and Return-Response are generic names for prim- 
itives whose implementations are application dependent; 
in fact, their call syntax will often be modified to reduce 
overhead. For example, a normal memory reference may 
result in an Issue-Reference if a segmentation table 
specifies that the memory reference should be issued 
over a session. 

Two sessions are maintained between each pair of 
communication processes to permit each communication 
process to act as both a master and a slave to each other's 
communication process. These sessions, called systems- 
sessions, allow other sessions between noncommunica- 
tion processes to be created and destroyed. Communic- 
tion processes provide the following primitives. 

Register-Process-Name is processed locally on the 
slave processor and registers a slave process name with 
the local communication process, and it specifies how 
requests for that process will be conveyed to it; for 
example, via interrupt or queueing. It also specifies the 
type of  session in which the slave will participate. This 
permits the communication process to respond to re- 
quests asking for sessions with this slave. 

Deregister-Process-Name is processed locally on the 
slave processor and expunges a slave process name from 
the socket table of the local communication process. It 
cannot be issued if a session is established. (The session 
must first be terminated with Terminate-Session.) 
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Initiate-Session is executed by a master and estab- 
lishes a session with a previously registered slave. It 
requires as arguments the remote slave process name and 
address, the desired type of  session (see Sec. 2.3), and an 
indication of  the disposition for responses received from 
the slave. It returns a session number. Initiate-Session 
initiates a remote reference to the communication process 
on the slave. This predefined remote reference serves the 
purpose of  an initial connection protocol such as PUP's 
rendezvous protocol [3]. Additionally, it allows the pre- 
setting of  defaults for that session. 

Terminate-Session eliminates a session. This prede- 
fined remote reference requires the session number as an 
argument and initiates a remote reference to the remote 
communication process. It can be executed by either a 
master or slave. 

Figure 3 illustrates the initiation and termination of  a 
session. 

In summary, the communication process performs 
four main functions: it maintains systems-sessions; it 
supervises the initiation and closing of the other sessions; 
it accepts references from a master process, initiates their 
remote execution and possibly performs certain actions 
to inform the master of  the result; and it accepts remote 
requests from the network, awakens the slave process, if 
necessary, and possibly sends responses to the master. 

The concepts of  sessions and sockets are not unique 
to this work. For example, sockets are called half-sessions 
in SNA [5] and TCB's in TCP [12], and sessions are 

implemented in Level 5 in the OSI protocol hierarchy 
[8]. However, in this work, there are many types of 
sessions, each fulfilling particular needs; the diversity of 
session types, in many instances, permits simpler proto- 
cols to be used. Additionally, the sessions in this model 
subsume the function of  a few layers in general network 
hierarchies; this reduces the need for inefficient protocol 
layering. 

3.2 The Synchrony Attributes 
Processor-synchronous references can be performed 

efficiently if requests and responses are short, and if the 
specified remote operation can be executed quickly. They 
are useful when the cost of  doing the remote operation 
is lower than the additional overhead that would be 
incurred with process-synchronous or asynchronous ref- 
erences. When errors occur that would unduly slow the 
operation of  processor-synchronous references, the ref- 
erence can time-out and be re-executed in a process- 
synchronous fashion. In this way, the master processor 
will not be halted for too long. 

Process-synchronous references are the next most 
efficient references, because they do not require a master 
process to account explicitly for multiple outstanding 
requests. Asynchronous, only-once references of  both 
types require a more complex protocol than processor- 
synchronous or process-synchronous references, because 
a master can issue new references before previous refer- 
ences have completed. Because of  this, slaves cannot 

Fig. 3. Session Initiation and Termination. 
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automatically discard saved state information concerning 
a previous request when a new request arrives. 

With process-synchronous and asynchronous refer- 
ences, each response must be demultiplexed and queued 
to an individual process, and request-response correla- 
tion is more complicated. Additionally, potentially costly 
process switches often occur. 

Asynchronous references may require flow control. 
When needed, flow control requires that the master save 
information that reflects the amount  of  storage space 
reserved for buffering additional requests on the slave. 
Maintaining this information requires additional infor- 
mation to be transferred between the slave and the 
master. 

3.3 The Reliability Attributes 
Maybe references do not require any retransmission 

mechanism. However, to achieve at-least-once seman- 
tics, the master must transmit a request to the slave until 
either a valid response is returned, or it can be deter- 
mined that a processor failure has occurred. Only-once- 
type-1 semantics additionally require that information 
must be saved by the communication process on the 
slave to permit the suppression of  duplicate requests and 
allow response retransmissions. 

Implementations of  only-once-type-2 references are 
similar to those of  only-once-type-l, except that the 
session state must be maintained in recoverable sockets 
on both master and slave. The slave process must be 
recoverable, and the remote operations that it executes 
must be transactions; for example, once a remote oper- 
ation executes Op-Begin-Commit, it will either execute 
Op-End-Commit or fail and leave no trace. In addition, 
both Reference-Commit and Op-End-Commit must be 
atomic, and both must commit state to stable storage. 
Result-Commit and Op-Begin-Commit may be atomic 
and may commit state to stable storage in some instances. 

We should also note that for all only-once-type-2 
references, Result-Commit cannot occur until a valid 
response is received from the slave. I f  the duration of  
only-once-type-2 references is always to be small, a back- 
up processor (that can reference stable storage) must be 
available for the slave to minimize the duration of fail- 
ures. Also, only-once-type-2 references require heavy use 
of  stable storage. Traditional implementations such as 
mirrored disks are probably not suitable for reasons of  
efficiency. 

3.4 Protocol 
The reference attributes, the amount  of  time required 

for the remote operation to be performed, and the 
amount  of  data that must be conveyed between master 
and slave affect the communication protocols that can 
be used to implement remote references. The first pro- 
tocol issue concerns requests and responses that do not 
fit in a single packet. This issue is important because 
local networks may enforce small maximum packet sizes 
to lower the transmission latency for small packets or to 

decrease the size of  the packet buffers that run at the 
speed of  the network. 

Requests and responses that do not fit within a single 
packet can be transmitted as multipackets, or sequences 
of  packets. Multipackets are an extension of the basic 
transmission facilities of  the network to permit the effi- 
cient transmission of  larger amounts of  data. Multipack- 
ets take advantage of the underlying reliability of  the 
network; hence, packets in a multipacket are neither 
acknowledged nor retransmitted. Many schemes are pos- 
sible for multipackets; we describe a scheme based upon 
the use of  a checksum over all packets in the multipacket 
in [26]. Aside from the checksum, this scheme requires 
only one byte of  overhead per packet and permits single 
packet requests and responses to be interleaved with the 
receipt or transmission of multipackets. 

Once arbitrarily long requests and responses can be 
issued, three protocols, the request (R) protocol, the 
request~response (RR) protocol, the request~response~ac- 
knowledge-response (RRA) protocol, are satisfactory for 
implementing the various types of  remote references. 
(Occasionally, other protocols provide higher perform- 
ance; these are discussed in [26].) Flow-control can be 
added to the RR and RRA protocol by providing allo- 
cation fields in responses that indicate the amount  of  
space reserved on the slave for additional requests. 

The R protocol is useful for maybe, novalue, not-flow- 
controlled references. Data is encapsulated into a request 
and transmitted to the slave. 

The RR protocol is useful for many  types of  refer- 
ences. With it, the master initiates a remote operation by 
issuing a request, and the slave returns a result (either an 
explicit value or an acknowledgment) by issuing a re- 
sponse. In the RR protocol, requests and responses must 
contain a unique identifier that permits them to be 
matched to each other. The RR protocol is efficient to 
implement and can be used when the following two 
conditions are satisfied. 

1. The master does not have to buffer too much data 
while it is awaiting a response from the slave. I f  the 
requests are very long and the remote operation requires 
a long time, buffer space may be wasted. 

2. The slave does not have to buffer too much data. 
For example, consider using this protocol to implement 
asynchronous, only-once references of  both types. The 
only-once property requires that the slave retain suffi- 
cient information so it can issue duplicates until the 
master has reliably received a response. Because this 
protocol does not inform the slave when a response has 
been received, the slave can never reclaim storage used 
for storing duplicate responses. 

With processor-synchronous and process-synchro- 
nous references, the issuance of a new reference implies 
the receipt of  the previous response. Because of this fact, 
the RR protocol is potentially useful for all process- 
synchronous and processor-synchronous references. It is 
also useful for asynchronous, maybe, value references, 
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asynchronous, maybe, novalue, flow-controlled refer- 
ences, and asynchronous, at-least-once references be- 
cause these do not require any inter-reference state to be 
maintained on the slave. The RR protocol will always be 
the protocol of  choice for synchronous references because 
requests and responses are necessarily short. Whether  or 
not the RR protocol is used for process-synchronous 
references depends upon the length of requests and 
responses. 

The RRA protocol can be used to lower the amount  
of  storage that must be buffered on the slave. In this 
protocol, the slave's response is acknowledged, allowing 
the slave to reclaim space devoted to storing that re- 
sponse. It is similar to the RR protocol except that the 
master additionally issues an acknowledge-response to 
indicate that it has received certain responses, and the 
unique identifiers contained in requests and responses 
must be sequence numbers (i.e., ordered.) The acknowl- 
edge-response is interpreted as acknowledging the re- 
ceipt of  all responses that have a sequence number  _< M, 
for some M. This interpretation ensures that the loss of  
an acknowledge-response is harmless. When a slave 
receives an acknowledge-response, M, it is free to delete 
all saved state asssociated with responses that have se- 
quence numbers _< M. 

With the RRA protocol, the master may not be able 
to acknowledge all responses immediately. This is be- 
cause the master may receive responses for asynchronous 
references out of  order. The master will be able to 
acknowledge a newly received response immediately 
only if all responses with lower sequence numbers have 
arrived. (If  this causes an important delay in deleting 
state on the slave, a separate sequence number  for re- 
sponses can be added by the slave, and acknowledge- 
responses can acknowledge this sequence number.) 

The RRA protocol may be useful for only-once, 
process-synchronous references, but more usually would 
be used for only-once, asynchronous references. The 
acknowledge-response packet is required for asynchro- 
nous references because a new request does not ensure 
that the last response has been received. 

In all protocols using regular sockets, the slave must 
be able to eliminate sockets associated with crashed 
masters. Many techniques are available: for example, 
upon recovery, the master communication process could 
issue references--over the systems session--to commu- 
nication processes on processors with which it may have 
communicated, requesting that regular sockets be elimi- 
nated. Alternatively, regular sockets could timeout. 

4. An Example: Only-Once-Type-2, Asynchronous 
References 

This section contains a brief discussion of one rather 
complex reference type: an only-once-type-2, asynchro- 
nous, value reference. (In this description, we consciously 
ignore flow-control and addressing considerations due to 
space limitations.) The purpose is not to fully specify an 
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implementation but to demonstrate that this model in- 
cludes rather complex primitives and to exemplify the 
only-once-type-2 attribute. An example of  such a refer- 
ence type is a remote reference that reliably causes a 
slave process to write a page onto remote secondary 
storage, unlock that page, and return a version number. 

In an implementation using the RRA protocol, if  
Reference-Commit is successfully executed, a stable entry 
(containing the request, with sequence number  N, that 
is to be sent to the slave) is made atomically in the 
master 's socket. (Sequence numbers are ordered, and 
new remote references initiate transmission of  requests 
with higher sequence numbers.) The request is then 
repeatedly transmitted by the master to the slave until 
Result-Commit occurs. 

After the requested operation is performed and Op- 
End-Commit is executed, the slave issues a response, 
containing the result and the sequence number  N, to the 
master. Normally, the master receives this response, and 
it executes Result-Commit. Result-Commit attempts to 
commit atomically to stable storage both the reference's 
result and an indication that the reference has completed. 

After Result-Commit has occurred, the master sends 
an acknowledge-response to the slave. The acknowl- 
edge-response contains a sequence number  M, M _< N, 
and indicates that the master has received all responses 
through sequence number  M. The acknowledge-re- 
sponse does not need to be sent reliably to the slave 
because each future acknowledge-response will ac- 
knowledge at least as many  responses as did the previous 
one. After the master has issued the acknowledge-re- 
sponse, the communication process can reclaim 
all storage except for the indication that the reference 
has completed. This protocol is illustrated in 
Fig. 4. 

On the slave, Op-End-Commit must be an atomic 
action that first checks the operation that is about to be 
committed to see that it is not a duplicate. I f  the operation 
is not a duplicate, it then commits the reference result, 
sequence number,  and any operation-dependent data to 
stable storage. The slave then sends a response to the 
master, containing either the previous or the new result. 

Fig. 4. Illustration of RRA Protocol for only-once-type-2, Asynchro- 
nous References. Illustrated case is where there are no lost packets. 
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In fact, the code sequence on the slave from Op- 
Begin-Commit to Op-End-Commit corresponds to a 
transaction where the begin-transaction takes a unique 
identifier as an argument and the commit-transaction 
commits the transaction only if the invocation associated 
with that unique identifier has not already committed. 

5. A Case Study: Only-Once-Type-l, Primary, 
Processor-synchronous References 

In the previous sections, many  types of  remote ref- 
erences were described. The references vary substan- 
tially, both in their intended use, and in their implemen- 
tation. In this section, however, we turn away from the 
generality of  the model in order to study in detail one 
class of  primitives. Our three goals are as follows: to 
show how the remote reference model terminology ap- 
plies to a specific example; to illustrate the direct imple- 
mentation approach that we advocate and show that 
specialized implementations are feasible; and to show 
some performance statistics that are indicative of  the 
communication efficiency possible on local networks. 

Below, we describe two implementations (one in 
software, the other in microcode) of  only-once-type-l, 
value, not-flow-controlled, primary, processor-synchro- 
nous references using a request/response protocol. The 
software version is a layered implementation with which 
the performance of the microcoded version can be com- 
pared. 

The implemented references are called RLDA, 
RSTA, R E N Q U E U E ,  R D E Q U E U E ,  and RCS, and 
initiate remote load, remote store, remote enqueue, re- 
mote dequeue, and remote compare and swap opera- 
tions, respectively, on a remote machine. The latter 
operation is similar to the IBM 370 CS instruction [11]. 
The exact semantics of  these references are summarized 
in the appendix. Both implementations use an RR pro- 
tocol which is called "ESP" for Efficient Synchronous 
Protocol. (See Fig. 5 for the packet format.) 

The work was done on Xerox Alto computers, a 
microcoded 16-bit machine with an internal cycle time 
of 180 nanoseconds, a writeable control store, and a 
memory bandwidth of  29 megabits/second. The Altos 
[28], [31] are interconnected with a 2.94 megabit Eth- 
ernet. Though the Ethernet is somewhat slower than the 
networks with which we are primarily concerned and 
cannot be extended to work at high speeds with the short 
packets that are used, it is a satisfactory experimental 
vehicle. 

The Alto's macroinstruction set as well as its periph- 
eral device controllers are implemented on the micro- 
machine through the operation of  up to 16 microcoded 
tasks, each executing 32-bit microinstructions. Mecha- 
nisms exist to switch between tasks in one microcycle. 
Because I / O  device controllers--including the task that 
controls the Ethernet - -are  implemented as microcoded 
tasks, they can use the full processing capability and 

Fig. 5. ESP Packet Format. 
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temporary storage of the micromachine, and can access 
main memory  easily. 

The emulator task microcode that was used provides 
a macroinstruction set similar to a Data General  Nova 
[7] and executes macroinstructions at about 330 KIPS. 
No protection or virtual memory facilities are imple- 
mented on the Alto. 

5.1. Implementation--Software Version 
We first implemented a software package that pro- 

vides five subroutines that implement the RLDA, RSTA, 
RCS, R E N Q U E U E ,  and R D E Q U E U E  references. 
These subroutines cause a request packet to be transmit- 
ted to a remote Alto and return control when a proper 
response packet is received or when an error condition 
is detected. On the remote site, a slave process executes 
the desired operations and returns an appropriate re- 
sponse. 

The software is written entirely in BCPL [6] and uses 
the raw datagram facilities of  PUP Level 0 for packet 
transport [3]. Sessions are maintained between each pair 
of  communicating processors. Duplicate elimination is 
handled by the sequence number  field of  the ESP packet. 

5.2. lmplementation--Microcode Version 
For the purposes of  this study, it was sufficient to 

implement two separate sets of  microcode: one allows an 
Alto to act as a slave that executes and responds to ESP 
request packets; the other allows an Alto to act as a 
master and issue RLDA, RSTA, RCS, R E N Q U E U E  
and R D E Q U E U E  instructions, formatting request pack- 
ets, and awaiting responses. The two sets of  microcode 
could be combined to provide exactly the same function 
as that provided by the software version, including com- 
patibility with standard PUP communication. However, 
this would require time-consuming modifications to the 
Ethernet control task and is not necessary to prove the 
efficiency that can be achieved for only-once-type-l, 
primary, processor-synchronous references. 
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Though the microcode is quite similar to the software, 
it does differ in some respects. First, incoming requests 
are not queued, because queueing a request would re- 
quire almost as much work as processing it. Second, the 
processing time of  a request is small in comparison to 
the amount  of  time that the Ethernet hardware is busy. 
Third, microcoded instruction decoding is performed to 
make the references more efficient. Finally, substantial 
performance benefits are realized by overlapping mem-  
ory accesses with processing. 

The microcode is simple due to more convenient 
handling of  errors, multitasking, and timeouts in the 
micromachine. It comprises about 280 instructions 
though this number  could be reduced by more clever 
microcoding. A total of  7 hardware registers are used in 
processing. The microcode executing on the slave uses 
an additional 728 (256 × 3) words of  main memory  to 
store the last sequence number  and response values for 
all possible machines connected on the Ethernet. This 
corresponds to the socket table in Sec. 3.1. 

Use of  the new instructions is illustrated by the 
description of  RCS in Fig. 6. Instructions take arguments 
in two general registers as well as in the two words 
following the operation code. They skip return on success 
and return results in one or two registers. 

On error returns, the sequence number  of  the request 
is returned, allowing for additional software retransmis- 
sion of  the request. In our model, this would be done by 
re-executing the reference as a process-synchronous op- 
eration and instructing the communication system to use 
the previous sequence number.  To provide the proper 
error semantics in light of  remote processor failure, a 
flag can be maintained on the slave that is set to 0 when 
a machine has been restarted after a failure. I f  a request 
arrives and finds this flag set to 0, a response can indicate 
that a machine failure has occurred prior to this request. 
Requests always set this flag to 1. 

Upon  receipt of  control following a remote instruc- 
tion, the microcode first collects information from var- 
ious places and assembles it in a 7-word block of mem- 
ory. This includes the machine number  of  both source 
and destination, the system time (which is used as a 
sequence number),  various data values from the general 
registers and the words following the instruction, etc. 
Before the packet is transmitted, one internal register is 
set with the number  of  retransmissions and another with 
a counter that is continuously counted down to allow for 

Fig. 6. Instruction Call Sequence for RCS. 
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timeouts. A transmission count of  2 and a timeout inter- 
val of  3 milliseconds is currently u sed - - a  time long 
enough to permit a long packet on the Ethernet to pass. 
The small transmission count ensures that the processor 
does not suspend its operation for too long. With these 
parameters, the m a x i m u m  time a remote reference can 
halt processing is 6 milliseconds. 

When a response packet is received, its source and 
sequence number  are checked to ensure that it is a 
response for the last request. I f  these numbers match, 
values are placed in one or two general registers and the 
instruction returns. I f  they do not match, either the 
machine waits for another packet, retransmission is at- 
tempted, or the instruction returns and indicates an error. 

At the remote site, the microcode continually checks 
the Ethernet to see if a new packet has arrived. I f  an 
ESP packet arrives, the source byte is used to index into 
the socket table.If  the sequence number  of  the received 
packet is the same as that in the corresponding table 
entry, the request is a duplicate and a response is gen- 
erated using the state information saved after the first 
request. I f  the sequence number  differs, the operation 
specified by the ESP packet type is performed using the 
remote address and value fields as arguments. Up to two 
values resulting from this operation as well as the new 
sequence number  are placed in the table. Finally, a 
response packet is generated using these values. 

5.3. Performance 
In the software version, approximately 210 remote 

references can be executed per second on an unloaded 
Ethernet; this corresponds to 4.8 milliseconds/reference 
or about 1500 macro instruction times. Running at max- 
imum speed, two machines communicating using this 
software package can impose a 1.8 percent load on the 
Ethernet. Using RSTA instructions, this corresponds to 
a 3.4 kilobit effective transfer rate. This software imple- 
mentation is likely to be at least three times faster than 
any implementation using the PUP byte system proto- 
co l - - a  protocol that provides a full duplex, reliable byte 
stream protocol from one machine to another. This 
difference is due to the more complex protocol used by 
the reliable byte stream protocol and the more general 
interfaces that it provides. 

The microcode version is capable of  supporting 6450 
references per second corresponding to a time of  155 
microseconds/reference. As another characterization, 
each remote reference takes about 50 macro instruction 
times. Figure 7 shows a breakdown of  the time spent 
when an R L D A  instruction is executed, assuming no 
contention on the Ethernet. This time is representative 
of  the times of the other instructions as well. Of  the 155 
microseconds required, transmission time accounts for 
more than half: 85 microseconds. Local processing lead- 
ing up to the request requires 28 microseconds, process- 
ing at the remote site requires 31 microseconds, and local 
processing after the response is received requires 1 l 
microseconds. 
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Fig. 7. Breakdown of Time Spent in RLDA Instruction, Microcoded Version. 
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The slave's Ethernet transceiver or processor is busy 
for 116 microseconds per request. Thus, a shared mem- 
ory could support a maximum of  8600 references per 
second. A processor could initiate 6450 remote instruc- 
tions per second, placing a load on the Ethernet of  about 
55 percent. In practice, neither the shared memory nor 
a processor issuing references would operate at their 
maximum rates. 

We have measured a single processor issuing RLDA's  
to a remote memory  at the rate of  5000 per second. The 
difference between 5000 and the theoretical maximum 
of 6450 can be accounted for by the time necessary to 
execute the instruction loop iterating over the RLDA's .  
The Ethernet load generated by this test was 42 percent 
or 1.28 megabits. As one would expect, practically no 
retransmissions or timeouts occurred during this test. 
Though one would not use R L D A  instructions to provide 
high data throughput, the effective transmission data 
rate in this test was 80 kilobits. Table III  summarizes 
these yardsticks. 

I f  a processor executed an instruction stream that 
contained 1 percent remote references, a processor would 
slow from executing about 330,000 instructions/second 
to about 220,000 instructions/second, a 33 percent speed 
degradation. This slowing has implications with respect 
to the types of  distributed programs that could be sup- 
ported. 

In a more complex test, where two machines at- 
tempted to generate 5000 requests per second to a slave, 

local proc. 
10.8 

t ransmiss ion 

t ime 42.5 

remote  proc.  

30.9 

t ransmiss ion 

t ime 42.5 

local prec.  
28.4 

remote 

busy 
115.9 

severe contention problems on the shared memory  oc- 
curred. The high load on the memory  coupled with the 
fact that a slave does not listen to the Ethernet while it 
is processing a request results in many request retrans- 
miss ions--a  type of thrashing. The occurrence of  this 
problem demonstrates that overuse of  a resource in this 
environment is quite harmful. 

Finally, in a test to determine if the Ethernet is a 
limiting factor with two outstanding sessions, two ma- 
chines made requests to two separate shared memories 
and collectively put a load on the network of about 64 
percent of  1.92 megabits. There were very few collisions 
or retransmissions but transmission times were longer 
due to the possibility of  having to wait for a packet to 
pass. The longer transmission times reduced the number  
of  references each machine could generate to about 3750 
per second or about 1250 per second less than when only 
a single session was in use. 

Table I11. Performance Summary. The parenthesized measurements 
were achieved in a BCPL program and include iteration overhead. 

Description Software Microcode 

RSTA's/second (achieved) 210 6450 (5000) 
microseconds/RSTA 4800 155 
Ethernet load (achieved) 1.8% 55% (43%) 

1 master = > 1 slave 
Real Data Rate (achieved) 3.4 Kbits 103 (80) Kbits 
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5.4 Case Study Results 
The case study demonstrated that relatively simple 

only-once- type- l ,  primary, processor-synchronous ref- 
erences can be implemented efficiently. The performance 
results show that the microcoded implementation exe- 
cutes about 30 times faster than the software implemen- 
tation, and probably an additional 3 times faster than a 
software version built upon a general purpose byte 
stream protocol. The performance improvement is not 
surprising given the task switching, queueing, and sub- 
routine calls in the software implementation. What is 
more surprising and important is the ease with which the 
direct microcoded implementation could be done. 

The timings of  the microcoded version show that 
processor-synchronous references are sometimes useful. 
Some remote references (particularly those that require 
the transmission of only a few data words) can be 
performed faster than the time to do a few task switches. 

Excep t  in rare cases where errors or transmission delays 
are encountered, the simplification resulting from the 
processor-synchronous attribute can be beneficial. 

The good performance of  the microcoded version 
depends heavily upon the rapid decoding of the remote 
reference and the low process switch time to the com- 
munication process. The microtask organization of  the 
Alto hardware facilitated both of these. The performance 
of the microcoded version would be much improved by 
the substitution of a 10 megabit Ethernet and slightly 
different hardware. Certainly, remote reference times 
could be well under 100 microseconds with these 
changes. 

One point that the case study was no t  trying to make 
concerns the utility of  unprotected shared memory in 
distributed systems. Where reliability is desired, direct 
memory reads and writes are potentially dangerous. The 
enqueue and dequeue instructions are more likely to 
foster reliability. Additional work on references like 
those described above must include consideration of  
protection and virtual memory. 

6. Architectural Considerations 

Two questions arise from the earlier sections of  this 
work. The first concerns the proper hardware configu- 
ration for supporting very efficient implementations of  
remote references. Particularly, the network controller 
and underlying type of network are affected. The second 
involves the class of  distributed programs that might be 
supported on such systems. 

With respect to the local network controller, it must 
be closely integrated with the processor if fine granularity 
communication is to be supported. The communication 
process, as defined in the model, can be multiplexed on 
the processor or implemented on the network controller. 
However, in either case, process switches to the com- 
munication process must be inexpensive and primary 
operations must be executed rapidly. These restrictions 

require that the communication process must have fast 
access to main processor memory. In addition, low la- 
tency, high bandwidth stable storage is necessary for 
efficient implementations of only-once-type-2 refer- 
ences. To lower contention problems on a slave, the 
network controller should allow reception of  back-to- 
back packets. 

The Cm* Kmap [27] is similar in function to a local 
network controller that can support the communication 
process. In fact, the Kmap has all the necessary proper- 
ties (e.g., fast access to processor memory and small 
process switch times) except the ability to use stable 
storage. Both Cm* operating systems, StarOS [14] and 
Medusa [20], use the horizontal microcode executed by 
the Kmap in much the way that we would have the 
communication subsystem use the facilities of  the local 
network controller. 

With respect to the local network, the reduction in 
communication processing overhead may lead to in- 
creased bandwidth requirements. In addition, if fine 
granularity communication is important, the network 
must support the use of  small packet lengths to ensure 
that fine granularity communication does not incur long 
delays. This combination of  small packet sizes and high 
bandwidth requirements (say, 100 megabits) would prob- 
ably not allow contention networks like the Ethernet to 
be used. Ring networks like those of  Cambridge [29], 
TRW [2], or MIT [25] are better suited to high speed, 
small packet size requirements. We discuss these net- 
work-related issues in more detail in [26]. 

Turning to the implications of  more efficient com- 
munication, typical applications for local network-based 
systems such as mail servers and replicated file systems 
could be more efficiently implemented. It is also possible 
to consider using such a local network-based architecture 
for supporting distributed programs of  the type that 
might be executed on shared memory multiprocessors. 
However, assuming a matched technology (e.g., fifty 
cached, 1 MIPS, 32-bit processing nodes, two 100 me- 
gabit/second ring networks) and about 50 percent net- 
work utilization, shared memory access would probably 
be about two orders of  magnitude more costly than local 
memory accesses. While this is much better than the four 
orders of  magnitude that might be found in traditional 
communication systems, the few hundred nanoseconds 
required for a cached reference is difficult to approach 
with a bit-serial communication link crossing a few 
hundred meters. Hence, unless multiprocessor algo- 
rithms make less than 1 percent of  their memory accesses 
globally, this architecture could not support them. 

On the other hand, this architecture would be suitable 
for multiprocessor algorithms that use somewhat less 
finely granular communication. If  the communication 
mix were to include some larger block transfers, high 
data communication rates between processors could be 
sustained. Thus, an architecture based upon efficient 
communication on a high speed local network seems to 
fit somewhere between a shared memory multiprocessor 
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and a conventional network-based system. In some ways, 
the resulting architecture is similar to the Tandem 
NonStop System [15]. 

One other issue affecting distributed programs con- 
cerns the utility of  only-once-type-2 references. Though 
the availability of  low latency stable storage could make 
implementations of  only-once-type-2  references and 
their corresponding remote operations quite efficient, the 
fact that the references contain the transaction commit 
might result in decreased flexibility. A transaction com- 
mit that covers the work performed by multiple refer- 
ences is an alternative approach. More work on trans- 
action-based distributed systems will be necessary to 
resolve this point. 

7. Summary 

We presented a communication model that includes 
a taxonomy of  communication instructions, called re- 
mote references. The specialization of  the references 
permits efficient implementations, and the semantic at- 
tributes of  the references make them a good basis for the 
construction of distributed programs. Though relatively 
complete, the taxonomy could be extended to include 
more complex types of sessions, such as those with 
multiple slaves, and to include other semantic attributes 
such as intra-reference flow control for references having 
very variable size requests and responses. 

Following the discussion of  the model, we presented 
issues that arise when implementing a communication 
subsystem based upon the model. The experimental 
communication subsystem for the Altos shows that a 
streamlined system based upon the model can be imple- 
mented with great efficiency. 

To demonstrate further the utility of  the remote 
reference/remote operation model, a reasonable subset 
of  communication primitives must be selected and a 
complete communication subsystem designed. Not all 
references can be implemented as efficiently as those in 
the example. But without doubt, they could be imple- 
mented much more efficiently than the normal commu- 
nication mechanisms that are currently used on local 
networks. 
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Appendix 

Reference Semantics 

DEFINE RLDA(MACHINE-NUMBER, ADDRESS) = 
IF NO RESPONSE 

RETURN ]ERROR-CONDITION. INTERNAL-SEQ-NUMBER] 
RETURN MACHINE-NUMBER]ADDRESS] 

DEFINE RSTA(MACHINE-NUMBER, ADDRESS, VALUE) = 
IF NO RESPONSE 

RETURN [ERROR-CONDITION. INTERNAL-SEQ-NUMBER] 
MACHINE-NUMBER[ADDRESS] := VALUE 

DEFINE RCS(MACHINE-NUMBER. ADDRESS. VALUE-I. VALUE-2) = 
IF NO RESPONSE 

RETURN [ERROR-CONDITION, INTERNAL-SEQ-NUMBER] 
IF MACHINE-NUMBER[ADDRESSI EQ VALUE-I 
THEN BEGIN 

MACHINE-NUMBER[ADDRESS1 := VALUE-2 
RETURN IS-EQUAL 

END ELSE BEGIN 
VALUE-I := MACHINE-NUMBER[ADDRESS[ 
RETURN IS-NOT-EQUAL 

END 
DEFINE RENQUEUE(MACHINE-NUMBER, ADDRESS, VALUE) = 

IF NO RESPONSE 
RETURN ]ERROR-CONDITION. INTERNAL-SEQ-NUMBER] 

IF FULL-QUEUE(MACHIN E-NUMBER]ADDRESS]) 
THEN RETURN IS-FULL 

ELSE ENQUEUE(MACHINE-NUMBER[ADDRESS]. VALUE) 

DEFINE RDEQUEUE(MACHINE-NUMBER. ADDRESS) = 
IF NO RESPONSE 

RETURN ]ERROR-CONDITION, INTERNAL-SEQ-NUMBER] 
IF EM PTY-QU EUE(MACHINE-NUM BERIADDRESS]) 

THEN RETURN IS-EMPTY 
ELSE RETURN DEQUEUE(MACHINE-NUMBER[ADDRESS]) 

Notes: All remote references are done atomically. The expression 
referred to as MACHINE-NUMBER[ADDRESS] refers to absolute 
memory address ADDRESS on the processor referred to by MA- 
CHINE-NUMBER.  
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Grapevine: An Exercise in 
Distributed Computing 

A n d r e w  D. Birrell, Roy  Levin,  
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Grapevine is a multicomputer system on the Xerox 
research internet. It provides facilities for the delivery of 
digital messages such as computer mail; for naming 
people, machines, and services; for authenticating people 
and machines; and for locating services on the internet. 
This paper has two goals: to describe the system itself 
and to serve as a case study of a real application of 
distributed computing. Part I describes the set of services 
provided by Grapevine and how its data and function are 
divided among computers on the internet. Part II pre- 
sents in more detail selected aspects of Grapevine that 
illustrate novel facilities or implementation techniques, 
or that provide insight into the structure of a distributed 
system. Part III summarizes the current state of the 
system and the lessons learned from it so far. 

CR Categories and Subject Descriptors: C.2.4 [Com- 
puter-Communication Networks]: Distributed Systems-- 
distributed applications, distributed databases; C.4 [Per- 
formance of Systems]--reliability, availability and ser- 
viceabifity; D.4.7 [Operating Systems]: Organization and 
Design--distributed systems; H.2.4 [Database Manage- 
ment]: Systems--distributed systems; H.2.7 [Database 
Management]: Database Administration; H.4.3 [Infor- 
mation Systems Applications]: Communications Appli- 
cations-electronic mail 

General Terms: Design, Experimentation, Reliability 

Part I. Description of Grapevine 
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1. Introduction 

Grapevine is a system that provides message delivery, 
resource location, authentication, and access control ser- 
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