
Distributed Logging
for Transaction Processing

Dean S Danlets, Alfred 2 Spector, Dean S Thompson

Department of Computer Scrence

Carnegre Mellon Unrversrty

Pmsburgh, PA 15213

Abstract

tncreased Interest In using workstatlons and small processors for
distnbuted transaction processing raises the question of how to
Implement the logs needed for transactron recovery Although
logs can be rmplemented wrth data wntten to duplexed disks on
each processing node, this paper argues there are advantages tf
log data is wntten to multtple log server nodes A simple analysts
Of expected loggrng loads leads to the conclusion that a hrgh
performance, microprocessor based processing node can
Support a log server if it uses efficient communication protocols
and low IateflCy, non volatile storage to buffer log data The buffer
IS needed to reduce the processing time per log record and to
Increase throughput to the logging disk An interface to the log
servers usmg simple, robust, and efficient protocols IS presented
Also described are the disk data structures that the log servers
use This paper concludes with a brief dkscusslon of remammg
design issues, the status of a prototype Implementatron, and plans
for its completion

1 Introduction
Drstrrbuted transaction processing IS of mcreasmg Interest, both

because transactions are thought to be an important tool for

burldmg many types of distributed systems and because theie are

increasing transaction processing performance requrrements

Dlstnbuted transaction systems may compnse a collecbon of

workstatrons that are widely scattered or a COlleCtIOn Of

processors that are part of a mulbcomputer, such as a Tandem

system [Bartlett 811

Most transaction processing systems use loggmg for

recovery[Gray 781, and the question arises as to how each

processmg node should log its data This question IS COmPleX

because log records may be written very frequently, there may be

Permission to copy without fee all or part of this material IS granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the pubhcatlon and its date appear, and notice IS given that copymg
IS by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

8 1987 ACM O-89791-236-5/87/0005/0082 7%

very large amounts of data (e g , megabytes/second), the log must

be stored very reliably, and log forces must occur with little delay

In some environments, the use of shared loggmg facrktres could

have advantages in cost, performance, survrvabrlrty, and

operations Cost advantages can be obtained If expensive logging

devices can be shared For example, In a workstatron

environment, it would be wasteful to dedicate duplexed disks and

tapes to each workstation Performance can be Improved

because shared facrkties can have faster nardware than could be

afforded for each processing node Sutvrvabrlrty can be better for

shared facilities, because they can be specially hardened, or

replicated in two or more locations Rnally, there can be

operattonal advantages because tt IS easier to manage high

volumes of log data at a small number of logging nodes, rather

than at all transaction processing nodes These benefits are

accentuated in a workstahon environment, but the benefits might

also apply to the processing nodes of a multlcomputer

This paper continues by descnbmg the target environment for

distributed logging servrces Section 3 presents an algorithm for

replicatmg logs on multiple server nodes and analyzes the

availabrkty of replicated logs The desrgn of server nodes IS

addressed In Section 4 The paper concludes with a description

of addmonal design Issues and the status of a prototype log server

implementation

2. Target Environment
The distributed logging services described in thus paper are

designed for a local network of high performance microprocessor

based processing nodes We anticipate processor speeds of at

least a few MIPS Processing nodes might be personal

workstatrons, or processors In a transaction processing

multlcomputer In either case, processing nodes may have only a

single drsk (or possibly no dtsk), but a large mam memory of four

82

to sixteen megabytes - or more Log server nodes use either

hrgh capaclty drsks and tapes, or wrote once storage such as

optrcal drsks

The network that mterconnects processmg nodes and servers 1s

a high speed local area network Because processmg nodes

depend on bemg able to do logging, network farlures would be

drsastrous Hence, the network should have mulhple physrcal

links to each processing node One way to achreve rekabrlrty IS to

have two complete networks, including two network interfaces m

each processmg node Use of the logging services described in

thus paper will generate a large amount of network traffic and

special local networks havmg bandwtdth greater than 10

megabits/second may be necessary m some mstances

The types of transactrons executed by the system will vary,

depending on the nature of the processmg nodes Nodes

compnsmg a multmomputer might execute short transactions like

the ET1 transactron [Anonymous et al 851 Workstation nodes

might execute longer transachons on design or office automation

databases These long runnmg transachons are likely to contam

many subtransactions or to use frequent save points
Unkke the parallel loggmg architecture proposed by Agrawal

and Dewitt [Agrawaf 35, Agrawaf and DeWrtt 851, distributed

logging IS Intended to permit mulhple transactron processors to

share loggrng dtsks, rather than to accommodate a hrgh volume of

log data generated by a single (mulh processor) transaction

processor Of course, several drstnbuted log servers may operate

rn parallel m a drstnbuted environment that generates a large

volume of log data

3 Rephated Logging
Transaction facdmes typrcally Implement recovery logs by

wntmg data to multiple disks having independent farlure

modes [Gray 731 If logs are implemented usmg network servers,

it IS possrble to write multrple copies of log data on separate

servers, rather than on multtple disks at a smgle server There are

at least four advantages to replicating log data usmg multiple

servers

First, server nodes become simpler and less expenswe, because

they do not need multrple logging disks and controllers The

number of disks and controllers that can be attached to a small

server node IS often km&d, so this consrderatron can be important

in practice

Second, repkcatmg log data using multrple servers decreases

the data’s vulnerability to loss or corruptron Separate servers are

less likely to have a common failure mode than a single server with

multrple disks In particular, the distance between log servers

mterconnected with local network technology can be much higher

than the distance between disks on a single node, hence, log data

rephcated on multrple servers would survrve many natural and

man made dtsasters that would destroy log data rephcated on a

single server

Third, replicating log data using multiple servers can increase

the avarlabrlity of the log both for normal transaction processing
and for recovery atter clrent node farlures An analysis given in

Section 3 2 shows that availabMy for normal processing in

parhcular can be very greatly improved Any mdivrdual server can

always be removed from the network for servrcmg without

mterruptmg normal transaction processing, and In many cases

without affecting client node failure recovery

Finally, the use of multrple servers rather than mulhple d&s on

one server offers more flexrbilrty when confrgurmg a system

Clients can choose to Increase the degree of rephcation of their

log data The opportunity also exists to trade normal processmg

avarlabrkty for node recovery availabllrty by varying the parameters

to the repkcated log algorithm described below

3 1 Rephcated Log Technique

A replicated log IS an Instance of an abstract type that IS an

append only sequence of records Records In a replicated log are

rdentrfmd by Log Sequence Numbers (LSNs), which are increasing

integers A replicated log IS used by only one transactron

processmg node The use by a single client only permits a

rephcatron technique that IS simpler than those that support

multrple clients The data stored m a log record depends on the

precme recovery and transaction management algorithms used by

the client node

There are three mafor operations on repkcated logs, though

rmplementatrons would have a few others for reasons of

effrcrency The Wrt teLog operation takes a log record as an

argument, writes It to the log, and returns the LSN associated wrth

that record Consecutrve calls to Wrl teLog return increasing

LSNs The ReadLog operation takes an LSN as an argument and

returns the correspondmg log record If the argument to ReadLog

IS an LSN that has not been returned by some preceding

WrlteLog operatron, an exception IS signaled The EndOfLog

operation IS used to determine the LSN of the most recently

written log record Thus repltcatton technique could be used to

83

Server 1
LSH Epoch Present

1 1 Yes

2 1 yes

3 1 Yes _

3 3 Ye*

4 3 no

6 3 Yes

6. 3 yes

Server 2
LSN Epoch present

7-Tl-T

2 t Yes

3 1 Yes

6 3 Yes

7 3 yes

Figure 3-1 Three log server nodes

Implement other useful log operations

The replicated log algorithm described in this section IS a

speclahzed quorum consensus algorithm [Glfford 79, Daniels and

Spector 83, Bloch et al 86, Herlihy 841 that exploits the fact that a

replicated log has only a smgle client A replicated log uses a

collection of M log server nodes, with each client’s log record

being stored on N of the M log servers For cost reasons, log

servers may store portions of the replicated logs from many

clients Like the available copies rephcatlon algorithm [Bernstem

and Goodman 941, this algorithm permits read operahons to use

only one server Concurrent access and network partitions are

not concerns because a rephcated log IS accessed by only a

single client process

Wrl teLog operations on a replicated log are Implemented by

sendmg log records to N log servers The smgle logging process

on the client node caches information about what log servers

store log records so that each Readlog operation can be

implemented with a request to one log server When a client node

IS restarted after a crash, It must mltlallze the cached information

Naturally, the algorithm cannot require the use of an underlymg

transaction faclhty To ensure that any Wr I teLog operation that

was interrupted by the client’s crash IS performed atomlcally, this

replication technique uses addlttonal fields in log records stored

Server 3
LSN Fpoch present

3 3 WI

4 I 3 I”0

?EEF

9 3 yes

on log servers (as described m Section 3 1 1) and the client node

mltiallzatlon procedures described m Section 3 1 2

3 1 1 Log Servers and their Operations

Log servers Implement an abstractlon used by the rephcatron

algorithm to represent mdlvldual copies of the rephcated log In

addltlon to the log data and LSN, log records stored on log servers

contam an epoch number and a boolean present flag mdlcatmg

that the log record IS present m the replicated directory Epochs

are non decreasmg integers and all log records wrltten between

two client restarts have the same epoch number If the present

flag IS false, no log data need be stored The present flag will be

false for some log records that are wntten as a result of the

recovery procedure performed when a client IS restarted

Successive records on a log server are written with non

decreasing LSNs and non decreastng epoch numbers A log

record IS uniquely ldentlfred by a <LSN, Epoch> pair Log servers

group log records Into sequences that have the same epoch

number and consecutive LSNs For example, Server 1 in Figure

3 1 contams log records in the intervals (<l,l> <3,1>) and

(<3,3> <9,3>)

Log servers implement three synchronous operations to support

repllcated logs ’ Unlike the Wrl teLog operation on replicated

logs, the ServerWrl teLog operation takes the LSN, epoch

‘The operatmns are presented ln a slmpllfled way here, a more reakstlc lntertace that supports error recovery and the blockmg of multiple log operations ,nto

a smgle server operation IS descnbed m Section 4 2

a4

Server 2 Server 3 Server 1
LSN Fpoch Present

1 1 Yes

I I I I

6 3 Yes

6 3 Yes

7 3 yet

6 3 yes

9 3 yes

LSN Epoch present

1 1 Yes

2 1 Yes

3 I yes

6 3 yes

7 3 yes

J

LSN Epoch Present

3 3 Yet

4 3 “0

‘le=i+fy
9 3 Yes

10 3 yes

L

Flgu re 3-2 Three log server nodes with log record 10 parhally wntten

number, and present flag for the record as arguments (along wtth

thedata) The ServerReadLog operation returns the present flag

and log record with highest epoch number and the requested

LSN A log server does not respond to ServerReadLog requests

for records that It does not store, but It must respond to requests

for records that are stored, regardless of whether they are marked

present or not The Interval List operation returns the epoch

number, low LSN, and high LSN for each consecutive sequence of

log records stored for a client node Interval Li st IS used when

restarting a client node

3 1 2 Rephcation algorithm

A replicated log IS the set of <LSN,Data> pairs in all log servers

such that the log record IS marked present and the same LSN

does not exist with a higher epoch number The replication

algorithm ensures that the replicated log can be read or written

despite the failure of N- 1 or fewer log servers The replicated log

shown m Figure 3 1 consists of records in the intervals

(<l,l> <2,1>), (<3,3>), and (<5,3> <9,3>) Each of these records

appears on N = 2 log servers

Like other quorum consensus algorithms, the correctness of this

algorithm depends on having a non empty intersection among the

quorums used for different operations That IS, If there are M total

nodes and the ckent writes to N of them, with M > N, ReadLog

performed with expltctt voting will always require 2 or more

ServerReadLog operations Yet M must be greater than N to

provide high avallabikty for Wr 1 teLog To permit ReadLog

J

operations to be executed usmg a smgle ServerReadLog, this

repkcahon algortthm caches enough information on each client

node to enable the client to determme which log servers store

data needed for a particular ReadLog operation

Client nodes mihakze their cached mformatton when they are

restarted by receiving the results of IntervalList operations

from at least M - N + 1 log servers Thrs number guarantees

that a merged set of interval lists will contain at least one server

storing each log record In mergmg the interval lists, only the

entries with the highest epoch number for a parhcular LSN are

kept In effect, this replication algorithm performs the voting

needed to achieve quorum consensus for all ReadLog operations

at client node mmakzabon trme That IS, EndOf Log operahons

return the high value in the merged Interval kst and ReadLog

operations use the lrst to determme a server to which to direct a

ServerReadLog operation If the requested record IS beyond the

end of the log or if the log record returned by the ServerReadLog

operation IS marked not present, an excephon IS signaled

When a cltent IS mmakzed It must also obtam a new epoch

number for use with ServerWr 1 teLog operations Thrs epoch

number must be higher than any other epoch number used during

the previous operabon of this client Appendix I describes a

simple method for lmplementmg an rncreasmg umque ldenhfier

generator that can be used to assign epoch numbers and IS

rephcated for high availability

a5

Server 1
I

LSN Epoch present

I I II

3 3 yes

4 3 no

5 3 Yes

6 3 Yes

7 3 Yes

6 3 yes

9 3 Yes

9 4 YES

to 4 no

Server Server 2 2
LSN LSN Epoch Epoch Present Present

17-r-J-r 17-r-J-r

2 2 1 1 yes yes

3 3 1 1 Yes Yes

6 6 3 3 yes yes

Server 3
ISN Epoch PreSenl

1

1 3 no

E&E

5 3 Yes

6 3 es

9 3 Yes

10 3 yes

Figure 3 3 Three log server nodes after execution of crash
recovery procedure when Server 3 IS unavailable

The Wr I teLog operation asslgns an LSN by Incrementing the

highest LSN in the merged interval list and performs

ServerWrrteLog operations on N log sewers If a server has

received a log record In the same epoch with an LSN lmmedlately

preceding the sequence number of the new log record, It extends

Its current sequence of log records to include the new record,

otherwise it creates a new sequence To prevent large numbers of

separate sequences from bemg created, clients should attempt to

perform consecutive writes to the same servers However, a chent

can switch servers when necessary

The Wr I teLog operation IS not atomic and a client node crash

can result in a sltuatlon where ServerWrl teLog operations for

some log record have been performed on fewer than N log

servers In such a situation, client lnitiallzatlon might not gather

an interval list contammg the LSN for the partially written log

record Figure 3 2 shows a rephcated log with log record 10

partially written If Servers 1 and 2 were used for client

mitiallzation, then the transaction system recovery manager would

not read log record 10 during recovery, but if Server 3 were

included then record 10 would affect recovery

When a client node IS mltlallzed It IS necessary to ensure that the

log write that was occurnng at the hme of the crash appears

atomic to users of the replicated log Because log writes are

synchronous, there IS at most one log record that has been written

to fewer than N log servers If such a record exists, the Wr i teLog

operation can not have completed and the transaction processing

node cannot have depended on whether the operation was

successfully or unsuccessfully performed Therefore, the log

lepllcatlon algorithm may report the record as existing or as not

existing provided that all reports are consistent

Since there IS doubt concerning only the log record with the

highest LSN, It IS copied from a log server storing it (using

ServerReadLog and ServerWrlteLog) to N log servers The

record IS copled with the client node’s new epoch number

Copying this log record assures that if the last record were

partially written, It would subsequently appear in the interval lists

of at least N log servers Finally, a log record marked as not

present IS written to N log servers with an LSN one higher than that

of the copied record This final record has an epoch number

higher than that of any copy of any parttally written record and

hence a partially wntten record with the same LSN WIII not be kept

when Interval lists are merged in any subsequent client

lmtlallzatlon Figure 3 3 shows the replicated log from Figure 3-2

after execution of this procedure using Servers 1 and 2 *

2
The careful reader will notlce that log record 4 only appears as marked not present m Figures 3 I, 3 2 and 3 3

usmg Servers 1 and 3
This resulted from a prevtous chent restart

The ckent mthakzahon procedure IS not atomic A log record

can be partially copied, and the log record marked not present

can be partlally written However, the procedure IS restartable in

that the client’s recovery manager will not act on any log records

prior to the completion of the recovery procedure Once the

recovery procedure completes, Its effects are persistent

3 2 The Availabrhty of Rephcated Logs

Avarlablllty IS a crmcal issue whenever an essential resource IS

provided by a network server With logs that are repkcated using

the previously described algonthm, there IS the opportumty to

trade the avadabrktres of different operations In particular,

Wr I teLog operations can be made more available by adding log

servers, though this does decrease the avallabllrty for ckent node

restart Smce writmg log data IS a much more common operahon

than node restart, this may be a reasonable trade off

The availabllrty of ReadLog operatrons depends on N and the

avallabdrty of the servers storing the desired log record The

availability of the repkcated log for WriteLog operations and

client process mitiakzahon depends on both M and N and on the

avallabrlrty of log servers

Assuming that log server nodes fail independently and are Client mmakzatlon availabllrty decreases as log servers are

unavailable wtth probablktyp, then the probability that a replicated added, because almost all servers must be available to form a

log will be avarlable for Wrl teLog operatrons IS simply the quorum In the case used as an example above, four of the five

probabllrty that M-N or fewer log servers are unavarlable log servers must be available for ckent mmakzatlon This occurs

simultaneously Thrs probabrkty IS given by with a probability of about 0 95

2$yY)PYl--PF’ Similarly, the probabtkty that a replicated

log will be available for ckent mmalization3 IS given by

g--l rY)P’U - PY’ The probability that a replicated log WIII be

available for readmg a particular log record IS l-pN

In practice, the parameter N IS constrained by performance and

cost conslderatlons to having values of two or three Thus, users

of replicated logs must select values of M to provide some

minimum avallabrkty for client restart Figure 3 4 shows the

expected availabrkttes for Wr i teLog operations and client

mmakzatlon of varrous confrgurahons of replicated logs under the

assumphon that individual servers are unavailable Independently

with p = 0 05 probability

As log servers are added (M IS increased), Wr I teLog availability

approaches unity very quickly For example, consider the case of

dual copy repkcated logs (I e N = 2) and M = 5 log servers For

Wr I teLog operatrons to be unavatlable m this model, at least four

of the five servers must be down due to independent failures

Response to Wr I t eLog operations may degrade, as fewer servers

remain to carry the load, but such failures WIII hardly ever render

Wr i teLog operatrons unavarlable

*loo- h

9
: 95.
P
q

90.

85 -

* * W&Log Avallablhty, N = 2
80. 0 +J - WrwLog AvallabMy, N = 3

- Client lmttakatlon Avallabtllty, N = 2
+ - 3 Cltent lnltlallzatton Avatlablldy, N =3

75-
0 2 4 6

,
8 10 72 14 16

M (Number of replrcated log servers)

Figure 3 4 Availabrllty of Replicated Logs with
Probability of lndivldual Log Server Avallablllty 0 95

3The probabihty that the replIcated log wll be avaIlable for cflent mltlallratmn also depends on the availabdlty of the replIcated mcreasmg umque ldentlfler
generator used for obtammg a new epoch number Appendix I gwes the avallablhty of repkated unque ldentlfler generators Representatwes of a repllcated

fdenttfler generators stale wll normally be Implemented on log server nodes and typtcal conflgurattons wll reqwre fewer representatwes than log servers for
client mltlaltzabon Thus the avallablllty of the repkated time ordered umque ldentlfler generator does not lmxt the avallablhty of repkated logs

87

For applrcatrons where survrvabrlrty IS extremely Important, or

clrent rnmalrzatron avadabrltty IS extremely Important, triple copy

logs can be used With five log servers and triple copy replicated

logs, avarlabrlrty for both normal processtng (Wrl telog) and

client initiakzation IS about 0 999

Certainly, replrcated logs provide much higher avarlabrlrty than a

single log server that stores multiple copres of data If only a

single server were used, then ReadLog, WriteLog and cltent

mmalrzatron would be avarlable with probabrlrty 095 Wrth dual

copy replicated logs, 0 95 or better avarlabrlrty for client

mitraltzatron would be achieved using up to M = 7 log servers, and

Wrl teLog and ReadLog operations would be almost always

available

The above analysrs predicts the instantaneous avarlabrlrty of

replicated logs for client process inrtralizatron In practice, M-N+1

log servers do not have to be simultaneously available to mltralrze

a client process The client process can poll until It receives

responses from enough servers to find the sites that store Its log

records Predrctmg the expected time for client process

mitializatton to complete requires a more complicated model that

includes the expected rates of log server failures and the expected

times for reparr

4 Log Server Design
Desrgnmg high performance servers to implement replicated

logs requires determining the server hardware that IS needed, the

communication protocol for accessmg a server, and the

representation of log data Naturally, tt IS desirable to provrde a

sample design while stall dekvenng good performance

Performance IS measured by the time requrred to perform an

operation on the log server, and the number of operations per

second that a log server can handle

This section begins with a simple analysis of the capacity

requirements for log servers The analysis provides a concrete

basis for many design decrsrons Next, the ckent Interface to log

servers and the protocols used for accessmg them are described

The last aspect of log server design addressed in detarl In this

paper IS the representatron of log data on the server Section 5

describes additronal Issues not treated in thus paper

4 1 Log Server Capacity Requrrements

The goal of thus analysis IS to understand what occurs In a

distributed transactron processmg system that IS executmg a

heavy load In parhcular, it IS important to determme the rate of

calls to each fog server, the total data volume logged In the whole

system and On each log server, and the frequency wrth whrch data

must be forced to drsk Such an analysrs also leads to an

understandmg of which resources become saturated first Once

bottlenecks are exposed, server designs that reduce contentron

for these resources can be explored

For simplrcrty, we have chosen to analyze a load generated by a

single transaction mix that we understand well The load IS

generated by a collection of fifty client nodes of the capacity

described in Section 2 with service provided by SIX log servers

Client nodes write log data to two log servers and are assumed to

execute ten local ET1 [Anonymous et al 851 transactions per

second, thus provrdmg an aggregate rate of 500 TPS We chose

this target load, not so much because we thought it would be

representatrve of workstatron loads, but because we knew that It

was an ambmous load in excess of that being supported on any

distributed system currently In use

Each ET1 transaction in the TABS prototype [Spector et al

65a, Spector et al 85b] transaction processing system writes 700

bytes of log data in seven log records Only the final commrt

record written by a local ET1 transaction must be forced to disk,

preceding records are buffered in virtual memory until a force

occurs or the buffer fills

If each log record were written to log servers with mdrvrdual

remote procedure calls (RPCs) each log server would have to

process about 2400 incoming or outgoing messages per second,

a load that IS too high to achieve easily on moderate power

processors Fortunately, recovery managers commonly support

the grouping of log record writes by provrdmg different calls for

forced and buffered log writes The client interface to log servers

must be designed to exploit grouping in a srmrlar way, this permits

log records to be stored on a client node until they are eXpllCrtly

forced by the recovery manager

In the target load, only one log write per transaction needs to be

forced to disk, thus, groupmg log records until they need to be

forced reduces the number of RPCs by a factor of seven Stall,

each server must process about 170 RPCs per second Many

researchers have demonstrated that low level rmplementatrons

are very important for good RPC performance [Nelson 81, Spector

82, Burell and Nelson 841 In particular, simple, error free RPCs

should be performed using only a smgle packet for each request

and reply If thus objective IS met, and if the network and RPC

implementation processing can be performed m one thousand

88

InstructIons per packet, then communtcahon processmg WIII

consume less than ten percent of log server CPU capacity

Fifty client nodes, each using two log servers, ~111 generate

around seven million total bits per second of network traffic With

the use of mulhcast, this amount would be approximately halved

This load could saturate many local area networks However, two

networks are needed for avarlabillty reasons, and together they

could support the load Higher speed, typically hberoptlc,

networks havmg a bandwidth of approximately 100

megabits/second are becommg more prevalent [Kronenberg 861,

and they could be substituted

Log servers WIII frequently encounter back to back requests,

and SO must have sophlshcated network interfaces that can buffer

multlple packets Client nodes wtll wish to send requests to

different servers In parallel, and so client nodes must also be able

to recetve back to back (response) packets

Although message processing IS not likely to be a bottleneck for

log servers, performmg 170 writes to non volatile storage per

second could easily be a problem 4 Certamly, It IS mfeaslble to

perform seeks to different flies for writes to different logs, instead

records from different logs must be Interleaved In a data stream

that IS wntten sequentially to disk

However, the rotatlonal latencles would still be too high to permit

each request to be forced to disk Independently Waltlng for

requests to accumulate could delay responses, IncreasIng lock

contentlon and system response time Using addihonal disks to

dlstnbute writes Increases the cost and COmplexltY of log servers

To provide acceptable logging performance with a small number

of disks, log servers should have low latency, non vofatlle buffers

so that an entire track of log data may be written to disk at once

There are several technologies that may be used for Constructing

such a buffer, mcludmg CMOS memory with a battery for backup

power Issues In designing such a buffer device are described In

Section !j I If two thousand mstructlons are used to Process the

log records m each message and to copy them to low latency

non volatile memory, and If writing a track to disk requires an

additional two thousand mstructlons, then even with small track

sizes only ten to twenty percent of a log server’s CPU capacity will

be used for writing log records to non volatile Storage Disk

utlllzntlon will be higher close to fifty percent for slow disks with

small tracks The addltlonal disk utlllzatlon Induced by read

operations IS dtfflcult to predict because it depends on the

frequency of reads anu on whether reads are mainly for sequential

log records The use of local caches for processing transaction

aborts, as described m SectIon 52, means that server read

operations will be used mainly for node restart and media recovery

processing

With this target load, approximately ten bllllon bytes of log data

will be written to each log server per day Current technology

permits the storage of this much data onlme, so that simple log

space management strategies could be used For example,

database dumps could be taken daily, and the onlme log could

simply accumulate between dumps However, storage for this

much log data would dominate log server hardware costs It may

be desirable for cost, performance, or rellabMy reasons to used

more sophlshcated checkpomtmg and uumpmg strategies to limit

toe online log needed for node or media recovery as Secbon 5 3

discusses

To summarize, this capacity analysis has exposed several

important points for log server design First, clients must access

log servers through interfaces whtch group together multlple log

records and send them usmg specialized low level protocols

Second, multiple high bandwidth networks must be used and

network interfaces must be capable of receiving back to back

packets Third, log records from multiple clients must be merged

into a single data stream that IS buffered on a special low latency

non volatile storage device and then written to disk a track at a

time Finally, the volume of log data generated, while large, IS not

so great as to require complicated processing simply to reduce

online log storage requirements If these points are taken into

account, it should be possible to achieve acceptable performance

from servers Implemented using the same processors as client

nodes

4 2 Log Server Interfaces and Protocols

The preceding section demonstrated that the Interfaces and

protocols used to access log servers must be carefully deslgned

to avoid bottlenecks First, the interface must transfer multlple log

records in each network message to reduce the number of

messages that must be processed Second, the interface must be

implemented using specialized protocols, rather than being

layered on top of expensive general purpose protocols

Addmonally, the protocols used for accessmg log servers should

permit large volumes of data to be written to the server efficiently

leecause power failures are hkely to baa common fanlure mode for log servers, It IS not acceptable to buffer log data tn volatile storage

89

Asynchronous Messages from Client to Log Server

WriteLog(IN CllentId, EpochNum, LSNs, LogRecords)

ForceLog(IN ClIentId, EpochNum, LSNs, LogRecords)

NowInterval(IN ClientId, EpochNum, StartingLSN)

Asynchronous Messages from Log Server to Client

NewHlghLSN(IN NewHighLSN)

fdissingInterval(IN MissingInterval)

Synchronous Calls from Chent to Log Server

IntervalLlst(IN ClIentId, OUT IntervalLlst)

ReadLogForward(IN ClientId, LSN. OUT LSNs, LogRecords, PresentFlags)

ReadLogBackward(IN ClIentId, LSN, OUT LSNs, LogRecords, PresentFlags)

CopyLog(IN ClientId, EpochNum. LSNs, LogRecords, PresentFlags)

InstallCoples(IN ClientId, EpochNum)

Figure 4-l Client Interface to Log Servers

The need for streammg IS not well dlustrated by ET1 transactions,

but It IS important for transactlons that update larger amounts of

data

Extra care must be taken to make the low level protocols robust

Lost or delayed messages must be tolerated, and recovery from

server failures must be possible ReaBstlcally, remote logging WIII

only be feasible when local area networks are used, hence, the

protocols should exploit the inherent rellablhty of local area

networks and use end to end error detection and

correctlon [Saltzer et al 841 to ehmmate the expense of redundant

acknowledgments and error detection

Simplicity, both in specification and implementation, IS an

additional desirable property for the interface to a log server

RPCs possess this property and they can be implemented very

?h?mthy ‘bfnrf~mrdd~y, TKTl; -dts nhrtmft~y syn-&nvnau% -&i

do not permit the eff crent streaming of large amounts of data

The Interface presented here Includes strict RPCs for infrequently

used operations, such as for reading log records, and

asynchronous messages for wnhng and acknowledging log

records

Figure 4 1 shows RPC and message header definitions for the

log server and client interface This Interface differs from the

abstract operations defined on log servers In Section 3 1 because

of the support for transmission of mulhple log records in each call,

streaming of data to log servers, and error detection and recovery

To establrsh communrcahon with a log server, a client imtiates a

three way handshake Both client and server then marntam a

small amount of state while the connection IS active This allows

packets to contain permanently unique sequence numbers, and

permits duphcate packets to be detected even across a crash of

the recelvmg node All calls participate in a movmg window flow

control strategy at the packet level An allocation inserted in every

packet specifies the highest sequence number the other party IS

permitted to send without waiting Deadlocks are prevented by

allowing either party to exceed its allocatron, so long as rt pauses

several seconds between packets to avold overrunning the

receiver Each party attempts to supply the other with unused

allocation at all times This connection establishment and flow

t&rrdm&nanmn &uaseb on a niroridi oy VQarsonlt+arson%j

The Wr rteLog and ForceLog messages, and the

ReadLogForward, and ReadLogBackward calls transmit multiple

log records Client processes and log servers attempt to pack as

many log records as will fit in a network packet in each call The

ReadLogForward and ReadLogBackward calls differ as to

whether log records wtth log sequence number (LSN) greater or

less than the Input LSN are used to fill the packet The

IntervalList call IS used when a client IS mltlahzed as

90

described m Section 3 1 The Input parameter to this call IS a

chent ldentmer and the output IS a list of intervals of log records

stored by the server for that client

Multlple Wr 1 teLog operahons on a distributed log are grouped

together by the client and records are streamed to log servers

asynchronously Error detectton and recovery IS based on

requested positive acknowledgments, prompt negative

acknowledgments, and prompt responses to negative

acknowledgments A chent writes log records with the ForceLog

message when It needs an lmmedlate acknowledgment, and with

the Wr 1 teLog message when it does not If It uses the ForceLog

message and does not get a response, It retries a number of times

before moving to a different server A log server acknowledges a

successful ForceLog message by returning the highest forced

log sequence number in a NewHighLSN message A server

detects lost messages when it receives a ForceLog or Wr 1 teLog

message with log sequence numbers that are not contiguous with

those it has previously received from the same client It notifies

the client of the missing interval immediately through a

NissingInterval message

When a client receives a MissingInterval message It Wlli

either resend the missing log records in a ForceLog message, or

use the NewInterval message to inform the server that it should

Ignore the mlssmg log records and start a new interval The

NewInterval message IS used when the missing log records

have already been written to other log servers, as happens when a

chent switches log servers

Log servers should make every effort to reply to Interval Lls t,

ReadLogForward and ReadLogBackward calls, but they are free

to ignore ForceLog and Wr 1 teLog messages If they become too

heavily loaded Clients WIII simply assume that the server has

failed and will take their logging elsewhere

Because the client Interface to log servers IS deslgned to group

log records and send multlple packets of log records

asynchronously, more than one record might have been written to

fewer than N log servers when a client node crashes The client

must limit the number of records contamed In unacknowledged

Wr 1 teLog and ForceLog messages to ensure that no more than

8 log records are partlally written Even with such a bound, two

additional calls on log servers are need for client recovery The

CopyLog synchronous call IS used to rewrite records that may

have been partially written Unlike the ForceLog and Wr 1 teLog

messages, log servers accept CopyLog calls for records with

LSNs that are lower than the highest log sequence number wntten

to the log server The InstallCopies call IS used to atomrcally

install all log records copied (with the CopyLog call) with a

particular epoch number Thus, dunng recovery the most recent

6 log records are copied with a new epoch number using

CopyLog calls Then, 6 new log records marked not present are

written with CopyLog calls Finally, the copied records are

installed with the InstallCopies call

The protocol described here IS not the only one that might be

used If most log records are smaller than a network packet, the

log sequence numbers themselves can be used efficiently for

duplicate detection and flow control This permits a much simpler

implementahon (and possibly better performance), and eliminates

the need for special messages to establish a connection The

disadvantage to thrs approach IS that any log record larger than a

network packet must be sent with an acknowledgment for each

packet, or through a separate connection based protocol

If most log data must be wntten synchronously (as will be the

case when transactions are short), it IS appropriate to use a more

synchronous interface than that described here A strictly

synchronous Interface WIII be simpler to implement, and might

perform better If the need for asynchronous streaming of large

amounts of data IS rare

4 3 Dtsk Data Structures for Log Servers

The capacity analysis in Sectlon 4 1 demonstrated the need for

data structures that use log servers’ disks efflclently In particular,

log servers should not have to perform disk seeks m order to log

data from drfferent ckents Thus, the first oblectlve rn the design

of the dmk representatton for log servers IS to reduce seeks while

writing An additional oblectlve IS to design data structures that

permit the use of write once (optcal) storage, because thaf

technology may prove useful for capacity and rellablhty reasons

There are two types of data that must be kept In non volatile

storage by log servers First, the server must store the Interval II&S

describing the consecubve sequences of log records stored for

each client node Second, the server must store the consecutive

sequences of log records themselves

An essential assumption of the replicated logging algorithm IS

that interval lists are shot-l In general, new intervals should be

created only when a client crashes or when a server crashes or

runs out of capacity Storing one interval requires space for three

integers the epoch number and a begming and ending LSN

This will be only a tmy fraction of the space reqmred to store the

91

log records m the Interval

Because Interval It.& are short, It IS reasonable for a server to

keep them in volatile memory during normal operation This IS

Particularly convenient because the last intervals m the lusts for

aCtlve CllentS are changing as new log records are wntten

Interval lists are checkpomted to non volatile storage permdlcally

They may be checkpomted to a known locatlon on a reusable disk

or to a write once disk along with the log data stream After a

crash, a server must scan the end of the log data stream to find

the ends of active intervals, unless there IS sufflclent low latency

non volatile memory to store acttve Intervals

Organization of the storage for the consecutive sequences of

log records IS a more difficult problem To reduce seekmg, data

from different clients must be interleaved on disk Any sequence

may be hundreds of megabytes m length and be spread over

glgabytes of disk A data structure that permits random access by

log sequence number IS needed

Logarithmic read access to records may be achieved using a

data structure that we call an append-forest New records may be

added to an append forest In constant time using append only

storage, provldmg that keys are appended to the tree in strictly

increasing order A complete append forest (with 2”-1 nodes)

resembles and IS accessed m the same manner as a binary search

tree having the followmg two properties

1 The key of the root of any subtree IS greater than all its
descendants’ keys

2 All the keys in the right subtree of any node are
greater than all keys m the left subtree of the node

height n

An mcomplete append forest (with more than 2”-1 nodes and

less than 2”+‘-1 nodes) conslsts of a forest of (at most n-l-l)

complete binary search trees, as described above Trees in the

forest have height n or less, and only the two smallest trees may

have the same height All but at most one of the smallest trees m

the forest will be left subtrees of nodes in a complete append

forest (with 2”+‘- 1 nodes) Figure 4 2 IS a schematic diagram of

an append forest

All nodes In the append forest are reachable from its root, whtch

IS the node most recently appended to the forest The data

structure supports mcomplete append forests by adding an extra

pointer, called the forest pointer, to each node Thus pomter links

a new append forest root (which IS also the root of the right most

tree m the append forest) to the root of the next tree to the left A

chain of forest pomters pointers permits access to nodes that are

not dependents of the root of the append forest

Searches m an append forest follow a chain of forest pointers

from the root until a tree (potentially) contammg the desired key IS

found Btnary tree search IS then used on the tree An append

forest with II nodes contains at most[log,(n)l trees in its forest,

therefore searches perform 0(&(n)) pointer traversals

Figure 4-3 illustrates an eleven node append forest The solid

lines are the pointers for the right and left sons of the trees m the

forest Dashed lines are the forest pointers that would be used for

searches on the eleven node append forest Dotted lmes are

forest pointers that were used for searches m smaller trees The

last node inserted into the append forest was the node with key

11 A new root with key 12 would be appended with a forest

at most n+l trees f
at most two smallest

\

trees of same height

Figura 4-2 Schematrc of incomplete append forest

92

Figure 4-3 Eleven Node Append forest

pornter knkmg It to the node wrth key 11 An addrtronal node wrth

key 13 would have herght 1, the nodes with keys 11 and 12 as 1t.s

left and right sons, and a forest pomter knkmg rt to the tree rooted

at the node wrth key 10 Another node wrth key 14 could then be

added wrth the nodes wrth keys 10 and 13 as sons, and a forest

pointer pointing to the node wrth key 7

When an append forest IS used to Index a log server client’s

records, the keys will be ranges of log sequence numbers Each

node of the append forest WIII contain pointers to each log record

in its range Wrth thus data structure, each page sued node of the

tree can index one thousand or more records

5 Dtscusslon
This paper has presented an approach to distnbuted loggmg for

transactron processing The approach IS intended to support

transaction processing for workstations or to be used to construct

multmomputer systems for high performance transaction

processing Designs for a replicated logging algonthm, for an

interface to log servers, and for disk data structures for log

storage have been presented AddItIonal design Issues are

described below, and the paper concludes with the status of our

implementation of prototype log servers

5 1 Low Latency Non volatile Memory

CMOS battery backup memory IS almost certamly the technology

of choice for rmplementmg low latency non volatile memory Less

certain IS the mechanism by which the host processor should

access the memory Section 4 3 Indicated than an additional use

for low latency non volatrle memory besides disk buffering would

be storing active Intervals It IS likely that others could be found

and, therefore it can be argued that the non volatile memory

should be accessrble as ordinary memory, rather than integrated

mto a dtsk controller However, data in dtrectly addressable non

volatile memory may be more prone to corruption by software

error Needham et al [Needham et al 831 have suggested that a

solution to this problem IS to provide hardware to help check that

each new value for the non volatile memory was computed from a

previous value

5 2 Log Record Spllttmg and Caching

Often, log records written by a recovery manager contam

independent redo and undo components The redo component of

a log record must be written stably to the log before transaction

commit The undo component of a log record does not need to be

wrrtten to the log until Just before the pages referenced a the log

record are written to non volatrle storage Frequently transactrons

commit before the pages they modify are written to non volatile

storage

The volume of logged data may be reduced if log records can be

splrt into separate redo and undo components Redo components

of log records are sent to log servers as they are generated, with

the rest of the log data stream Undo components of log records

are cached in virtual memory at client nodes When a transaction

commits, the undo components of log records written by the

transaction are flushed from the cache If a page referenced by

an undo component of a log record in the cache IS scheduled for

cleaning, the undo component must be sent to log servers first If

a transactton aborts while the undo components of its log records

are In the cache, then the log records are available locally and do

not need to be retrieved from a log server

The performance Improvements possible with log record

splitting and cachtng depend on the size of the cache, and on the

length of transacttons If transactions are very short, then the

fraction of log records that may be split will be small, and splitting

will not save much data volume Very long running transactions

will not complete before pages they modify are cleaned, and

spkttmg will also not save data volume The cached log records

WIII speed up aborts and relieve disk arm movement contention on

log servers because log reads will go to the caches at the clients

93

5 3 Log Space Management

Log servers may be required to store large amounts of data as

mdlcated m Sectron 4 1 Various space management functions

may be used in different combmahons to reduce the amount of

online log data There are at least four functions that can be

combmed to develop a space management strategy First, client

recovery managers can use checkpomts and other mechanisms to

limit the onlme log storage required for node recovery Second,

periodic dumps can be used to llmlt the total amount of log data

needed for media farlure recovery Third, log data can be spooled

to offlme storage Finally, log data can be compressed to

elfmlnate redundant or unnecessary log records

Log space management strategies should be compared In terms

of their cost and performance for various recovery operations

Recovery operations of interest Include node recovery, media

failure recovery, the repalr of a log when one redunUant copy IS

lost, and recovery from a disaster that destroys all copies of part of

a log Relevant cost measures Include online storage space,

processmg requirements in log servers and clients, and software

complexity Performance measures include whether recovery

operahons can be performed with online or offline data and the

relative speed of the operations

5 4 Load Assignment

The Interface presented in Sectlon 42 does not contain

protocols for assigning clients to log servers Ideally, clients

should distribute their load evenly among log servers so as to

minimize response times

If the only technique for detecting overloaded servers IS for a

client to recognize degraded performance with a short timeout,

then clients might change servers too frequently resulting In very

long Interval lists If servers shed load by rgnonng chents, then

chents of failed servers might try one server after another without

success Presumably, simple decentralized strategies for

assigmng loads fairly can be used The development of these

strategies IS likely to be a problem that IS very amenable to analytic

modeling and simple experimentation

5 5 Common Commit Coordmatlon

If remote logging were performed using a server havmg mirrored

disks, rather than using the replicated logging algorithm described

In Sectlon 3, that server could be a coordmator for an optimized

commit protocol The number of messages and the number of

forces of data to non volatile storage required for commit could be

reduced, compared with frequently used distributed commit

protocols [Lndsay et al 791 Optimrzations are applicable only

when transactions modify data on more than one node Latency

for log forces IS not as great a consideration If low latency non-

volahle storage IS being used in log servers, and careful design of

commit protocols can reduce the number of messages required

for commit of distributed transactions Still, if multi node

transactlons are frequent then common commit coordination IS an

argument against replicated logging

5 6 Implementing A Prototype Log Server

The authors are currently implementing a prototype distributed

logging service based on the design presented In this paper The

implementation IS berng carried out in several stages

The first stage, an lmplementahon of the log server Interface and

protocols described m Section 4 2 IS complete It uses Perq

workstatlons running the Accent operating system [Perq Systems

Corporation 84, Rashld and Robertson 811 Accent inter node

communication IS not as low level or efficient as Secbon 4 1

suggests IS necessary, and only a skeleton log server process

without data storage was Implemented This lmplementatlon was

completed in January 1986 and was used for valldatmg the

protocols

The second stage of lmplementatlon augmented the first stage

with data storage m the log server’s virtual memory The TABS

distributed transaction processing system was used as a client for

this stage of the log server Thus, the second stage permitted

operational experience with a working transaction system as a

client As of April 1986, remote logging to virtual memory on two

remote servers used less than twice the elapsed time required for

local logging to a single disk

The first version of our final lmplementatlon of distributed

logging began operating In February 1987 in support of the

Camelot distributed transaction facility [Spector et al 881 Both

Camelot and the log servers use the Mach operating system

[Accetta et al @3] and currently run on both IBM RT PCs and DEC

Vaxes This Implementation uses low level protocol

implementations and stores log data on magnetic disks The

append forest IS not currently Implemented because the amount

of data stored IS comparatively small When optical disks are

available, the append forest will be used Low latency non volatile

storage IS assumed by the lmplementahon and we expect to

implement such storage with a battery based standby power
supply for the entlre workstation After performance tuning and

evaluation, this lmplementatlon will be the basis for additional

research In the other aspects of distributed logging mentioned

above

94

Acknowledgments

We wash to thank Shern Menees, Randy Pausch, Bruce Lmdsay,

and an anonymous referee for reading and commenting on this

paper Jim Gray also contributed to this work through a ltvely

discussion

I Replicated Increasing Unique
ldentiflers

This appendix considers the problem of generating Increasing

unique ldentlflers Section 3 1 describes how these ldentlfters are

used to distmgulsh log records written in different cltent crash

epochs and hence to make atomtc any log writes that might be

interrupted by crashes This method for replicating Identifier

generators only permits a a single client process to generate

identifiers at one time Atomic updates of data at more than one

node are not required for this method of replicating unique

Identifier generators

lncreasmg Identifiers are given out by a replicated abstract

datatype called a replrcated ,dentrher generator The only

operation provided by a replicated identifier generator IS NewID, a

function that returns a new unique ldentlfier Identifiers issued by

the same generator can be compared with = (equal) and < (less

than) operators Two Identifiers are equal only if they are the

result of the same NewID tnvocation One identifier IS less than

another only if tt was the result of an earher mvocation of NewID

Identifiers given out by a replicated Identifier generator are

Integers and Integer compansons are used for the < and =

operations The state of the replicated identifier generator IS

repllcated on N generator state represenlafrve nodes that each

store an integer in non volatile storage 5 Generator state

representatives provide Read and Write operations that are

atomic at individual representatives

The NewID operation first reads the generator state from [?I

representatives Then, NewID writes a value higher than any read

to [:I representatives Any overlappmg assignment of reads and

writes can be used Finally, the value written IS returned as a new

Identifier

Because the set of generator state representatives read by any

NewID operation intersects the set of representatives written by all

preceding NewID operations that returned values, Identifiers

returned by a NewID mvocatlon are always greater than those

returned by previous lnvocatlons If a crash interrupts a NewID

operation, then a value wntten to too few representatives could be

omitted from the sequence of Identifiers generated

The difference between an infimte sequence of umque

identifiers generated as described here and a sequence of log

sequence numbers generated by the replicated log Wr1 teLog

operation described n Sectlon 3 1 IS that the replicated log

ReadLog operation may be used to determme whether the

sequence contams some Integer Slmllarly, the scheme described

here provides no way to determme the last ldentlfler generated

The availablllty of the repllcated mcreasmg umque Identifier

generator depends on the availability of the generator state

representatives and on the number of generator state

representabves If generator state representatives are unavailable

with probablllty p then the probablllty that a rephcated unique

ldentlfier generator IS available IS the probablkty that [$!J or

fewer node% :re unavailable simultaneously

given by$-?’ (N)pf(l-p)N-’ I

This probablllty IS

References

[Accetta et al 661 Mike Accetta, Robert Baron, WIlllam Bolosky,
David Golub, Richard Rashid, Avadis Tevanlan, Michael
Young Mach A New Kernel Foundation for UNIX
Development In Proceedmgs of Summer Usenrx July,
1966

[Agrawal65] Rakesh Agrawal A Parallel Loggmg Algorithm for
Multiprocessor Database Machines In Proceedmgs of
the Fourth lnfernatronal Workshop on Database
Machrnes, pages 256 276 March, 1965

[Agrawal and Dewitt 651 Rakesh Agrawal, David J Dewitt
Recovery Architectures for Multiprocessor Database
Machines In Proceedrngs of ACM S/GM00 1985
lnternatronal Conference on Management of Data, pages
132 145 May, 1965

[Anonymous et al 651 Anonymous, et al A Measure of
TransactIon Processing Power Datamatron 31(7), April,
1965 Also available as Technical Report TR 65 2,
Tandem Corporation, Cupertino, California, January
1965

[Bartlett 611 Joel Bartlett A NonStopN Kernel In Proceedrngs
of the Eighth Symposwm on Operafrng System Prmclples
ACM, 1961

[Bernstein and Goodman 641 P Bernstein and N Goodman An
algorithm for concurrency control and recovery in
replicated distributed databases ACM Transachons on
Database Systems G(4) 596 615, December, 1964

‘Append only storage may be used to tmplement generator state representatwea

95

[Blrrell and Nelson 841 Andrew D Blrrell, Bruce J Nelson
lmplementmg Remote Procedure Calls ACM
Transactrons on Computer Systems 2(l) 39 89, February,
1984

[Bloch et al 861 Joshua J Bloch, Dean S DameIs, Alfred
2 Spector A Werghted Voting Algorithm for Rephcaled
Directones Techmcal Report CMU CS 66 132, Carnegie
Mellon Umversrty, June, 1986 Revision of Report CMU
CS 84-114, April 1984 To appear in JACM in 1987

[DameIs and Spector 831 Dean S DameIs, Alfred Z Spector An
Algorithm for Replicated Directories In Proceedings of
the Second Annual Symposium on Principles of
Distributed Computmg, pages 104 113 ACM, August,
1983 Also available m Operating Systems Review 20(l),
January 1986, pp 24 43

[Glfford 791 David K Glfford Weighted Voting for Replicated
Data In Proceedings of the Seventh Symposrum on
Operating System Prmcrples, pages 150 162 ACM,
December, 1979

[Gray 781 James N Gray Notes on Database Operating Systems
In R Bayer, R M Graham, G Seegmuller (editors),
Lecture Nofes in Computer Science Volume 60
Operafmg Systems -An Advanced Course, pages
393 481 Sprmger Verlag, 1978 Also available as
TechnIcal Report RJ2188, IBM Research Laboratory, San
Jose, California, 1978

[Herlihy 841 Maurice P Herlihy Genera/ Quorum Consensus A
Replication Method for Abstract Data Types Technical
Report CMU CS 84 164, Carnegie Mellon University,
December, 1984

[Kronenberg 861 Nancy P Kronenberg, Henry M Levy, and
Wllllam D Strecker VAXclusters A Closely Coupled
Distributed System ACM Transactrons on Computer
Systems 4(2), May, 1986 Presented at the Tenth
Symposium on Operating System Principles, Orcas
Island, Washington, December, 1985

[Lindsay et al 791 Bruce G Lindsay, et al Notes on Distnbuted
Databases Techmcal Report RJ2571, IBM Research
Laboratory, San Jose, Callforma, July, 1979 Also
appears m Droffen and Poole (editors), DNnbuted
Databases, Cambridge University Press, 1980

[Needham et al 831 R M Needham, A J Herbert, J G Mitchell
How to Connect Stable Memory to a Computer
Operating Systems Revrew 17(l) 16, January, 1983

[Nelson 811 Bruce Jay Nelson Remote Procedure Call PhD
thesis, Carnegie Mellon Unwerslty, May, 1981 Available
as TechnIcal Report CMU CS 81 119a, Carnegie Mellon
University

[Perq Systems Corporatton 841 Perq System Overvrew March
1984 edition, Perq Systems Corporation, Pittsburgh,
Pennsylvania, 1984

[Rashid and Robertson 811 Richard RashId, George Robertson
Accent A Communication Onented Network Operating
System Kernel In Proceedrngs of the Eighth SyWposrum
on Operatrng System frmcrples, pages 64 75 ACM,
December, 1981

[Saltzer et al 841 J H Saltzer, D P Reed, D D Clark
End To End Arguments In System Design ACM
Transactrons on Computer Systems 2(4) 277 288,
November, 1964

[Spector 821 Alfred Z Spector Performing Remote Operations
Effrclently on a Local Computer Network
Communrcatrons of the ACM 25(4) 246 260, April, 1982

[Spector et al 85a] Alfred Z Spector, Jacob Butcher, Dean
S DameIs, Dame1 J Duchamp, Jeffrey L Eppnger,
Charles E Rneman, Abdelsalam Heddaya, Peter
M Schwarz Support for Distributed Transactions in the
TABS Prototype EEE Transacrrons on Software
Engrneenng SE 11(6) 520 530, June, 1985 Also available
In Proceedings of the Fourth Symposium on Rellablllty In
Dlstnbuted Software and Database Systems, Silver
Springs, Maryland, IEEE, October, 1984 and as Technical
Report CMU CS 84-132, Carnegie Mellon University, July,
1984

[Spector et al 85b] Alfred Z Spector, Dean S DameIs, Daniel
J Duchamp, Jeffrey L Eppmger, Randy Pausch
Distributed Transactions for Reliable Systems In
Proceedings of the Tenth Symposium on Operatmg
System Prmcrples, pages 127 146 ACM, December,
1985 Also available in Concurrency CoWof and
Re/rab/lrty m D/stnbuted Systems, Van Nostrand Reinhold
Company, New York, and as Technical Report CMU
CS 85 117, Carnegie Mellon University, September 1986

[Spector et al 861 Alfred Z Spector, Joshua J Bloch, Dean
S DameIs, Richard P Draves, Dan Duchamp, Jeffrey
L Eppmger, Sherri G Menees, Dean S Thompson The
Camelot Project Database fngrneermg 9(4), December,
1986 Also available as Technical Report CMU
CS-86 166, Carnegie Mellon University, November 1986

[Watson 811 R W Watson IPC Interface and End To End
Protocols In B W Lampson (editors), Lecture Notes m
Computer Scrence Volume 105 Dlstrrbuted Systems -
Archrfecture and lmpfementatron An Advanced Course,
chapter 7, pages 140 174 Springer Verlag, 1981

96

