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If a compiler for language L is implemented in L, then it should be able to compile itself. But
for systems used interactively commands are compiled and immediately executed, and these com-
mands may invoke the compiler; so there is the question of how ever to cross-compile for another
architecture. Also, where the compiler writes binary files of static type information that must
then be read in by the bootstrapped interactive compiler, how can one ever change the format of
digested type information in binary files?

Here I attempt an axiomatic clarification of the bootstrapping technique, using Standard ML
of New Jersey as a case study. This should be useful to implementors of any self-applicable
interactive compiler with nontrivial object-file and runtime-system compatibility problems.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
D.2.4 [Software Engineering]: Program Verification; D.2.6 [Programming Environments]:
Interactive; D.4.9 [Operating Systems]: Systems Programs and Utilities—linkers; loaders

General Terms: Verification

Additional Key Words and Phrases: Bootstrapping

1. INTRODUCTION

A conventional C compiler, written in C, is said to be “bootstrapped” if it compiles
itself. Now, suppose a new version of the compiler source is written, that uses
different registers for passing arguments. The old compiler can compile this source,
yielding a new compiler.

But look! The executable version cc’ of the new compiler uses the old parameter-
passing style, but generates code that uses the new style. One can use the new
compiler, however, to recompile all the libraries (and the new compiler itself) and
get a “new new” executable that both uses and generates the new parameter-passing
style.

There is not much else to be said about bootstrapping C compilers (though see
Section 6). But in a language with an interactive read-eval-print loop, commands
are typed by the user, compiled immediately, and executed. Such a command, when
compiled, may be a recursive call to the compiler itself, this time to compile a spec-
ified source file into a binary file. The compiler processing interactive commands
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is the same one that compiles a source file; this makes it difficult to cross-compile
for a different target architecture! In fact, in a sufficiently feature-laden interactive
compilation system, there are many constraints on the retargeting and bootstrap
process. This paper is a case study of the Standard ML of New Jersey (SML/NJ)
system, explaining the difficulties and how to manage them.

Bin Files. Source files are transated by SML/NJ into “bin” files;1 each bin file
contains the executable machine code for the corresponding source, and the ex-
ported static environment for that source [Appel and MacQueen 1994]. For exam-
ple, if a source file defines two structures S and T , each with several components,
then the static part of the bin file is a description of the structures S and T : the
names and types of their components and substructures.

The static part of the bin files is an ML data structure, complete with pointers,
datatype constructors etc., created by the compiler and written in binary form to
the bin file. Ordinarily, when a program is compiled to bin files by the interactive
system, the bin files (including static part) will be read back into the same version
of the system. But in bootstrapping, the compiled program is the “new” compiler,
and we want to discard the “old” compiler. Thus, the new compiler executes, and
loads in static information (from the bin files) about itself. For this to work, the
representation of static environments in the old and new compilers must agree.
This representation has two parts: the ML data types E (and their interpretation)
chosen by the programmer; and the representation D of these data types as pointers
and records in memory. Constraints on E might occur in any compiler that stores
digested static information; constraints on D are a consequence of the fact that
SML/NJ uses a pickler to write relocatable pointer data structures to the binary
file just as they appear in memory.

In-line Primops. When the SML/NJ compiler first executes, it initializes its
static environment by constructing a special primitive basis containing the in-line
primitive operations (such as +, :=, etc.). This static environment is built using the
same ML datatypes as ordinary static environments, but it is directly constructed
without parsing any input. The primitive environment is then imported and used
by the ML code that implements the initial basis.

When compiling a new version of the compiler, one can augment or change the
primitive environment. But one cannot make use of the changed primitives until
the new compiler compiles a “new new” compiler.

Initial Basis. ML programs can assume an “initial basis” [Milner et al. 1990, p.
77], an environment in which certain types and values are defined. The compiler
itself also relies upon the initial basis. Furthermore, the source code for the initial
basis is part of the source code for the compiler. Finally, the source code for the
initial basis uses, in places, elements of the primitive basis containing names of
specially implemented in-line functions.

This means that if some new version of the initial basis is desired, there are
potential interactions with the rest of the system that must be considered.

Interactive System. The normal mode of operating SML/NJ is to compile both
interactive input and ML programs from source files, and run the compiled pro-

1This is true of SML/NJ versions since 0.96.
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grams in the same process as the compiler. It is particularly convenient to have an
“interactive” compiler during the compiler development process, where individual
compiler modules can be replaced “on-the-fly.” The compiled programs use the
same initial basis as the compiler. The compiled programs must be callable from
the compiler, and must be able to call the same initial functions that the compiler
calls; thus, compiled programs must use the same calling conventions (etc.) as the
compiler itself. This makes it difficult to bootstrap a new version of the compiler
that uses different calling conventions.

These interactions between the compiler and the executing program make for
complications when (a new version of) the compiler is the executing program.

Example

The terminology of this example will be explained in Section 3, but the point here
is to illustrate what can go wrong if one is not careful.

Suppose there is a version “1” of the system as a set of ML source files σ1 and
bin files β1. The bin files are compiled object files (like “.o” files in a C system),
and are the result of compiling the source files using some compatible version of
the compiler.

We wish to use β1 to compile σ1, yielding a new version of the executable compiler.
First, boot builds an executable µ1. This is like a link-loading step in a conven-

tional system, but it must also load from β1 the digested description of the initial
static environment, so that compilations in µ1 will have access to library modules
(and the compiler itself) shared with µ1. This sharing is essential, if only so that
µ1 and the interactive commands running within mu1 do not have separate copies
of runtime-system management data that would trip over each other.

boot(β1) = µ1

Now µ1 compiles the source σ1 into binary object files β′1:

compile(µ1, σ1) = β′1

Now we hope that β1
∼= β′1, whatever that means.

However, suppose one edits the source files to produce σ2, a new version of the
compiler that uses a different calling convention. One might try the following steps:

compile(µ1, σ2) = β2

boot(β2) = ⊥
The boot step fails because β2 is not self-consistent. The code generated by β2

from a top-level interactive expression (using the new calling conventions) is able
to call functions in the Basis within β2 (compiled using the old conventions), so the
first top-level command will dump core.

On the other hand, some changes are harmless: if the only change is a different
algorithm for code optimization, boot will probably succeed. Finally, some self-
inconsistencies will manifest themselves at stages other than boot.

How can one tell whether a change is harmless? And, since “nonharmless”
changes are often necessary, how can one compile and bootstrap them correctly?
The rest of the paper addresses these questions.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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2. CHARACTERIZATION

I will use the following symbols to describe characteristics of a “version” of the
compiler:

A. Architecture for which the compiler generates code, or on which it runs.
C. Calling conventions for which the compiler generates code: which registers

are used for what purpose; how end-of-heap is detected; whether a stack is used;
etc.
D. Datatype layout: how ML data types are laid out in memory.
E. Environment representation: how static environments are described in terms

of ML data types.
B. Basis: the signature of the initial environment available to ordinary programs

(and the compiler) upon startup.
P . Primitive basis: the static environment created by the compiler, describing

in-line primitive operations and data types. Normally the primitive basis is used
only in compiling the source code for the initial basis.

2.1 Source Characteristics

These characteristics are now used to describe the source code σ for some version
of the compiler. The equations in this section just explain, in informal terms, the
meaning of notation that will be used in the axioms of Section 3.

a ∈ Agen(σ). The compiler σ may contain code generators for several different
target architectures; architecture a is a member of this set.
Cgen(σ) = c. The compiler σ generates code that uses the c calling conventions.
Dgen(σ) = d. The compiler σ generates code that uses the d datatype layout

scheme.
Egen(σ) = e. The compiler σ uses (and writes to bin files) the e static environ-

ment representation.
Buse(σ) = b. The nonbasis part of the system σ (that is, the compiler proper) is

a program that makes use of functions in Basis b.
Bimp(σ) = b. The basis part of the system σ implements the basis b.
Puse(σ) = p. The basis part of the system σ is a program that makes use of the

functions in primitive basis p.
Pgen(σ) = p. The compiler σ defines a primitive environment p for its compiled

code.

2.2 Binary-File Characteristics

One can describe these aspects of compiled binary files in much the same way:

Arun(β) = a. The program β runs on architecture a.
a ∈ Agen(β). The compiler β generates code for the a architecture.
Crun(β) = c. The program β follows the c calling conventions.
Cgen(β) = c. The compiler β generates code that uses the c calling conventions.
Drun(β) = d. The internal data structures of program β obey the d datatype

layout scheme.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Denv(β) = d. The static environments in bin files β use the d datatype layout
scheme.

Dgen(β) = d. The compiler β generates code that uses the d datatype layout
scheme.

Eenv(β) = e. The static environment’s bin files β are in the e environment rep-
resentation.

Egen(β) = e. The compiler β uses and generates the e environment representa-
tion.

Buse(β) = b. The nonbasis part of β (that is, the compiler proper) is a program
that makes use of functions in basis b.

Bimp(β) = b. The basis part of β implements the basis b.

Pgen(β) = p. The compiler β1 defines a primitive environment p1 for its compiled
code.

2.3 Executable-File Characteristics

The bin files are linked with a runtime system (and static environments are read
from the bin files to initialize the compiler’s user-visible “initial basis”) to form an
executable file µ, whose characteristics are just like those for bin files β, except
that:

—Executable files do not have separate static environment sections as bin files do,
so Eenv and Denv do not apply.

—Executable systems generate code for only one machine, so Agen(µ) is a single
architecture rather than a set of architectures.

3. AXIOMS

I will give axioms describing the procedures of compiling, bootstrapping, retargeting,
and elaboration; these axioms will then be used to prove theorems in Section 4.

3.1 Compiling

To compile source code, one executes the interactive system µ, and gives commands
to compile source files σ into binary files β:

compile(µ, σ) = β

for which the following equations must hold:

Buse(σ) v Bimp(σ)
Puse(σ) v Pgen(µ)

The relation v expresses the ML signature-matching relation. That is, Puse(σ) v
Pgen(µ) means that the source files σ can be compiled in a primitive environment
created by µ: every identifier looked up will be present and have an appropriate
type. The “basis” (B) part of σ defines modules that are then used by the “com-
piler” part of σ, so the first equation is straightforward. But the “primitives” (P )
containing special in-line function definitions must be specially constructed by µ.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Fig. 1. “T-diagram” for compile.

The binary files (i.e., the files in the bin directory) β are then characterized by
the following equations.

Arun(β) = Agen(µ)
Agen(β) = Agen(σ)
Crun(β) = Cgen(µ)
Cgen(β) = Cgen(σ)
Drun(β) = Dgen(µ)
Dgen(β) = Dgen(σ)

These first six equations are unremarkable, and would occur in practically any
compiler.

Denv(β) = Drun(µ)

This equation results from the use of a “pickler” for writing the static type infor-
mation (pointer data structures) to a file in the same binary format that is used in
core.

Eenv(β) = Egen(µ)
Egen(β) = Egen(σ)

These two equations on E would hold in any compiler that writes digested static
type information, with or without the use of a pickler.
Bimp(β) = I(Bimp(σ)), where I is a hash function that computes “persistent

identifiers” from the static environment exported by a source program. The per-
sistent identifiers are then used for linking the machine code of different modules
together, in a guaranteed type-safe way.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Buse(β) = Bimp(β). The two equations on B are a consequence of sharing library
code and data between the interactive system and the compiled user code.
Pgen(β) = Pgen(σ). True in any compiler that defines functions that look ordinary

to the user but are compiled specially (e.g., in-line).
These equations are summarized schematically in Figure 1.

3.2 Bootstrapping

The bootstrapper is a part of the C language runtime system. It knows just enough
to extract the dynamic part (machine code) from bin files β; but not the format of
static environment representations, which only the compiler understands. However,
the machine code within β is the compiler; once it starts running, it can load the
static part of β to form an environment (symbol table of the initial basis) for
compiling user programs. The result is an interactive compiler µ:

boot(β) = µ.

For this to work, the following equations must hold:

Arun(β) ∈ Agen(β). So that the compiler and top-level interactive commands can
both run on the same computer.
Crun(β) = Cgen(β). So that top-level interactive commands can call and be called

by the compiler and initial basis.
Drun(β) = Dgen(β). for the same reason.
Denv(β) = Drun(β). So the bootstrapping compiler can read static environments

from bin files.
Eenv(β) = Egen(β). For the same reason.

The remaining equations characterize the output µ:

Arun(β) = Arun(µ) = Agen(µ)
Crun(β) = Crun(µ)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Cgen(β) = Cgen(µ)
Drun(β) = Drun(µ)
Dgen(β) = Dgen(µ)
Egen(β) = Egen(µ)
Buse(β) = Buse(µ)
Bimp(β) = Bimp(µ)
Pgen(β) = Pgen(µ)

These equations are summarized in Figure 2.
Now, for example, one can see that the boot failure described in Section 1 is

because Crun(β2) 6= Cgen(β2) violating one of the preconditions for boot.

3.3 Retargeting

Because it is impossible to bootstrap using compile and boot if the new compiler
uses a new calling sequence or environment representation, two special procedures
are provided. The first of these is called retarget: Run an interactive compiler µ1,
and load the bin files β for a different version of the compiler as a “user program.”
Since β may include code generators for many machines, one can also specify which
target architecture a’s code generator should be selected from β.

retarget(µ1, β, a) = µ2

The compiler originally present in µ1 will be used in µ2 for compiling top-level
interactive commands, but the compiler β will be used in µ2 for turning source files
into bin files.

Ordinary user programs do not provide their own implementation of the initial
basis, so the basis portion of β (corresponding to the that implement Bimp(β)) will
not be loaded: Bimp(β) is irrelevant. However, the nonbasis portion of the compiler
β must be compatible with the basis already running in µ1, so that β can call upon
standard I/O functions (etc.) built into µ1.

As an ordinary user program, the bin files β executing under the supervision of µ1

can generate code for any architecture or any calling sequence. This is because the
code is not going to be executed in the current process, so it need not be compatible
with the instruction set or calling conventions that µ1 itself is using. This freedom
is crucial for cross-compilation (compilation for a different target architecture or
calling convention).

The following restrictions apply (see Figure 3):

a ∈ Agen(β)
Arun(β) = Arun(µ1)
Crun(β) = Crun(µ1)
Drun(β) = Denv(β) = Drun(µ1)
Eenv(β) = Egen(µ1)
Buse(β) = Bimp(µ1)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Fig. 3. Schematic for retarget.

The last equation is an exact signature match. In particular, it means that the
intrinsic persistent identifiers generated from the compilation of the initial basis
(files in the src/boot directory) in building the bin files within µ1 must be identical
to the corresponding identifiers in the initial basis portion of β. 2

The following equations characterize the output µ2:

Arun(µ2) = Arun(µ1)
Agen(µ2) = a

Crun(µ2) = Crun(µ1)
Cgen(µ2) = Cgen(β)

2This can be guaranteed by producing β and µ1 from the same compiler µ0, in the following way:

compile(µ0, σ1) = β1

boot(β1) = µ1

compile(µ0, σ2) = β

where the source codes for the Bimp portions of σ1 and σ2 are identical.
This works because I is really a function: (x = y)⇒ (I(x) = I(y)).
In versions 0.96–0.98 of the SML/NJ system, the “persistent identifiers” were just timestamps,

so that I would return different results at different times. Therefore, with the procedure outlined

at the top of this footnote, B(β) and B(β1) would not export the same “persistent identifiers”
even though the source code was identical. Instead, one would have to create a new, empty bin
directory; copy just the bin files for the initial basis from β1 to the new bin directory β; and then
proceed with a compile that would use these files as a starting point.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Drun(µ2) = Drun(µ1)
Dgen(µ2) = Dgen(β)
Egen(µ2) = Egen(β)
Buse(µ2) = Buse(µ1)
Bimp(µ2) = Bimp(µ1)
Pgen(µ2) = Pgen(β)

This is funny hybrid indeed.

3.4 Elaboration

Finally, elab is a special variation on boot that reparses the source files to build
the static environment, instead of reading it from the bin files: elab(β, σ) = µ.

Now, given the two steps

compile(µ0, σ) = β

elab(β, σ) = µ

β must satisfy all the equations given for boot above except for the ones involving
Denv(β) and Eenv(β), because the environments will not be read from the bin files.

Another requirement for elab is that σ and β must be related by the compile
command shown (see Figure 4).

The resulting executable µ is defined by the same equations as for boot(β). In
fact, with elab there is no need for boot, except that elab is much slower because
it reparses all the source.

4. STABLE VERSIONS

Definition. (σ, β) form a stable version if the following equations hold:

Arun(β) ∈ Agen(σ) = Agen(β)

Cgen(σ) = Crun(β) = Cgen(β)

Dgen(σ) = Drun(β) = Dgen(β) = Denv(β)

Egen(σ) = Eenv(β) = Egen(β)

Buse(σ) v Bimp(σ)

Bimp(β) = I(Bimp(σ))

Buse(β) = Bimp(β)

Puse(σ) v Pgen(σ) = Pgen(β)

Remark: If compile(boot(σ, β′), σ) = β′ then (σ, β) is a fixed point, a stronger
property. But we cannot prove fixed-point properties from the axioms in this paper.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Suppose one starts with a stable version (σ1, β1) and creates a new source σ2.
How can one obtain bin files β2 to make a stable version with the new source?

All of the “theorems” in this section are proved using only the axioms of Section 3
and the definition of a stable version.

4.1 New Primitive Basis

Suppose Pgen(σ2) 6= Pgen(σ1), Puse(σ2) v Pgen(σ2), but all other characteristics
(Agen, Cgen, Dgen, Egen, Buse, Bgen, Puse) are identical from one source to another.

Then

boot(β1) = µ1

compile(µ1, σ2) = β2.

The reader can verify that both of these steps succeed, and that (σ2, β2) is stable.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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4.2 New Initial Basis

Now suppose σ2 differs from σ1 in the initial basis (e.g., standard library, which
is implemented in and used by the compiler, and is also used by client programs);
and perhaps also in Puse, the set of primitives used in the initial basis.

boot(β1) = µ1

compile(µ1, σ2) = β2

The reader can verify that these steps succeed and result in (σ1, β2) stable.

4.3 New Environments

Suppose σ2 uses a different environment representation (Egen) from σ1.
The “ordinary” procedure will not work:

boot(β1) = µ1

compile(µ1, σ2) = β2

boot(β2) = ⊥

Now Egen(β2) 6= Eenv(β2), so β2 cannot be used in boot. There are two ways to
build a stable version:

elab(β2, σ2) = µ2

compile(µ2, σ2) = β′2
or retarget(µ1, β2, Arun(µ1)) = µ′2

compile(µ′2, σ2) = β′′2

Now, (σ2, β
′
2) is stable, and so is (σ2, β

′′
2 ); β′2 and β′′2 are equivalent in all prop-

erties.

4.4 New Datatype Layout

If the new compiler uses a different datatype layout (that is, Dgen(σ2) 6= Dgen(σ1))
then the following steps will build a stable version.

boot(β1) = µ1

compile(µ1, σ2) = β2

elab(β2, σ2) = µ2

Retarget will not do the job; for suppose

boot(β1) = µ1

compile(µ1, σ2) = β2

retarget(µ1, β2, a) = µ′2
compile(µ′2, σ2) = β′2

then Denv(β′2) = Dgen(σ1), while Drun(β′2) = Dgen(σ2). Thus β′2 cannot be used as
input to either boot or retarget.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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4.5 New Calling Conventions

Suppose σ2 uses new calling conventions: Cgen(σ2) 6= Cgen(σ1).
The procedure is:

boot(β1) = µ1

compile(µ1, σ2) = β2

retarget(µ1, β2, Arun(µ1)) = µ2

compile(µ′1, σ2) = β′2

Now (σ2, β
′
2) is stable. The reader can verify that retarget is necessary, and

that elab would not suffice.

4.6 New Target Architecture

Given (σ, β) stable, Arun(β) = a1, suppose one wishes to make a compiler that runs
on architecture a2, for a2 ∈ Agen(β).

boot(β) = µ1

retarget(µ1, β, a2) = µ2

compile(µ2, σ) = β2

Now (σ, β2) is a stable compiler running on, and generating code for, architecture
a2.

4.7 Getting from Here to There

Suppose there is a stable version (σ1, β1), and a compiler µ1 = boot(β1). The
programmer makes a new source σ2 that differs in every characteristic from σ1. Let
us assume, however, that Puse(σ1) v Pgen(σ2).

There may well exist a β2 such that (σ2, β2) is stable, but we do not have such a
β2. How is it to be obtained?

The first problem is that compile is inapplicable, since we cannot assume either
Buse(σ2) v Bimp(σ2) or Puse(σ2) v Pgen(µ1).

The procedures boot, retarget, and elab are not useful, since they just take
the binary files β1 that we already have. elab(β1, σ2) is illegal (as the reader may
verify), and the author cannot even imagine why it might be useful.

The trick is to make some intermediate versions of the source code: σx is like σ1

but defines augmented primitives P ; σy is like σx, but makes use of the augmented
primitives and provides an augmented basis Bimp.

So, σx is as follows:

Agen(σx) = Agen(σ1)
Cgen(σx) = Cgen(σ1)
Dgen(σx) = Dgen(σ1)
Egen(σx) = Egen(σ1)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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Fig. 5. Getting from here to there.
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Buse(σx) = Buse(σ1)
Bimp(σx) = Bimp(σ1)
Puse(σx) = Puse(σ1)
Pgen(σx) = Pgen(σ2)

Then:

compile(µ1, σx) = βx

boot(βx) = µx

Now version σy is another intermediate version:

Agen(σy) = Agen(σ1)
Cgen(σy) = Cgen(σ1)
Dgen(σy) = Dgen(σ1)
Egen(σy) = Egen(σ1)
Buse(σy) = Buse(σ2)
Bimp(σy) = Bimp(σ2)
Puse(σy) = Puse(σ2)
Pgen(σy) = Pgen(σ2)

Now:

compile(µx, σy) = βy

boot(βy) = µy

compile(µy, σ2) = βz

retarget(µy, βz) = µz

compile(µz , σ2) = β′z
elab(β′z , σ2) = µ2

compile(µ2, σ2) = β2

Now (σ2, β2) is stable. The proof is just simple (but tedious) equational reasoning,
checking that the preconditions of each step are satisfied and characterizing the
intermediate results βx, µx, βy, µy, etc.

Figure 5 presents this proof schematically, where grey lines indicate the σ2 version
of each characteristic.

It does seem amazing that five compilations are required to get from stable version
1 to stable version 2. But I have not found a shorter sequence.

5. GENERALITY

In what sense do the “characteristics” A,C,D,E,B, P form, in any sense, a com-
plete set?
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The axioms cannot assure the correctness of the compiler. Specifying that
a 50,000-line program implements faithfully the 100-page Definition of Standard
ML[Milner et al. 1990] is not something that can be done with eight or ten simple
equations in the style shown in this paper. The axioms are meant as abstractions
of only those aspects of bootstrapping that often prove problematical. Many other
aspects of ML compilation, though difficult or interesting, pose no special problems
when bootstrapping and are entirely ignored by the axioms.

However, perhaps there are other important issues related to bootstrapping that
are not accurately characterized by any of the axioms.

5.1 Runtime System

ML requires a runtime system, to do garbage collection, to handle system calls, and
to provide various functions implemented in C or assembly language. The runtime
system must know the format of ML data types (to do garbage collection) and
must satisfy other constraints. A runtime system ρ has the properties Arun(ρ), the
architecture on which it runs; Crun(ρ), the calling conventions for ML-callable entry
points; and Drun(ρ), the ML datatype layout that it understands.

To model runtime systems, we extend boot with a runtime-system argument:
boot(ρ, β) = µ with extra preconditions

Arun(β) = Arun(ρ)
Crun(β) = Crun(ρ)
Drun(β) = Drun(ρ)

Elaboration also requires a particular runtime system: elab(ρ, β, σ) with the
same three preconditions.

The implications of these constraints turn out to be quite trivial; runtime system
issues cause no bootstrapping problems, except as described in the next subsection.

5.2 Structured I/O Format

For example, John Reppy recently rewrote the “pickler” in the runtime system,
that writes pointer data structures to files (and reads them back). In particular,
the pickler writes static environment representations to bin files β. Reppy’s new
pickler uses a different file format from the old one. The implementation of (either
version of) the pickler, and any knowledge about file format, is entirely within the
runtime system.

We could characterize this as Fgen(ρ), the format that a given runtime system
uses to write ML datatypes to a file. Then the bin file β would have a characteristic
Fenv(β), the format in which static environments have been written; and executables
µ would have the characteristic Fgen(µ) based on the format that µ’s runtime system
uses.

Then we have the following additional axioms. For compile(µ, σ) = β we have
Fgen(µ) = Fenv(β).

For boot(ρ, β) = µ we have

Fenv(β) = Fgen(ρ)
Fgen(µ) = Fgen(ρ)
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(the first is a precondition, the second characterizes the output µ).
For retarget(µ1, β, a) = µ2 we have

Fenv(β) = Fgen(µ1)
Fgen(µ2) = Fgen(µ1).

And finally, for elab(ρ, β, σ) = µ we have only Fgen(µ) = Fgen(ρ), and Fenv(β)
irrelevant.

Clearly, Reppy will need to use elab in order to bootstrap his new structure-
blaster format, since boot and retarget are too restrictive.

This example has illustrated that the axioms of Section 3 do not necessarily
form a complete set, but the axiomatic method is easily extensible to meet new
challenges.

5.3 New Module-Field Layout

Older versions of SML/NJ sorted the value fields of a signature into alphabetical
order before generating code. This meant that the translation of this module S

structure S =
struct
val b = 5
val a = 7

end

would be as a record in memory in which a (7) appeared first, followed by b (5).
Current versions of SML/NJ do not sort into alphabetical order. Thus, bin files

compiled by the new version should be incompatible with executables of the old
version.

Consider the axiomatization. We say that:
Ggen(σ) is the sorting (nonsorting) technique used for structure fields by source

code σ;
Grun(β) is the structure-field layout algorithm that had been used in compiling

β;
Ggen(β1) is the structure-field layout algorithm that β uses in generating output

code;
Grun(µ) is analogous to Grun(β);
Ggen(µ) is analogous to Ggen(β);
Grun(ρ) is the ordering that ρ uses for interfacing its own “primitive” structures

visible from the ML program.
The next step is to write axioms for G. This is not trivial, as it involves an

understanding of how the compiler and generated code work. It turns out, however,
that the equations for G in the steps compile, boot, retarget, elab are exactly
parallel to the equations for C. This implies that G was not necessary at all, and
that C expresses (among other things) the ordering of structure fields. This is a
measure of the robustness of the original axioms.

5.4 Record Field Ordering

Record fields are also sorted by label in SML/NJ. Sorting is required by the se-
mantics of the language, but any consistent ordering will do. The sorting could, in
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principle, be done in some nonstandard (i.e. nonalphabetical) order.
Since records are used directly in the implementation of static environments, and

structures are not, the effect of record fields turns out to be axiomatized exactly like
datatype layouts D, not like calling sequences C. This should not be surprising, as
the record type {a,b} is indeed a kind of type constructor (just like a datatype)
and the layout into bits of ML data types is exactly what D was supposed to
characterize.

6. RELATED WORK

Lecarme et al. [1982] present a good explanation of a theory of bootstrapping using
T-diagrams, a notation invented by Bratman [1961] and formalized by Earley and
Sturgis [1970]. This theory is simple and elegant, and the diagrams are pretty to
look at. It is very successful in describing the steps needed to produce a compiler
from source language SL to object language OL written in implementation language
WL, when one has (for example) a machine executing instruction set XL, a trans-
lator from WL to XL implemented in XL, an interpreter for OL written in AL, and
a translator for AL written in ..., and so on. The T-diagrams seem more compact,
and easier to read once one learns how, than the corresponding equational theory.

In fact, Earley and Sturgis provide an algorithm to construct a bootstrap se-
quence: given a set of translators and interpreters (characterized by source, object,
and implementation languages), and a desired translator (similarly characterized)
their algorithm can either show how to construct the desired result or prove that it
cannot be done. Perhaps an algorithm such as this could be devised to prove the
theorems of Sections 4.1–4.6.

Lecarme goes further, with a flowchart that provides hints about what existing
translator should be modified “by hand” (to produce a different target language,
or to accept a different source language, or to run in a different implementation
language) to get to the desired result. Note the similarities with the hand-made
intermediate versions σx, σy needed in Section 4.7.

The added problem in SML/NJ (and in similar interactive systems, especially
those that have predigested type information) is that there are extra constraints
between the implementation language and the object language that “opaque” T-
diagrams do not express. Furthermore, the different languages in question are all
quite similar: executable code described by (in this case) six characteristics, where
many of the characteristics are likely to match between any two versions. In using
opaque T-diagrams, the similarities between two executables (e.g., identical data
type representation) are lost, and would have to be expressed separately in a set
of equations. This paper has demonstrated T-diagrams with internal structure
(representing equational constraints), which are more powerful than “opaque” T-
diagrams.

Thompson’s Turing award lecture [Thompson 1984] describes from a different
point of view how bugs (and viruses) can propagate through the bootstrapping
process.

7. CONCLUSION

When compiled code shares important parts of the environment with the compiler
itself, bootstrapping new versions can be complicated, and previous theories of
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 4, November 1994.
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bootstrapping do not seem to extend well. Clearly written axioms can help the
poor compiler hacker deal with the complexity.

Certain choices made in the SML/NJ system complicate bootstrap process:

—The SML/NJ system uses a “pickler” to write static environments to binary
files in (almost) exactly the same format that’s used in memory. The resulting
constraints on Denv(β) cause the procedures of Sections 4.4 and 4.7 to take extra
elab steps.

—The sharing of code and data between the compiler and user programs requires
the compiler to load its own static environments, causing constraints on E and
B.

—The use of the same compiler for compiling interactive commands and source
files for the compiler itself requires a special retarget mechanism for relaxing
constraints on A and C.

However, each of these features is useful in its own way. The axiomatization of
bootstrapping makes it easier to tolerate complexity in the process, so that these
features can be more easily supported.

Appendix: Command realization

Each of the abstract functions compile, boot, retarget, elab corresponds to a
sequence of operating-system commands (a shell script) or ML commands. Let µ
be an interactive sml executable with the Compilation Manager (make system)
loaded, called sml-cm. Let σ be a set of source files for the compiler in directory
src. Then compile(µ, σ) is just

cd src; echo "Batch.make()" | sml-cm

Supposing that the target architecture is sparc (Agen(µ) = sparc), this creates a
directory β = bin.sparc containing bin files.

Bootstrapping (boot(ρ, β)) is done by two shell scripts: makeml compiles the
runtime system ρ (written in C and assembly language) from the src/runtime
subdirectory, runs it to load the bin files β to create an executable sml, and makecm
executes sml to load the Compilation Manager, creating an executable µ =sml-cm:

cd src; makeml -bin bin.sparc; makecm

Retargeting is done by instructing the compilation manager µ = sml-cm to load
bin files for an alternate compiler in directory β = alt/bin.sparc (for example)
and to select the alpha code generator within those files:

echo ’retarget("alt/bin.sparc",".alpha"); exportML("sml-a")’ | sml-cm

The result of this retarget(µ, β, α) is µ2 =sml-a.
Finally, elaboration is just like boot but with an extra command-line flag -elab

to makeml.
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