
Seeking Grace: A New Object-Oriented Language for
Novices

Andrew P. Black
Portland State Univ.

black@cs.pdx.edu

Kim B. Bruce
Pomona College
kim@cs.pomona.edu

Michael Homer
Victoria Univ. of Wellington

mwh@ecs.vuw.ac.nz

James Noble
Victoria Univ. of Wellington

kjx@ecs.vuw.ac.nz

Amy Ruskin
Pomona College

asr02010@pomona.edu

Richard Yannow
Pomona College

rmy02010@mymail.pomona.edu

Grace is the absence of everything that indicates pain or
difficulty, hesitation or incongruity.

William Hazlitt

ABSTRACT
Grace is a new object-oriented language that supports a
variety of approaches to teaching programming. It integrates
accepted new ideas in programming languages into a simple
language that allows students and teachers to focus on the
essential complexities of programming rather than the ac-
cidental complexities of the language. We motivate Grace,
review its design, and evaluate it against Kölling’s criteria.

Categories and Subject Descriptors
Computing education [Computer science education]: CS1;
Software notations and Tools [Language Types]: Object
oriented languages

Keywords
Object-oriented language; novice; CS1; CS2

1. INTRODUCTION
At SIGPLAN’s SPLASH conference in 2010, Black, Bruce,
and Noble presented a “design manifesto” for a new educa-
tional programming language [16], arguing that no existing
object-oriented programming language was the obvious choice
for teaching novices. Now we are ready to describe the (still
incomplete) design for the language, which we call Grace,
both to honor the late Admiral Grace Hopper and because
we hope that it will enable more graceful programs.

1.1 Why a new language?
Object-oriented programming is the dominant paradigm for
commercial software development. At many colleges, it is
also the paradigm for the introductory programming courses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

Other institutions prefer to start by teaching functional or
procedural programming, but even at these places, object-
oriented techniques must be taught to relative novices.

What language should be used? Instructors and novice pro-
grammers need a conceptually simple language with minimal
“accidental” complexity, so that class time can be spent on
the key ideas of objects. Today’s most widely used teaching
languages are overly complex, were designed 20 years ago or
more, and often fail to provide good support for features like
first-class functions, type parameters, and parallelism.

Instructors preferring statically typed languages have tried
C++ and Java, but have not always found success. C++ is
a large and complicated language, and novices are often over-
whelmed by its complexity. While Java began as a simpler
language than C++, over the years it has added features, not
always gracefully, and too often requires syntax that cannot
be easily explained. Instructors preferring dynamically typed
languages have gravitated to Python, but Python has some
anomalies as an object-oriented language. Methods must be
written with an explicit self parameter that disappears when
they are used, and there is no support for information hiding,
a key concept in object-oriented programming.

There are other interesting object-oriented languages, like
Smalltalk and Eiffel, that are candidates for introductory pro-
gramming courses. However, they are not now in widespread
use in courses, despite being available for many years.

Our focus is on object-oriented programming for general-
purpose computing. Thus, while we appreciate the advan-
tages of instructional languages like Karel [14] and Alice [3]
that introduce simplified or restricted“computational worlds”,
we do not wish to restrict our students — typically computer
science majors — to programming in a narrow domain.

Much has been written about the choice of languages for
introductory computer science courses. Pears et al. present a
good introduction to this literature in their survey [15, §3.3].

1.2 History of Pedagogical Languages
There is a long history of the use of pedagogical languages in
Computer Science. BASIC [10] and Pascal [9] were extremely
successful from the 1960’s through the 80’s, but have fallen
out of favor with the rise of new programming paradigms.
Other pedagogical languages like Turing [7] have been pro-
posed, but never gained widespread acceptance. Blue [13]
was a particularly interesting object-oriented pedagogical lan-
guage, but had the misfortune of being developed at about

the same time as Java, which meant that it did not receive
the attention it deserved. Its main legacy is the excellent
BlueJ programming environment [12].

One criticism of introducing programming using a peda-
gogical language is students are less well-equipped to take on
internships or other projects with industry. Basic and Pascal
overcame this problem to a degree by becoming used in in-
dustry; the original Macintosh operating system, for example,
was written in an object-oriented extension of Pascal.

We believe that the assumption behind this criticism is
that the most difficult and time-consuming part of learning
to program is learning the syntax and semantics of a pro-
gramming language. Instructors who believe this, perhaps
teaching at institutions where employment as a programmer
immediately after the first course or two is an important
goal, will not be interested in using a pedagogical language.

We challenge this assumption. We believe that the most
difficult and time-consuming part of learning to program
is learning how to solve problems and to represent those
solutions as program designs. Once these conceptual tasks
are mastered, learning a new language syntax and semantics,
at least within the same paradigm, is a straightforward task.
Moreover, there are significant advantages to learning pro-
gramming with a simple and consistent language: students
can focus on the important learning tasks without a complex
and feature-laden language “getting in the way”.

2. GOALS OF GRACE
In this section we list the high-level goals for Grace, along
with some specific objectives to reach those goals.

• Grace should integrate proven new ideas in programming
languages into a simple object-oriented language.

• The language should gracefully represent the key concepts
underlying programming, particularly object-oriented pro-
gramming, in a way that can be easily explained.

• Grace should allow students to focus on the essential,
rather than the accidental, difficulties of programming,
problem solving and system modeling.

Let’s elaborate on the final point. Brooks, remarking on
the difficulties of software technology, divides them “into
essence, the difficulties inherent in the nature of software,
and accidents, those difficulties that today attend its produc-
tion but are not inherent.” [1]. We make the same division for
programming. The essential difficulties that students must
master include concepts like variable binding, conditional
execution, iteration, parameter passing, recursion, and infor-
mation hiding. It is essential to understand these notions to
be a good programmer in any language. To these, object-
oriented programming adds concepts like dynamic binding
and incremental programming (as when using inheritance).
In contrast, the accidental difficulties encompass those fea-
tures of the programming process that have no lasting value,
but which must be mastered simply to make progress. For
example, to pick on Java, there is no good reason to subject
novices to public static void main(String [] args) early
in a first course, or to have them obsess over which lines
should end with semicolons. Thus, a goal of Grace is to
eliminate as many of these accidental difficulties as possible,
not only because students and instructors have quite enough
to do mastering the essential difficulties, but also because

we do not want to give students the false impression that
programming is about the placement of semicolons.

Some of our specific objectives in achieving these goals are
as follows.

• Programs to accomplish simple tasks should be simple,
with little or no syntactic overhead.

• Novice programmers should have access to a programming
environment (IDE) specifically designed to support novices.

• Language concepts should have simple semantic models.

• Grace should support a variety of approaches to teaching,
including:

– introducing objects first, introducing objects late, and
(to a limited extent) starting with functions;

– an emphasis on static types (like Java), a preference for
dynamic types (like Python), and gradual typing, which
makes types optional; and

– a series of “language-levels”, so that students may learn
progressively in a supportive environment.

• Students who have mastered programming in Grace should
find it easy to transition to other languages.

3. AN OVERVIEW OF GRACE
In this section we provide a brief and informal description of
Grace, and invite the reader to assess how well we have met
the above goals and objectives. More details and examples,
including a draft specification, can be found on the Grace
website at gracelang.org.

3.1 Declarations and Statements
A Grace program consists of a sequence of declarations and
statements, which are executed in the order written. Thus,

print "hello world"

is a complete Grace program. A more complicated program
with the same effect is

def greet = "hello "

var subject := "world"

print (greet ++ subject)

This illustrates two kinds of declaration: def introduces a
named constant, which must be given a value when it is
introduced; var introduces a variable, which can optionally
be given a value when it is declared, and can subsequently
be assigned a new value. We use = for definitional equality,
and := for assignment, as in Algol 60, Pascal, and Eiffel.

3.2 Objects and Classes
Grace classes and objects contain field declarations (both
defs and vars), methods, and code.

class aCat.named(n) {
def name = n
var livesLeft := 9
method speak { print "Meow" }
print "A cat named {n} has been created"

}
var theFirstCat := aCat.named "Timothy"

theFirstCat.speak

The class aCat has a constructor called named that takes
a single parameter n. When the constructor is invoked by
the expression aCat.named "Timothy", an object is created

gracelang.org

containing three attributes: the constant name, which is
bound to the string ‘‘Timothy’’, the variable livesLeft, which
is assigned the number 9, and the parameterless method
speak. This object is returned as the result of the constructor.

As an effect of creating this object, the string A cat named
Timothy has been created will be printed; in general, a class
can contain arbitrary executable code, which will execute
every time an object is created. This example also shows
that string literals support interpolation, using a syntax like
that of Ruby: the expression inside the braces is evaluated
and the resulting object asked to convert itself to a string;
this string is then inserted into the quoted text.

We refer to an expression like aCat.named "Timothy" as a
“method request”, to indicate that an object (here aCat) is be-
ing asked to execute a method (here named). There is no need
to parenthesize an argument like "Timothy" that is delimited
by quotes or braces. Parameterless methods like speak are
requested without extraneous parentheses, so Grace program-
mers write theFirstCat.speak and not theFirstCat.speak().

We use empty parentheses () to indicate the location of
a parameter list in a method name, so the above method
is more properly called named(). Grace allows multi-part
method names (sometimes called mixfix operations), but
using a syntax more like Algol than Smalltalk. Thus

myVector.at(i)put(newValue)

represents a request to myVector to execute the at()put()
method with arguments i and newValue.

If only one object of a particular shape is needed there is
no need to define a class; the object can be created directly
by executing an object constructor. Thus

def theSecondCat = object {
def name = ‘‘Timothy’’
var livesLeft := 9
method speak { print "Meow" }
print "A cat named {name} has been created"

}
results in a object operationally equivalent to theFirstCat.

Everything in the language is an object, including classes,
numbers and booleans. Grace does not have a built-in nil
or null value. Uninitialized variables are given the special
value uninitialized, but this cannot be used as a null reference
because attempting to access an uninitialized variable is an
error. Instead programmers should create sentinel objects
like emptyTree, or use matching as discussed in Section 3.6.

3.3 Types & Information hiding
So far, our examples have not mentioned types, but type
annotations are part of the language, as are annotations
for information hiding. To support a variety of approaches
to teaching, types in Grace programs may be completely
omitted, completely supplied, or partially supplied. In all
cases, enough dynamic checks are inserted to guarantee that
Grace is type-safe.

The default visibility of methods is public. This can be
changed by annotating a method as confidential, meaning
that it can be requested only of self1 or super. In contrast,
fields are lexically bound, so are visible only in the object
constructor in which they are declared. To make a field
accessible to other objects, it may be annotated as readable,

1Grace uses self to refer to the current object, corresponding
to this in Java and C++.

which creates a public “reader” method, or writable, which
creates a public “writer” method, or both.

Types describe the public interface of objects, like Java
interfaces; types can be parameterized by other types, as in
List<Number>. Grace types are structural; they are com-
pletely separate from classes, and say nothing at all about an
object’s implementation. So the type Number describes both
exact rational numbers and inexact numbers approximated
to 64-bit precision, since they have the same methods. This
separation of type and class is deliberate. Classes specify
how to construct an object, and objects contain the code
that gives them their behavior. Types support abstraction
and the clear specification of intent, by making explicit the
methods that may be requested of an object.

To illustrate the use of types, let’s define

type Mouse = {
name −> String
mass −> Number
speak −> Done
increaseMassBy (n:Number) −> Done

}
This names a type with four methods — name, mass, speak,
and increaseMassBy(). The −> symbol after a method name
indicates the return type of that method. The built-in type
Done is used to indicate that a method has an effect but does
not return an interesting object.

Here is a class whose constructor method named() is an-
notated to say explicitly that it returns a Mouse object:

class aMouse.named(n:String) −> Mouse {
def name is readable = n
var mass: Number is readable := 50
method increaseMassBy (m:Number) {

mass := mass + m }
method speak −> Done { print "Squeak" }

}
def jeremy:Mouse = aMouse.named "Jeremy"

The type annotation :String indicates that the parame-
ter of the method named() must be a String, and the type
annotation −> Mouse indicates that the method returns a
Mouse object. The compiler will check that the latter anno-
tation is correct. The returned object has public methods
increaseMassBy() and speak, and also methods name and
mass generated as a consequence of the is readable annota-
tions. The type of name can be inferred to be String because
that is the type of n. Because Grace types are structural,
jeremy would still be a Mouse even if the declarations of
jeremy and aMouse.named contained no type information.

The writer method generated by an annotated declaration

var age:Number is writable

is called age:=() and is requested using a syntax that is
deliberately like assignment: age := 3.

3.4 Inheritance
Grace supports inheritance for both objects and classes. For
example we can extend our cat example as follows:

class aHipCat.named(n) {
inherits aCat.named(n)
def vibe = "Cool"

method speak is override { print "Meow, man!" }
}

The inherits clause contains an expression generating a fresh

object, typically a request of a constructor method on a class.
All of the methods of the inherited object are available on
the inheriting object; overriding methods must be flagged
with the is override annotation.

Because fields are local to the object that defines them,
inheriting objects cannot access them directly. However,
the annotation confidential, readable, writable will generate
reader and writer methods that are restricted to heirs. These
methods can be overridden, like any other inherited method.

3.5 Blocks
The Grace block represents an anonymous function, other-
wise known as a lambda-expression; blocks may be assigned
to variables and passed as arguments. A block is written
between braces, for example {x −> 2∗x}. The −> separates
the parameters of the block from the body; if there are no
parameters, the −> is omitted. As is normal in Grace, type
annotations on the parameters are optional. The body can
be an arbitrary sequence of statements and expressions; the
value of the block is that of the last expression executed.
Thus, the above example doubles its argument. The body of
a block can access identifiers from the surrounding scope, so
blocks must be implemented as closures. Blocks are objects;
they are evaluated by requesting their apply method:

def double = {x −> 2∗x}
print (double.apply(5)) // prints 10

Blocks play a central role in Grace, because they enable us
to define “control structures” using methods that take blocks
as arguments. For example, if()then()else() is a method,
defined in a standard library, that takes as arguments a
boolean-valued expression and two blocks:

if (graceLanguage.isGreat) then {
print "Adopt it now"

} else {
print "Come up with a better design"

}
The statements in braces are parameterless blocks, which
are arguments to if()then()else(). As noted in Section 3.2,
parentheses are not required around these arguments because
they are delimited by braces. Grace also uses blocks to define
internal iterators like map and do over its collections:

method averageAge(people) {
// people is a sequence of Person objects.
// Compute their average age.
def ages = people.map{each:Person −> each.age}
var sum := 0
ages.do{each:Number −> sum := sum + each}
sum/ages.size

}
This code first uses the map method with the argument block
{each:Person −> each.age} to create a sequence of ages, and
then the do method with the argument block {each:Number
−> sum := sum + each} to compute their sum.

A method returns the value of the last expression evaluated,
which in the method above is sum/ages.size. An explicit
return statement can be used to specify an early return; this
is useful inside a block, because return means return from
the enclosing method, not from the block itself. For example,
the following method might be defined on a collection that
has a do() method for iteration.

method detect(p:PredicateBlock)ifNone(a:ActionBlock) {

// find element in this collection that
// satisfies predicate p. If none, execute a.
self.do{each −>

if (p.apply(each)) then {return each}
}
a.apply

}
As in many other object-oriented languages, the receiver self
can be omitted.

Grace’s use of parentheses and braces is not arbitrary. The
expression used as the test in if()then()else() is evaluated
once when the method is requested, so it is parenthesized.
In contrast, because the code following the then and else
parameters must be evaluated conditionally, those expres-
sions must be blocks. While this is different from some
other languages, it provides an opportunity for instructors
to discuss conditional and repeated execution of code.

A benefit of first-class blocks is that library writers, instruc-
tors, and students can write methods that provide high-level
operations on their data objects. Being able to write and
reuse common abstractions like the detect()ifNone() method,
rather than requiring that clients “roll their own” using an it-
erator and a loop, is something that we consider an important
part of object-oriented programming.

3.6 Pattern matching
Grace provides pattern matching similar to that found in lan-
guages like ML, Haskell, and Scala. Unlike these languages,
Grace’s pattern matching facilities are mostly definable us-
ing the core features of Grace, and hence can be supported
through libraries. A complete description is the subject of
another paper [8]; here we confine ourselves to a brief sketch.

The programmer can use pattern matching on both lit-
eral values (like the switch statements in the C family of
languages) and on types. For example:

match (exp)
case { 0 −> "Zero" }
case { n:Number −> "Number less than {n+1}" }
case { s:String −> "String \"{s}\"" }

This expression first evaluates exp to yield an object, and
then selects a string describing that object.

Pattern matching can also be used to extract information
from an object, but only if the object provides a method to
make that information available. For example, suppose that
we wish to sum the elements of a list of numbers

type List<T> = {
head −> T
tail −> List<T>
isEmpty −> Boolean
extract −> Tuple<T,List<T>>
...

}
method sum(aList:List<Number>) −> Number {

match(aList)
case {(emptyList) −> 0}
case {xs:List<Number> −> xs.head + sum(xs.tail)}

}
The method sum first matches aList against the constant

emptyList. If this fails, aList must have a head and a tail, and
the method can perform the obvious recursion. However,

because List also provides the method extract, sum can also
be written using a so-called destructuring match:

method sum(aList:List<Number>) −> Number {
match(aList)

case {(emptyList) −> 0}
case {List<Number>(hd, tl) −> hd + sum(tl)}

}
Here, hd and tl are not arguments, but sub-patterns that
bind variables. They are bound to the values returned by
the extract method on aList. Destructuring matches can be
nested arbitrarily deeply.

Patterns are just objects that understand a particular
protocol. Consequently, in addition to the built-in patterns
described so far, users and library writers can define their own
patterns. For example, it is possible to provide a library that
supports the matching of strings against regular expressions.

It is useful, particularly for novices, if the compiler can
provide a static warning when a pattern match is not ex-
haustive, and when cases are unreachable. To permit this,
Grace includes tagless variant types of the form T | U. To
have the type T | U, an object must have either type T or
type U. The combination of variant types and singleton types
make it straightforward to program without nil. For example,
the object emptyList above, which does not have all of the
methods of type List, has the type singleton(emptyList); we
call this a singleton type because emptyList is the only object
with this type. We could then declare

type ListOption<T> = List<T> | singleton(emptyList)

Methods operating on a ListOption object can use pattern
matching, or explicit emptiness tests, to deal with the two
cases. The advantage of pattern matching is that in the
body of the case {xs:List −> ...}, xs is statically known to
be non-empty.

4. THE STATE OF GRACE
Most of the details of the language design have now been
worked out, though we expect refinements to be made as
we gather experience with the language. We have written a
substantial amount of Grace code, including a self-hosting
compiler for Grace itself. The compiler is called minigrace;
it generates either JavaScript, which can be run in a web
browser, or C, which can run on any platform with a C
compiler. We have also written parts of a collections library
for Grace, and a selection of typical assignments for a data
structures course. All code can be reached from the Grace
language web site at gracelang.org.

We are convinced that the success of a language for novices
depends on having a supportive interactive development envi-
ronment (IDE). Rather than designing such an environment
from scratch, we have examined the feasibility of modifying
BlueJ and DrRacket (formerly DrScheme) to support Grace.

We currently have a partial implementation of Grace inside
of DrRacket [5], and intend to complete that implementation
and to create language levels for Grace in DrRacket. We
anticipate having a directed graph of languages rather than a
linear progression so that we can support multiple approaches
to teaching object-oriented programming.

A BlueJ implementation requires an implementation of
Grace on the JVM. While we would eventually like to build
such an implementation, it is currently on a back burner.

There is a wide consensus that teaching parallel program-
ming is of growing importance. Unfortunately, there is no

consensus on what kind of parallelism to teach: message-
passing, shared variables, futures, actors, or whatever. To
avoid committing to a model that will be wrong for a large
fraction of our intended audience, Grace will provide a va-
riety of libraries for supporting parallelism in a variety of
styles. We don’t believe that such support need be “second
class”, because most of the basic features of Grace, including
all of the control structures, are also provided by libraries.

We have had good experience with an undergraduate assis-
tant writing libraries for data structures, but must develop
tool support and teaching materials to class-test Grace. We
plan on using Grace in small classes of novices in late 2013.
We expect to make revisions to Grace as we respond to any
learning difficulties we find in these early classes.

We intend to develop at least two different approaches
to teaching with Grace, one based on the text by Felleisen
et al. [4], which emphasizes “design recipes”, and one based
on the text by Bruce et al. [2], which takes an objects-first
approach. We will make the lecture notes and examples from
these courses freely available online.

5. EVALUATING GRACE
While it is difficult to evaluate Grace without direct teaching
experience, we can provide a first evaluation based on criteria
that others have presented on language choices for novices.
For this purpose we adopt the checklist of eleven criteria
proposed by Michael Kölling [11].

1. Clean concepts. We have provided uncluttered features
with a straight-forward semantics. Students can begin
by defining objects directly before being introduced to
classes, and simple objects can be created fully formed,
without need for complex initialization. Types and classes
are separate concepts: classes are used to create objects,
while types are used to specify the interface of an object,
without reference to any particular implementation.

2. Pure object-orientation. Everything in Grace is an
object, including numbers, booleans and blocks. As a re-
sult, there is no need for the complications of value versus
reference. While Grace supports functional constructs,
they are obtained in an object-oriented way.

3. Safety. Grace is strongly typed, with type errors caught
at either compile time or run time. Because types are
gradual, students may write programs across a spectrum
from no type annotations, resulting in dynamic checks,
to complete annotations, resulting in static checks. We
have designed Grace to make it possible to check for
access to uninitialized variables, exhaustiveness of type-
case matches, and other common errors.

4. High level. Grace is high-level in several ways. Of course,
Grace uses automatically managed memory, eliminating
the possibility of some of the most frustrating errors for
students. More importantly, blocks are first-class in Grace;
this provides students (and teachers) with the ability to
write methods that accept blocks as parameters, which
in turn makes it easy to treat data structures as “whole
objects”. A good example is a method that traverses
a tree, searching for a value that satisfies a predicate
represented as a boolean-valued block.

5. Simple object/execution model. All objects are on
the heap, and all computation takes place by requesting
that an object execute a method.

6. Readable syntax. All declarations are introduced by

gracelang.org

keywords; we chose keywords that directly signify the
concept that we wish to teach. So, for example, methods
are introduced by the method keyword, not fun or mdef.

Because we expect students to transition to languages
that use C-style syntax, we have adopted features that are
close to those languages, though normally with a twist.
For example, we use braces to delimit blocks, but those
blocks must also be consistently indented. Semicolons can
always be omitted at the end of a line.

In declarations, names come before types, making the
names more visible. We distinguish between “=” for defi-
nitions and “:=” for assignment to variables because they
represent different concepts.

7. No redundancy. This is difficult to verify, but we have
worked to build Grace from a small number of primitive
constructs. Because blocks are first class, we can build any
number of looping constructs. That might be considered
redundant, but we feel it is important to be able to use
the most appropriate loop for a given traversal.

Pattern-matching may seem to be redundant: most
object-oriented languages don’t have it, and some pro-
grammers feel that pattern-matching is inherently non-
object-oriented. Most languages do provide a construct
to check the type of a run-time value; pattern matching
provides similar facilities, and in a way that facilitates
static type-checking. Moreover, pattern matching can be
excluded from the beginning language levels.

However, the real argument for including pattern match-
ing in Grace is that it makes Grace a more effective teach-
ing language. Students should be able to compare code
written with and without pattern matching, and learn
from experience which is more readable and easier to
maintain. This comparison is most effective if all other
variables can be help constant, which means comparing
two equivalent programs written in the same language.

8. Small. The core of Grace is quite small; we avoided
enlarging the language with anything that can be defined
in a library. Grace does include a simple module facility
for importing features from libraries, but does not provide
many facilities for programming-in-the-large, as would
be needed in an industrial-strength language. Students
should be able to learn all of Grace in one or two semesters.

9. Easy transition. The basic concepts supported by Grace
are available in other object-oriented languages, though
often obscured by complicated syntax. Even blocks, not
currently part of Java, will be added in the next revision.
They are already included in C# 3.0 [6].

10. Correctness assurance. We do not currently have anno-
tations for pre- and post-condition, variants and invariants,
but we expect to provide them in libraries.

11. Environment. We are well aware of the importance of a
good programming environment for Grace. As described
in Section 4, development of an environment is underway.

We believe that Grace stacks up very well against languages
like Java, C#, Python, and Eiffel with respect to Kölling’s
criteria. We are well aware that a positive reception by
students is crucial to the success of the language. Thus,
formative evaluations with real classes of students will be
essential to the further development of the language.

6. CONCLUSION
While this project is still in relatively early stages, we feel that

it is now far enough along to present to potential adopters.
We are eager to have feedback on the language design to this
point, and are happy to have others pitch in with library
designs, work on programming environments, improvements
in the implementation, and in testing the language on novices.

More information on the project, including information on
the current prototype compiler, is available at gracelang.org.

7. REFERENCES
[1] F. P. Brooks, Jr. No silver bullet: Essence and

accidents of software engineering. IEEE Computer,
20(4):10–19, April 1987.

[2] K. Bruce, A. Danyluk, and T. Murtagh. Java: An
Eventful Approach. Prentice-Hall, 2005.

[3] W. P. Dann, S. Cooper, and R. Pausch. Learning to
Program with Alice. Pearson Prentice Hall, 2011.

[4] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to design programs: an
introduction to programming and computing. MIT
Press, Cambridge, MA, USA, 2001.

[5] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: a programming environment for Scheme. J.
Funct. Program., 12(2):159–182, 2002.

[6] A. Hejlsberg, M. Torgersen, S. Wiltamuth, and
P. Golde. C# Programming Language. Addison-Wesley,
4th edition, 2010.

[7] R. C. Holt and J. R. Cordy. The Turing programming
language. Commun. ACM, 31(12):1410–1423, 1988.

[8] M. Homer, J. Noble, K. B. Bruce, A. P. Black, and
D. J. Pearce. Patterns as objects in Grace. In Proc. 8th
symp. on Dynamic languages, DLS ’12, pages 17–28,
New York, NY, USA, 2012. ACM.

[9] K. Jensen and N. Wirth. Pascal User Manual and
Report. Springer, 1975.

[10] J. G. Kemeny and T. E. Kurtz. Back to Basic; The
History, Corruption, and Future of the Language.
Addison-Wesley, 1985.

[11] M. Kölling. The problem of teaching object-oriented
programming, Part I: Languages. JOOP, 11(8):8–15,
1999.

[12] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Journal of
Computer Science Education, 13(4), Dec 2003.

[13] M. Kölling and J. Rosenberg. Blue — a language for
teaching object-oriented programming. In Proc. 27th
SIGCSE technical symp. on Computer science
education, SIGCSE ’96, pages 190–194, 1996.

[14] R. E. Pattis. Karel The Robot: A Gentle Introduction
to the Art of Programming. Wiley, 1995.

[15] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams,
J. Bennedsen, M. Devlin, and J. Paterson. A survey of
literature on the teaching of introductory programming.
In Working group reports on ITiCSE on Innovation
and technology in computer science education,
ITiCSE-WGR ’07, pages 204–223. ACM, 2007.

[16] J. Rosenberger. Grace: A manifesto for a new
educational object-oriented programming language.
Blog@CACM, October 2010. Retrieved Dec 2012.
http://cacm.acm.org/blogs/blog-cacm/100389.

gracelang.org
http://cacm.acm.org/blogs/blog-cacm/100389

	Introduction
	Why a new language?
	History of Pedagogical Languages

	Goals of Grace
	An overview of Grace
	Declarations and Statements
	Objects and Classes
	Types & Information hiding
	Inheritance
	Blocks
	Pattern matching

	The State of Grace
	Evaluating Grace
	Conclusion
	References

